首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
生物成因矿物的形成过程通常是通过先沉积非晶前驱体,进而转变形成某一种结晶相的途径来实现的。对生物成因 碳酸钙而言,普遍认为其非晶的前驱体相是在生物有机大分子和无机离子共同作用下形成的。在阴离子柠檬酸根存在的情 况下,仿生合成了非晶碳酸钙(Amorphous calcium carbonate,ACC),运用场发射扫描电子显微镜(FESEM)、X-射线衍射(XRD)、 傅里叶红外光谱(FTIR)和热重-差热分析(TG-DTA)等实验手段进行了分析并观测了非晶碳酸钙后续转变。结果显示, 多羧基的阴离子能够诱导形成非晶碳酸钙,并且这些非晶碳酸钙具有与生物成因非晶碳酸钙类似的组成。这可能指示与生 物矿化相关的生物大分子,特别是一些富含极性羧基大分子能够诱导碳酸钙矿物非晶态前驱体相的形成,同时也能暂时稳 定这些非晶前驱体相。  相似文献   

2.
许多生物矿化作用过程都与其不寻常的膜的组成和结构密切相关。作为双亲分子的磷脂,是生物膜的重要组成成分之一。运用以粉末X-射线衍射、扫描电子显微镜和动态光散射技术等实验手段,研究了卵磷脂(PC)和双甘氨肽参与下的碳酸钙矿化过程。结果表明,PC在溶液中形成的脂质体结构,导致了方解石(calcite)表面多孔结构的形成,且其含量的改变,可有效地调控方解石表面孔隙的孔径大小,并在一定程度上促进球霰石(vaterite)的生长和稳定;而PC在溶液表面形成的膜脂层,则通过静电力与双甘氨肽相互作用,有效调控膜脂层下矿物的形成。  相似文献   

3.
生物矿化作用是指生物在生命活动中形成无机矿物的过程,它与传统地质意义上的矿化作用明显不同的是生物体内的有机质对矿物的晶型和晶向有严格的控制作用[1].碳酸钙是自然界分布最广泛的一类生物矿物.在生物体系中,碳酸钙常见的多型体有:方解石,文石,球文石,非晶质碳酸钙,水合碳酸钙等.  相似文献   

4.
梅冥相 《地质论评》2012,58(5):937-951
早期"生物矿化作用"的概念,被定义为生物形成矿物的作用,并进一步分为生物控制和生物诱导两大类型。这个宽泛的概念,被修订为生物以生命活型(living form)影响矿物物质的沉淀作用;相应地,"生物矿物"是在严格的生物控制下、从局部环境中选择性地吸收元素并融合成具有生物功能构造的矿物。"有机矿化作用",则被定义为"与那些无生命活力的有机物质相关联的矿物形成作用"。与生物矿化作用相对应,有机矿化作用的产物被定义为"有机矿物",用来指那些通过有机聚合物、生物的和(或)非生物的有机化合物所导致的矿物沉淀作用,但是,有机矿物并非活着的细胞所直接形成。有机矿物与生物矿物的重要区别是,有机矿物没有被融合成受到生物严格控制的功能性构造。生物学家和化学家将生物矿化作用作为关注"生命体系中复杂的化学过程"的研究主题,超越了地质学范畴并使生物矿化作用的研究成为多学科关注的迷人领域,也大大促进了有机矿化作用的研究;考虑到有机矿物是沉积岩的重要组成,而且与生物的出现同步,还是潜在性的地外生命的遗迹,因此,从生物矿化作用衍生出的有机矿化作用的研究,自然就成为与生物矿化作用存在紧密关联的、地球生物学框架下又一个重要的研究主题  相似文献   

5.
铁细菌胞外多聚物对铁矿物的调控形成及其环境意义   总被引:1,自引:0,他引:1  
环境介质溶液中铁的水解作用和稳定化作用主要受铁细菌及其代谢有机物质的影响。铁细菌普遍存在于自然环境中,可利用低价铁源为自身生长所需能量。铁细菌胞外有机物的主要组分如多糖和蛋白质等可与铁结合,并通过氧化或沉淀作用使铁稳定、沉积而形成铁矿物;此外铁细菌胞外多聚物可催化铁的氧化或促进铁的聚集。这些生物成因铁矿物因具有良好的表面吸附与氧化还原等化学活性,及有效固定环境中的重金属、放射性核素和催化降解有机污染物的良好环境属性,在环境生物矿物材料和环境治理研究领域被日益重视。故本文基于铁细菌及其胞外多聚物对铁矿物矿化形成的重要调控作用,介绍了环境中存在的铁细菌及其生物矿化特征,重点阐述了铁细菌胞外多聚物(组分、结构及特性)及其在铁矿物矿化过程中的作用,同时对铁细菌胞外多聚物及生物成因铁矿物的环境意义进行了概述。  相似文献   

