首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
This paper presents the results of engineering geological investigations and tunnel support design studies, carried out at the Sulakyurt dam site, northeast of Ankara, Turkey. The Sulakyurt dam will be used for flow control and water storage for irrigation projects. Studies were carried out both in the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. The diversion tunnel will be driven in rock mass, consisting of granite and diorite. Empirical, analytical and numerical methods were combined for safe tunnel design. Rock mass rating (RMR), Rock mass quality (Q) and Geological strength index (GSI) systems were used for empirical rock mass quality determination, site characterization and support design. The convergence–confinement method was used as analytical method and software called Phase2, a 2D finite element program, was utilized as numerical method. According to the results acquired from the empirical, analytical and numerical methods, tunnel stability problems were expected in both granite and diorite rock masses. The support system, suggested by empirical methods, was applied and the performance of suggested support system was evaluated by means of numerical modelling. It was concluded that the suggested support systems were adequate, since after applying the suggested support system to granite and diorite, tunnel deformation and the yielded elements around the tunnel decreased significantly. Thus, it is suggested that for more reliable support design empirical, numerical and analytical methods should be combined.  相似文献   

2.
Support capacity estimation of a diversion tunnel in weak rock   总被引:4,自引:0,他引:4  
This paper presents the results of the support capacity estimation for the diversion tunnel of the Uru dam site in highly weathered tuff and weak zone. Tunneling in weak rock requires some special considerations, since misjudgment in support design results in costly failures. There are several ways of estimating rock support pressure and selecting support. However, all systems suffer from their characteristic limitations in achieving objectives. Thus, it is more useful to use different methods for estimating support pressure and type of support. The support pressure pi was established by three different methods. These methods are the (1) empirical methods based on rock mass rating (RMR) and rock mass quality index (Q-classification systems), (2) ground support interaction analysis (GSIA) and (3) numerical methods, namely, Phase2 finite element (FEM) program. Rock masses were characterized in terms of RSR, RMR, Q-system and GSI. Drill-core samples were tested in the rock mechanics laboratory to determine physico-mechanical properties. Rock mass strength was estimated by empirical methods. Finally, the required support system is proposed and evaluated by different methods in the highly weathered tuff and weak zone of the diversion tunnel.  相似文献   

3.
《Engineering Geology》2001,59(1-2):161-172
This paper presents the results of preliminary support design of the subway tunnel for Ankara subway project in accordance with some empirical and numerical methods, using the phase 2D finite element method (FEM). The 5 m diameter subway tunnel will advance through slightly to moderately weathered dacite and weak zones. Rock masses were characterized in terms of rock mass rating (RMR), geological strength index (GSI) and Q System. Core samples were tested in the rock mechanics laboratory to determine uniaxial compressive strength, deformability parameters, unit weight, tensile strength and triaxial compressive strength properties. Finally, rock mass strengths were determined by empirical and numerical methods. Required support system was suggested.  相似文献   

4.
Engineering geological properties and support design of a planned diversion tunnel at Guledar dam site, which was located at the North of Ankara, Turkey were studied in this article. The main purpose of the construction of the planned tunnel is to regulate, drainage and to provide water for irrigation purposes. The diversion tunnel runs mainly through formations of limestone, sandstone and diabase. Rock masses at the site were characterized using Rock Mass Rating (RMR), Rock Mass Quality (Q), Rock Mass Index (RMi) and Geological Strength Index (GSI). RMR, Q, RMi and GSI were determined by using field data and mechanical properties of intact rock samples, measured in the laboratory. Support requirements for the planned diversion tunnel were determined accordingly in terms of the rock mass classification systems. Recommended support systems by empirical methods were also analyzed using 2D Finite Element method. Calculated parameters based on empirical methods were used as input parameters in the finite element models. The results from both methods were compared with each other. This comparison suggests that more reliable support design could be achieved by using the finite element method together with the empirical methods.  相似文献   

5.
Construction of the Chhibro—Khodri Tunnel of the Yamuna Hydroelectric Scheme near Dehradun in the lower Himalayan region has been delayed by over six years due to problems associated with highly squeezing rock masses encountered unexpectedly in recurring faulted zones.

Attempts to measure tectonic slip along a fault zone running across the tunnel have been reviewed. The suitability of a “flexible lining” provided in this zone has been evaluated in view of the region being seismically active.

A tunnel instrumentation programme was implemented to evolve a flexible support system capable of reducing rock loads to manageable levels in highly squeezing rock conditions. Use of “loose” backfill with steel-arch supports has shown promise in this direction.

