首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
砂岩储层孔隙保存的定量预测研究   总被引:52,自引:4,他引:48       下载免费PDF全文
寿建峰  朱国华 《地质科学》1998,33(2):244-250
对北方地区若干盆地的砂岩孔隙发育特征的研究表明,地温场、地质年代和盆地沉降方式对砂岩孔隙的演化和保存有制约作用。地温梯度每增加1℃,砂岩孔隙度平均减小约7%;在地温梯度2-4℃/100m范围内,有效储层的保存深度差异可达2500-3000m.地质年代每增加1Ma,砂岩孔隙度降低约0.018%-0.009%.地层超压可最大保存5%-7%的孔隙度。盆地沉降方式不同引起的孔隙保存量的差异为2%-5%,相应的有效孔隙保存深度的差值约1000m。  相似文献   

2.
依据已有研究成果和最新调查资料, 在综述沙漠湖泊与高大沙山研究进展及存在问题的基础上, 深入探讨了巴丹吉林沙漠湖泊水的补给来源、补给模式及高大沙山的形成机理. 结果认为, 沙漠湖泊水和地下水的补给来源不是当地降水和周边雅布赖山-北大山的降水形成的地表洪水, 而是南部青藏高原(包括祁连山)现代大气降水、冰雪融水、高原湖水的远源补给. 补给模式为高原富含CO2气体和CaCO3的入渗水, 通过深大导水断裂通道形成的区域地下水流循环系统, 源源不断地自南向北运移到沙漠地带, 地下水在通过沙漠湖泊区弧形"叠瓦状"垂向导水构造断裂向上越流过程中被广泛分布的岩浆岩加热, 沿断层溢出地表形成湖泊群, 同时导致水中CO2的释放和CaCO3的沉积, 形成钙华体. 高大沙山的形成机理是深层地下热水向上越流补给了沙漠覆盖区, 在承压水头以下形成鼓丘状的沙漠地下水, 承压水头以上, 水蒸汽继续向上运移并被凝结在沙粒表面, 未被吸附凝结的热水蒸汽继续向上运移并被吸附在新沉积的沙粒表面, 形成湿砂层并接受更新的沙粒沉积, 如此反复循环, 则沙丘高度不断增加, 逐步形成高大的固定沙山.  相似文献   

3.
为研究地表水对地下水的涵养效果,以2020年永定河春季生态补给过程为例,分析了永定河补水期间河道沿岸126眼地下水观测井的水位与水质等数据.研究结果显示,永定河生态补水2个月后,第四系地下水位上升区面积超过了450 km2,基岩地下水位上升区面积超过190 km2.受含水介质类型和河道过水量及水头的影响,基岩水的上升幅度最大可接近24 m,远远大于第四系地下水的升幅.地表水补给地下水后,地下水中的重碳酸盐和硝酸盐氮的浓度有所下降.永定河春季生态补水对沿岸地下水补给量约9800万m3.  相似文献   

4.
通过1989~1995年新疆乌拉泊水均衡试验场潜水埋深4m处包气带凝结水对地下水补给的观测:卵砾石2.58mm/a、细砾3.15mm/a、中砂9.90mm/a、细砂35..87mm/a、粉土10.04mm/a。最有利于包气带凝结水形成的时间是每年的4~9月;包气带凝结水量的大小与土体颗粒相对比表面积和渗透系数相关,推测粉砂的凝结水量约为20mm/a,粘性土小于10mm/a;凝结水对地下水补给的最大量约为50mm/a。综合气候和水文地质条件分析,认为本试验研究成果在我国西北干旱区具有代表性,估算西北地区凝结水对地下水的总补给量大于3×1010m3/a,可能大于平原降水入渗量,在某些区域可能是最主要的地下水补给源。  相似文献   