6.
<正>珠母贝珍珠层生物矿化作用区别于一般无机矿物矿化的显著特征是,通过生物表界面处生物大分子(蛋白质、核酸、多糖等)基因的表达与诱导,从分子水平调控生物矿物前驱体(ACC)纳米球粒的析出与相变,从而使生物矿物具有特殊的生物矿化生长结构单元和高度有序的多级微观自组装生长结构和自组装方式。迄今,就发生在企鹅贝(Pteria penguin)珍珠层生物表界面处生物大分子的调控和生物矿物前驱体的相变规律,生物矿物多级微观自组装生长行为等生物矿化问题有待深化。  相似文献   

7.
碳酸盐生物沉积作用的研究现状与展望   总被引:6,自引:2,他引:4  
碳酸盐矿物是地球上最丰富的矿物之一,碳酸盐沉积在许多地质过程中起着非常重要的作用.生物沉积碳酸盐的现象在自然界普遍存在,其中又以生物沉积碳酸钙(CaCO3)为主.生物从周围环境中选择性地吸取元素,在严格的生物控制下,组装成功能化的碳酸盐结构;生物也可以通过改变周围的环境诱导碳酸盐的沉积或自身参与碳酸盐的沉积.不同生物对碳酸盐沉积的作用扣机理不同,综述了海洋动植物、藻类生物、菌类生物对碳酸盐的沉积作用及其机理以及实验室模拟调控CaCO3生物矿化方面的一些研究成果和研究现状,提出未来亟待解决的一些重要问题,并指出生物沉积碳酸盐研究所具有的巨大应用前景.  相似文献   

8.
概述了生物矿物学的内容和意义;划分了早期启蒙、造骨矿物、生物矿化作用和生物矿物四个发展阶段,介绍了各个阶段的著名代表性文献、生物矿化理论、国际会议、研究方法和研究中心;指出生物矿物学发展趋势由碳酸盐和磷酸盐到氧化物和硫化物,由生物矿物外部特征到内部特征,由高级生矿体到低级生矿体,由动物到植物和微生物,由鉴定结构和矿物到探讨矿化机理和过程。最后提出在分析、成因、结晶、化石、造岩(矿)、生理、医药、环境和材料等方面的生物矿物学发展方向。  相似文献   

9.
硅藻细胞壁硅化过程中有机质-矿物的相互作用   总被引:3,自引:0,他引:3  
生物成因二氧化硅,更为确切地说是无定形水合二氧化硅,是第二大类生物成因矿物,在丰度和分布上仅次于生物 成因碳酸盐矿物。硅藻是海洋生物成因二氧化硅的主要贡献者,其复杂和多级结构的硅质细胞壁已经引起多学科研究的兴趣。 生物化学研究表明,硅藻生物成因的二氧化硅是一种复合材料,除了无机的非晶质二氧化硅以外,还含有生物矿化过程中 普遍存在的有机组分,例如多糖、蛋白质和长链聚胺等。对这些组分的功能研究显示,它们在诱导二氧化硅沉淀以及形成 物种特异性纳米图案方面起着至关重要的作用。本文简要介绍硅藻和硅藻细胞壁组成和结构,同时着重介绍了硅化过程中 的有机和生物分子的生物功能、提取于生物二氧化硅中矿化相关的有机分子参与的体外(in vitro)实验以及模型有机添加 剂存在下的仿生矿化等研究的最新进展。对硅藻调控的生物成因二氧化硅形成机制的深入了解,将可能从机理上把全球硅 循环和碳循环联系起来;而对硅藻体内成分的鉴定和分类将有助于我们深入理解石油的物质来源和硅藻的进化历程。  相似文献   