Observed support pressures have been compared with the estimated values for evaluating the empirical and theoretical approaches of rock-load assessment in the squeezing rock conditions. The elasto-plastic theory has yielded reliable estimates of rock pressures.  相似文献   


6.
This paper presents the engineering geological properties and support design of a planned diversion tunnel at the Boztepe dam site that contains units of basalt and tuffites. Empirical, theoretical and numerical approaches were used and compared in this study focusing on tunnel design safety. Rock masses at the site were characterized using three empirical methods, namely rock mass rating (RMR), rock mass quality (Q) and geological strength index (GSI). The RMR, Q and GSI ratings were determined by using field data and the mechanical properties of intact rock samples were evaluated in the laboratory. Support requirements were proposed accordingly in terms of different rock mass classification systems. The convergence–confinement method was used as the theoretical approach. Support systems were also analyzed using a commercial software based on the finite element method (FEM). The parameters calculated by empirical methods were used as input parameters for the FEM analysis. The results from the two methods were compared with each other. This comparison suggests that a more reliable and safe design could be achieved by using a combination of empirical, analytical and numerical approaches.  相似文献   

7.
One of the most important steps in designing underground structures is the evaluation of ground conditions in terms of squeezing potential and behavior of the geological structures. Generally, constructing a tunnel in the squeezing condition is a very slow and difficult task. Therefore, recognition and evaluation of the squeezing potential is very important in selecting a suitable excavation method and support, especially in weak rocks. This research is concerned with the assessment of squeezing potential along tunnel T4 of water conveyance system from Azad dam to Ravansar plain with the length of 11,380 m, located between Kurdistan and Kermanshah provinces, west of Iran. This tunnel is in an almost NS direction and flows through the contact zone of Iran and Arabic plates. According to the engineering geological investigations, the squeezing potential has been recognized as the most important difficulty in the excavation of tunnel T4. This conclusion can be explained by the several indicators including lithology, high disintegration of rock masses, alteration of rocks on the border of Iran and Arabic plates’ contact zone, low rock mass quality, high overburden, and highly jointed rock masses in a shuffle tectonic condition. This paper deals with the engineering geological and geomechanical properties of rock masses. Then, it evaluates squeezing intensity using empirical, semi-empirical, and analytical properties methods. The analysis conducted in these work shows that the tunnel excavation would encounter squeezing problems, which is most severe in region 2 due to the effects of the major young Zagros fault.  相似文献   

8.
In this paper, preliminary support design of Kaletepe tunnel, located on Bilecik-Istanbul highway, Turkey, was analyzed by empirical and numerical methods. The rock mass rating (RMR) and rock mass quality (Q) systems were employed for empirical rock mass quality determination. Numerical analysis for the stress–strain distribution of the tunnel excavation and support systems was also carried out. The applied support performance was investigated at different sections of the tunnel route. It was seen that empirical and numerical approaches showed similar results. This indicates that when the empirical method is supported by numerical method, the preliminary support design will be more reliable.  相似文献   

9.
This paper describes the results of the engineering geological investigations and rock mechanics studies carried out at the proposed Uru Dam site. Analyses were carried out in terms of rock mass classifications for diversion tunnel, kinematic analysis of excavation slopes, permeability of the dam foundation and determination of rock mass strength parameters.Uru Dam is a rock-filled dam with upstream concrete slab. The dam will be built on the Suveri River in the central part of Turkey. The foundation rocks are volcanic rocks, which consist of andesite, basalt and tuff of Neogene Age. Studies were carried out both at the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling, pressurized water tests and sampling for laboratory testing.Uniaxial, triaxial and tensile strength tests were performed and deformation parameters, unit weight and porosity were determined on the intact rock specimens in the laboratory. Rock mass strength and modulus of elasticity of rock mass are determined using the Hoek–Brown empirical strength criterion. Rock mass classifications have been performed according to RMR and Q systems for the diversion tunnel.Engineering geological assessment of the proposed dam and reservoir area indicated that there will be no foundation stability problems. Detailed geotechnical investigations are required for the final design of the dam.  相似文献   