5.
丁宏伟  郭瑞  田刚  康亮  尹政 《甘肃地质》2015,24(2):9-17
依据前人研究成果和最新调查测试资料,深入探讨了巴丹吉林沙漠湖泊水的补给来源、补给模式及高大沙山的形成机理。认为沙漠湖泊水和地下水的补给来源不是当地降水和周边雅布赖山—北大山的降水形成的地表洪水,而是南部青藏高原(包括祁连山)现代大气降水、冰雪融水、高原湖水的远源补给。补给模式为:高原富含CO2气体和Ca CO3的入渗水,通过深大导水断裂通道形成的区域地下水流循环系统,源源不断地自南向北运移到沙漠地带。地下水在通过沙漠湖泊区弧形"叠瓦状"垂向导水构造断裂向上越流过程中被广泛分布的岩浆岩加热,沿断层溢出地表形成湖泊群,同时导致水中CO2的释放和Ca CO3的沉积,形成钙华、钙质根管和钙质胶结层。高大沙山的形成机理是:深层地下热水向上越流补给了沙漠覆盖区,在承压水头以下形成鼓丘状的沙漠地下水,承压水头以上,水蒸气继续向上运移并被凝结在沙粒表面,未被吸附凝结的热水蒸气继续向上运移并被吸附在新沉积的沙粒表面,形成湿砂层并接受更新的沙粒沉积。如此反复循环,则沙丘高度不断增加,逐步形成高大的固定沙山。  相似文献   

6.
本文对山东半岛海岸带滨海杂填土、饱和粉细砂、淤泥质土等特殊复杂地层地基处理方法进行了研究。以经济高效的强夯法为基础,提出复杂地层整体排水概念,设计了浅层、深层竖向排水和水平排水的接力排水系统,并进行了现场试验研究。监测数据表明,强夯荷载作用下,接力排水系统整体协同排水,可快速排出各个地层中地下水、消散超孔隙水压力。7 h左右可基本消除强夯引起的地下水上升及孔隙水压力消散。持续降水,地表沉降为上部土体厚度的0.7%~2.0%。强夯动力荷载作用下,表层土体压缩为上部土体厚度的8.7%~10.9%。埋深3~7 m土体沉降约为土体厚度的5‰、3‰,埋深7~10 m土体沉降为土体厚度的2‰。检测数据表明,在强夯有效影响深度内地基处理效果明显,土体工程性状改善明显。表层承载力及变形模量满足设计要求,4 m以下淤泥承载力平均值略低于设计要求,下部淤泥质土计算平均固结度为77%。夯后1个月监测数据表明,地表沉降量在25 mm以内,已逐步趋于稳定,分层沉降、孔隙水压力数值整体稳定略有下降。  相似文献   

7.
苟富刚  龚绪龙 《地球学报》2023,44(6):1063-1075
弱透水层孔隙水反映了土体沉积时的原始溶液, 对于古气候重建具有重大作用。为了解析长江河口地区全新世以来弱透水层孔隙水的补给及其盐分来源, 采集易溶盐、土工、潜水、近岸海水等样品。采用易溶盐指标结合土工指标(含水率、湿密度、比重)获取了研究区弱透水层孔隙水的水化学特征。采用二端元法、Piper三线图、Gibbs图、离子比值法等解析了孔隙水的补给及其盐分来源。结果表明: 孔隙水矿化度介于1.16~32.79 g/L, 平均值为10.68 g/L, 盐水占比最高, 其次为咸水和微咸水。孔隙水类型以Cl-Na型(85.6%)为主, 其次从高到低依次为Cl-Ca·Mg、HCO3-Ca·Na、HCO3-Ca、Cl-Ca型。当地潜水类型为HCO3-Ca型, 深层孔隙类型为Cl-Na型, 说明深层孔隙水保留了土体沉积时的环境信息。中层与浅层孔隙水受到了大气降水补给、人类活动、蒸发作用等表层作用影响, 孔隙水水化学数据较为离散。孔隙水的δ18O与δD数据说明孔隙水样点受到了海水混合作用与蒸发作用的叠加影响, 蒸发作用较为强烈。孔隙水海水补给比例介于30.2%~87.0%, 大气降水补给比例介于13.0%~69.8%。土体中的盐分主要来自全新世海侵(海源)与蒸发盐岩溶解、长石风化溶解(地壳源)。海水补给深层孔隙水盐分的比例约为37%, 其余盐分主要来自地壳源。  相似文献   