10.
Summary  A new formulation is presented for deep circular tunnels in rock with cylindrical anisotropy. The formulation is an exact solution since it satisfies equilibrium, strain compatibility, and the anisotropic constitutive model. Complete solutions have been found for two scenarios: tunnel with excavation damage zone, and tunnel with rockbolt support. The solution is based on the assumption of a deep, circular tunnel in a medium with two homogeneous zones: an inner zone surrounding the tunnel, which is either isotropic or anisotropic, and an outer zone, for the remainder of the medium, which is isotropic. Plane strain conditions, elastic response of rock, rockbolts and support, and simultaneous excavation and support installation are also assumed. For tunnels surrounded by an excavation damage zone with reduced rock properties, the tangential stresses and the radial deformations at the tunnel wall are very sensitive to both the magnitude of stiffness reduction of the damaged rock and the size of the damaged zone. The effect of the rockbolts on the rock is approximated by treating the rockbolt-rock composite as a material with cylindrical anisotropy with stiffnesses related to the properties of the rock and rockbolts, and spacing of the rockbolts. Comparisons between the analytical solution and a numerical method show small differences and provide confidence in the approach suggested.  相似文献   

11.
赵瑜  李晓红  顾义磊  陈陆望  李丹  陈浩 《岩土力学》2007,28(Z1):393-397
隧道失稳和维护困难是高地应力隧道的普遍问题,对隧道的支护设计提出了更高的要求。研究从地下工程岩体应力环境变化和岩体强度变化的角度探讨了高应力隧道围岩的变形破坏机制。根据重庆某深埋隧道围岩实际情况,运用FLAC3D三维显式有限差分法分析软件,建立了摩尔-库仑剪破坏与拉破坏复合的应变软化模型。通过隧道的三维数值计算,分析了高应力环境下隧道周边塑性区分布、应力场、位移场等的分布特点,得到了高应力隧道围岩在高地应力环境下的破坏规律。通过物理模型验证了高应力隧道围岩的破坏特点,并进行了超载试验,将其与数值模拟进行对比,进一步验证了所建数值模型的科学性。  相似文献   

12.
吴家冠  段亚辉 《岩土力学》2009,30(8):2431-2435
以江坪河水电站溢洪洞进口段为工程背景,基于大型有限元分析软件ANSYS,模拟地质地形,包括不同岩层、断层条件,采用弹塑性有限元模型和Drucker-Prager屈服准则,对溢洪洞施工全过程进行非线性数值仿真计算分析,得到了不同岩层围岩的应力和位移分布规律。通过对位移、应力场,特别是拉应力大小、深度的分析,以及塑性区和点安全系数分布等的综合分析,对溢洪洞进口段在开挖未支护和开挖后及时支护两种工况下的稳定性进行了评价。计算结果表明,隧洞进口段围岩开挖未支护时,洞顶下沉位移大,有大面积塑性区和超过岩体抗拉深度的区域,稳定性差。及时支护后,洞顶塑性区和超过岩体抗拉深度的区域减小,稳定性明显提高,但CK2强风化层支护区的点安全系数略大于1.0,且内部仍有小于1.0的区域。因此,建议CK2强风化层加强支护,最好采取钢拱架强支护措施,其结果为设计和施工提供了重要参考。  相似文献   

13.
在节理岩体工程的数值计算及稳定性评价中,变形特征参数的选择至关重要。在原位试验受到各种条件无法进行时,经验确定方法不失为一种好的选择。本文在大量收集目前国内外节理岩体变形模量经验确定方法的基础之上,提出了改进的节理岩体变形模量经验确定方法,即尺寸效应折减与节理特征折减的二次折减法,并应用3个坝址与水电站的节理岩体工程实例进行分析验证,得出了一些有益的结论。  相似文献   

14.
Most of the railway tunnels in Sweden are shallow-seated (<20 m of rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr–Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.  相似文献   

15.
Summary ¶Rock zones containing a high fracture density and/or soft, low cohesion materials can be highly problematic when encountered during tunnel excavation. For example in the eastern Aar massif of central Switzerland, experiences during the construction of the Gotthard highway tunnel showed that heavily fractured areas within shear zones were responsible for overbreaks in the form of chimneys several metres in height. To understand and estimate the impact of the shear zones on rock mass behaviour, knowledge concerning the rock mass strength and deformation characteristics is fundamental. A series of laboratory triaxial tests, performed on samples from granite- and gneiss-hosted shear zones revealed that with increasing degree of tectonic overprint, sample strength decreases and rock behaviour shows a transition from brittle to ductile deformation. These trends may be explained by increasing fracture densities, increasing foliation intensity, increasing thickness of fine-grained, low cohesion fracture infill, and increasing mica content associated with the increasing degree of tectonic overprint. As fracture density increases and the influence of discrete, persistent discontinuities on rock mass strength decreases, behaviour of the test samples becomes more and more representative of rock mass behaviour, i.e. that of a densely fractured continuum. For the purpose of numerical modeling calculations, the shear zones may be subdivided with respect to an increasing fracture density, foliation intensity and mica content into a strongly foliated zone, a fractured zone and a cohesionless zone, which in turn exhibit brittle, brittle-ductile and ductile rock mass constitutive behaviour, respectively.Received December 17, 2001; accepted January 9, 2003 Published online April 29, 2003  相似文献   