8.
波流作用于海床产生动态孔隙水压力,如不能及时消除会在其内部产生累积孔隙水压力,相邻两点间的孔隙水压力差值造成的水力梯度产生渗流力,渗流力引起水流动,海床表面为排水界面,从而会在海床内部形成向上的渗流力作用于泥沙颗粒上,使泥沙发生启动向海床表层运移,从而形成一定范围的粗颗粒层。本文采用数值模拟对不同流速下的海床累积孔隙水压力进行了研究,同时分析了硬壳层的存在对海床累积孔隙水压力的影响规律,根据取得的不同流速下海床内部的累积孔隙水压力值,计算海床任意位置处的渗流压力梯度,采用王虎等(2014)推导建立的海床临界冲刷深度的计算方法,分析不同流速下的硬壳层形成深度。结果表明: 海流流向与波浪行进方向一致时,对累积孔隙水压力起促进作用,流速越大累积孔隙水压力越大,反之对累积孔隙水压力有抑制作用。表面硬壳层的存在会显著促进累积孔压的消散,累积孔隙水压力沿深度分布的极值均出现在下层原始海床中,流速U0=0m ·s-1时硬壳层厚度由1m增加到3m,极值点深度下降了1.38m。累积孔隙水压力引起的渗流力对于海床泥沙启动影响显著,在流速U0=0m ·s-1,U0=1m ·s-1时泥沙启动深度均为海床1.5m深度处,并且海流流向与波浪行进方向一致时,会产生较大ΔP/ΔL值带动较粗的泥沙颗粒至海床表层,但对泥沙启动的最大深度影响不大。  相似文献   

9.
季节冻土对包气带水分迁移的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用智能化土壤墒情监测仪,对东北吉林集安季节冻土带进行地温和含水率观测,历时一个水文年。通过分析不同深度地温、含水率随时间的变化,研究地温场变化、降水入渗等因素对水分迁移的影响。寒季,气温急剧下降,地温随深度增加而增高,气态水在包气带上部的低温带凝结,当凝结速率大于渗透速率时,含水率不断增加,水分蓄积。季节冻土形成后,孔隙水以固态水的形式储存,是包气带上部水分主要的聚集期。暖季,地温随深度增加而降低,气态水向下运移凝结,即使降水入渗量很大也不会引起水分蓄积。因此,温度场控制着气态水凝结方向,是引起包气带内水分运移的重要影响因素之一。  相似文献   

10.
选取巴丹吉林沙漠东南部全球高差最大(约420m)的诺尔图湖东大沙山和较高的苏木巴润吉林湖西大沙山(高差约400m),对其迎风坡沉积物进行系统采样分析,讨论了高大沙山迎风坡沉积物粒度成分特点、变化规律、原因及其活动性.结果表明,全球高差最大的诺尔图东沙山和苏木巴润吉林湖西沙山迎风坡沉积物具有双层结构,表层沉积物的粒度组成...  相似文献   

11.
乌兰布和沙漠北部地下水资源的环境同位素探讨   总被引:8,自引:4,他引:8       下载免费PDF全文
工作范围在乌兰布和沙漠北部,面积共约4200km2.年平均降水量85~140mm,由西南向东递增,降水同位素组成δD~δ18O恰与Craig线一致,并与阿拉善地区相同.测得地下水中同位素含量范围,δ18O为-74‰~121‰,氚为0~190TU,14C为17~97pMC.由地下水同位素组成区别出与降水线平行或相交的6种类型.从所有地下水水点,以及可能有补给关系的其它水点的各类同位素关系,包括δ18O,T,δ13C和pMC,识别出两类承压水的各3个补给源和潜水的3个补给源,并区别出一组氚含量极低的潜水,对不同位置的承压水和潜水,由其同位素关系估算出了各补给源的组成和变幅.  相似文献   

12.
为探明淮河下游地区地表水与地下水稳定同位素的组成特征,于2020年11月对该区域进行代表性采样,共采集地表水样13个,地下水样82个.结合全球大气降水同位素监测网(GNIP)公布的南京降水同位素数据,根据最小二乘法得出当地大气降水线(LMWL)方程为:δD=8.49δ18O+17.71,其斜率和截距高于全球大气降水线(...  相似文献   