16.
Stability level of tunnels that exist in an underground mine has a great influence on the safety, production and economic performance of the mine. Ensuring of stability for soft-rock tunnels is an important task for deep coal mines located in high in situ stress conditions. The aim of this study is to investigate the effect of tunnel shape and support pattern on the deformation, failure zone and stability around a tunnel located in a coal rock mass in China and to select an appropriate tunnel shape and a support pattern to provide a stable stress-deformation condition around the tunnel. Using the available information on stratigraphy, geological structures, in situ stress measurements and geo-mechanical properties of intact rock and discontinuity interfaces, a three-dimensional numerical model was built using the FLAC software to simulate the stress conditions around the tunnel in the coal rock mass. Analyses were conducted for several tunnel shapes and rock support patterns. Results obtained for the distribution of failed zones, and stress and displacement fields around the tunnel were compared to select the best tunnel shape and support pattern to achieve the optimum stability conditions. Also, a comparison is given between the numerical predictions and field deformation monitoring results.  相似文献   

17.
基于可拓理论的围岩稳定分类方法的研究   总被引:11,自引:0,他引:11  
黄祥志  佘成学 《岩土力学》2006,27(10):1800-1804
在双护盾TBM(tunnel boring machine)的隧洞施工中,将可拓理论与洞室围岩稳定评价相结合。基于碴料和掘进参数的地质编录所提供的地质信息,选取了能够反映围岩稳定综合特性的评价指标,确定围岩稳定类型和预测前方岩体情 况。在物元理论、可拓集合论和关联函数运算的基础上,建立了隧洞围岩稳定分类的可拓评价方法,其中引进了隶属度的概念和一种定量的指标权重的确定方法,并在山西引黄工程的双护盾TBM隧洞施工中用此分类方法对某两段围岩进行了稳定分 类,得到的稳定分类结果与实际情况吻合。  相似文献   

18.
朱正龙 《福建地质》2010,29(4):355-358
根据隧道围岩地质特征,提出了对第四系土层与风化岩层、断层破碎带等较复杂地段隧道的围岩评价及施工方法与工艺。  相似文献   

19.
崔岚  郑俊杰  章荣军 《岩土力学》2014,35(4):1187-1193
隧道围岩非线性体积膨胀影响施工安全,如何正确评价隧道围岩塑性区域内扩容机制非常重要。多数研究从理论上推导深埋圆形隧洞应变软化围岩应力-应变场时仅采用恒定或线性变化剪胀模型,针对此不足,提出了一种基于有限差分法的分析方法,能够合理地考虑围岩非线性剪胀效应及其应变软化特性。利用已有的研究成果,验证了该方法的合理性,并进一步探讨了不同质量石灰岩与支护压力下剪胀系数在围岩塑性区域内的影响因素,比较了恒定与非线性变化剪胀模型下围岩变形的不同。结果表明:对于地质强度指标(GSI)较小、质量较差的岩体,塑性区域内主要由围压控制剪胀效应程度;恒定与非线性变化剪胀模型下围岩洞壁变形差别显著。  相似文献   

20.
米箭沟尾矿坝加高方案渗流场数值分析   总被引:2,自引:0,他引:2  
米箭沟尾矿坝为了进行加高设计而进行了尾矿库区的地质钻孔勘探。基于实际钻孔勘探成果的最佳反演分析各分区-尾矿砂、风化岩体和初期坝堆石体的模型渗透参数和加高设计方案,采用三维有限元数值计算方法,应用自主开发的3D-Seepage-Stress程序进行了该尾矿坝加高后渗流场数值分析,得出渗流场各要素分布图。可以看出,在此加高方案下,尾矿坝库区浸润线和溢出点都很高,不利于尾矿坝的稳定安全和运行管理。为此提出了在加高方案设计中加强排渗设施设计的初步方案与建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号