13.
热分层效应控制的水库水体氢氧同位素特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为掌握水库热分层与氢氧同位素空间分布的关系,研究了广西兴安县五里峡水库夏季氢氧同位素空间分布特征及影响因素。研究表明:①五里峡水库夏季出现明显的热分层,库表层至-5 m为表水层,-5 m至-20 m为温跃层,-20 m以下为底温层;②五里峡水库δ18O、δD值沿大气降水线分布,但均落在桂林市大气降水线右下方,其线性方程为δD=4.66δ18O-10.85(R2=0.76),其斜率与全球大气降雨线(GMWL)和桂林市降雨线(CLMWL)的斜率和截距差异明显,表明五里峡水库主要由降水补给,但在补给五里峡水库前已经过了强烈的蒸发作用和水岩作用;③ δ18O、δD随水深的增加逐渐偏负,具有表水层 > 入库水体 > 温跃层 > 底温层 > 出库水体(>表示偏正)的垂向分布特征。分析认为入库水体氢氧同位素的季节变化和蒸发作用随深度增加而降低是五里峡水库夏季分层期间水体氢氧同位素垂向变化的主要影响因素。  相似文献   

14.
地下水蒸发是旱区地下水均衡计算中重要的排泄项之一。由于包气带水分运移高度非线性且大气—地表界面动力学过程复杂,估算潜水蒸发量一直是地下水资源评价的难题之一。利用内蒙古乌审旗河南乡均衡试验场E601型蒸渗仪,建立了毛乌素沙地水面蒸发及4种典型岩性(风化砂岩K1、萨拉乌苏组砂Qpal+l、砂质壤土Qhl、风积沙Qheol)的饱和土蒸发原位试验,结合长期观测获取的大量数据,开展了地下水蒸发与水面蒸发、埋深的关系和地下水蒸发量计算方法研究。结果表明:(1)4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)饱和蒸发量与水面蒸发量比值分别为0.60,0.77,0.47,0.88,表明不同岩性的饱和裸土的蒸发强度不等于自由水面的蒸发强度;实际计算裸土蒸发强度时,不能以自由水面蒸发强度作为参考点,如果运用,必须校正。(2)利用蒸渗仪观测数据和土壤水运动方程稳态解析解,获得4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水稳定蒸发计算的关键经验系数c,分别为628932.63,165058.71,48948.21,1525104.031 m?2。(3)利用稳定蒸发公式确定鄂尔多斯盆地风沙滩区四种典型包气带岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水极限蒸发深度约为60 cm,结果得到了室内非稳态蒸发试验的佐证,为研究区水资源评价提供了重要的参数依据。  相似文献   

15.
湿度效应及其对降水中δ18O季节分布的影响   总被引:6,自引:3,他引:3  
提出了湿度效应的概念,即降水中稳定同位素比率与大气的温度露点差ΔTd存在显著的正相关关系.对两个气候特征完全不同的取样站乌鲁木齐和昆明降水中δ18O与温度露点差之间的关系进行了分析,尽管两站的δ18O与ΔTd的季节变化存在差异,但它们的湿度效应是显著的.利用稳定同位素动力分馏模型并根据500hPa月平均温度的季节分布对昆明站云中凝结物中δ18O进行了模拟,模拟的月平均δ18O与月平均温度的变化具有非常好的一致性,说明昆明站云中凝结物中的氧稳定同位素具有温度效应.这个结果与地面降水中氧稳定同位素的降水量效应截然不同.昆明站降水中δ18O一定程度上指示大气的干湿状况,同时也间接地指示降水量的多寡或季风的强弱.湿度效应的存在,影响降落雨滴中稳定同位素蒸发富集的强度以及雨滴与大气之间稳定同位素物质迁移的方向.它不仅改变降水中稳定同位素比率的大小,也改变其季节分布的特点.  相似文献   

16.
作为滁州水文实验系统一部分的1号天然实验流域,面积7897m2,以安山岩为基底,上覆平均厚度2.46m的第四系沉积物。实测了包括地面径流和地面下径流的各种降雨径流响应,后者包括来自非饱和带的壤中流和饱和带的地下水径流。表明这些径流成分有着复杂的组合类型,主要是以地面径流为主的SR型和以地面下径流为主的SSR型,以及中间的和演化的类型。SR型实例中的地面径流量可占总径流的65%,而SSR实例中的地面下径流量可有90%。主要降水的7月,地面下贡献占54.5%,其中地下水径流即占33%。大部分地面径流与降水的18O组成有不小的差异,比较了同时进行测验的3个实验流域,在1400min的降水径流过程中,降水的平均δ18O为-1.210%,而同期地面径流的平均δ18O,2号水文山流域(512m2)为-1.132%,1号南大洼天然流域为-1.065%,3号只有薄层风化碎屑的牵牛花流域(4573m2)为-0.801%。这质疑了现行同位素流量过程线划分方法8个假定中的两个:地面径流的同位素组成不同于降水,天然流域尤其如此;各种水源在汇集过程中的同位素分馏影响并非都可忽略不计。实验流域因降水而产生径流,但所产生的径流却有着非本次降水的组分,这一降水径流悖论发生于各个实验流域。SR型和SSR型总的非本次降水组分分别达16%和64%。  相似文献   

17.
根据青藏高原中部那曲河流域1998年夏季测得的上下游中稳定同位素的日变化,并与同期观测的流域降水中稳定同位素比较,分析了河水中δ18O的变化特征,初步研究了该流域的稳定同位素水文循环过程.河水中δ18O的变化幅度远小于降水,它是降水中δ18O、降水量以及地表蒸发过程共同作用的结果.研究发现湖水对于稳定同位素变化起着显著的调节作用.河水中δ18O与流域降水中δ18O的差异可能反映了该流域强烈的地表和湖面蒸发作用.  相似文献   

18.
为弄清阿拉善沙漠湿沙层的水分来源,在该地区进行了人工模拟降水入渗的示踪试验。模拟单次降水量为59 mm,观察剖面最大入渗深度仅为46 cm,这一结果表明该地区的降水几乎不能通过沙层入渗到地下水中。对4个沙丘湿沙层剖面中不同深度的含水率、Cl-、δD与δ18O进行了分析,数据显示在蒸发能力极强的阿拉善地区,地下水是以薄膜水的形式,通过蒸发、凝结向地表运动,最终蒸发排泄。泉水、井水、湖水与土壤水中的同位素特征表明具有相同的补给源,均来自于地下水。推断横穿阿拉善地块的杂多-雅布赖断裂带与狼山-日喀则断裂带中可能存在地下水深循环通道,青藏高原河流、湖泊的渗漏水可能是阿拉善地下水的主要补给源。  相似文献   

19.
四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征   总被引:1,自引:0,他引:1  
温泉地下水同位素特征对确定断裂带地下水来源、循环过程和断裂带活动性至关重要。为了确定青藏高原东缘温泉的地下水同位素特征和流体来源本研究采集了鲜水河-安宁河断裂带上温泉水、冷泉水、河流和积雪融水等样品,进行了氢氧稳定同位素和水化学组分测定,并进行了同位素特征的对比研究。分析结果表明,温泉水体δ18O变化范围为-19.04%~-12.71‰,平均值为-16.42‰;δ2H变化范围为-144.07‰~-88.63‰,平均值为-122.37‰。河水的δ18O变化范围为-15.90‰~-10.85‰,平均值为-13.86‰;δ2H变化范围为-118.21‰~-71.12‰,平均值为-98.99‰。康定冷泉δ18O和δ2H分别为-13.66‰和-106.74‰。道孚积雪融水的δ18O和δ2H分别为-10.27‰和-65.41‰。不同类型水体样品氢氧稳定同位素组成主要分布在全球和区域大气降水线上表明了大气降水成因,缺少明显的氧同位素漂移特征。不同类型水体同位素值差异较大显示出温泉与河水、积雪融水之间补给来源的不一致性。温泉同位素值具有明显的同位素高程效应,鲜水河-安宁河断裂带上氧同位素高程效应为-0.23‰/100m,氢同位素高程效应为-1.95‰/100m。温泉氧同位素漂移与相关离子比值、Na-K-Mg三角图、Li和Sr元素等指标表明研究区域大部分温泉的水岩作用强度弱。氢氧稳定同位素特征、水岩作用特征和循环深度揭示出温泉的成因为远距离大气降水运移补给地下水,地下水在地下热储层加热后通过断裂上升到地表形成温泉,这为认识青藏高原东缘地热水循环、断裂带活动性与演化特征提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号