10.
生物矿化研究现状和展望   总被引:2,自引:0,他引:2  
黄磊  杨永强  李金洪 《地质与资源》2009,18(4):317-320,297
生物矿化过程是指在生物体中细胞的参与下,无机元素从环境中选择性地沉淀在特定的有机质上而形成的新矿物.生物矿化矿物的结晶严格受生物体分泌的有机基质的控制,是在有机基质膜板诱导下的晶体生长.生物体内有机基质指导矿物晶体的成核、生长和聚集,使得生物矿物具有特定的形貌、取向和组装方式,从而产生特殊的功能.生物矿化近年来受到化学、物理、生物以及材料学等多学科的关注.综述了生物矿化的类型、过程、机理及常用的研究方法和研究进展,并作了学科展望.  相似文献   

11.
微生物诱导碳酸钙沉淀(microbially induced calcium carbonate precipitation, MICP)是一种在自然界中广泛存在的生物矿化过程。由于MICP具有反应速度快、环境条件要求低、应用范围广、温室气体减排效应显著等特点,在地质、土木、水利、环境多个领域中广泛推广应用。文章在分析国内外相关研究成果的基础上,归纳整理出反硝化过程、硫酸盐还原作用、尿素分解作用等多种微生物诱导下碳酸钙矿化途径和作用机制。以尿素分解菌为代表,重点讨论微生物诱导碳酸盐沉淀过程中pH、温度、离子浓度等环境因素对生成矿物晶型晶貌等方面的影响,总结了MICP的环境应用机制,即环境中的重金属元素通过替换作用替换矿化矿物中的Ca2+或CO32?从而被固定。MICP作为一种简单高效的地质环境过程,在生态环境修复领域具有广阔的应用前景。   相似文献   

12.
本文总结了钙华体次生有机体系中生物群落特征和界面结晶行为,根据生物在碳酸盐沉积中的角色,将钙华体中次生有机体系的界面结晶矿化类型分为生物控制矿化沉积和生物诱导矿化沉积。分述了碳酸钙沉积矿化相关的五种生物代谢活动,讨论了生物胞外聚合物(EPS)对碳酸钙矿物晶型和形貌的影响。针对目前钙华研究中存在的问题,今后应深入研究生物体主要构成元素、生物小分子和生物体内部组织在钙华形成或退化中的作用,进一步厘清钙华体与次生有机体系的多界面溶化方式,为钙华保护修复及钙华退化治理措施提供科学依据。   相似文献   

13.
Processes of carbonate precipitation in modern microbial mats   总被引:20,自引:0,他引:20  
Microbial mats are ecosystems that arguably greatly affected the conditions of the biosphere on Earth through geological time. These laminated organosedimentary systems, which date back to > 3.4 Ga bp, are characterized by high metabolic rates, and coupled to this, rapid cycling of major elements on very small (mm-µm) scales. The activity of the mat communities has changed Earth's redox conditions (i.e. oxidation state) through oxygen and hydrogen production. Interpretation of fossil microbial mats and their potential role in alteration of the Earth's geochemical environment is challenging because these mats are generally not well preserved.Preservation of microbial mats in the fossil record can be enhanced through carbonate precipitation, resulting in the formation of lithified mats, or microbialites. Several types of microbially-mediated mineralization can be distinguished, including biologically-induced and biologically influenced mineralization. Biologically-induced mineralization results from the interaction between biological activity and the environment. Biologically-influenced mineralization is defined as passive mineralization of organic matter (biogenic or abiogenic in origin), whose properties influence crystal morphology and composition. We propose to use the term organomineralization sensu lato as an umbrella term encompassing biologically influenced and biologically induced mineralization. Key components of organomineralization sensu lato are the “alkalinity” engine (microbial metabolism and environmental conditions impacting the calcium carbonate saturation index) and an organic matrix comprised of extracellular polymeric substances (EPS), which may provide a template for carbonate nucleation. Here we review the specific role of microbes and the EPS matrix in various mineralization processes and discuss examples of modern aquatic (freshwater, marine and hypersaline) and terrestrial microbialites.  相似文献   

14.
A heterotrophic Bacillus sp. strain (5C-1) was isolated from Heshang cave, an oligotrophic karst cave in the middle reaches of Yangtze River, and identified by BIOLOG and 16S rDNA sequencing. Bacterially induced formation of calcium carbonate by 5C-1 was investigated in several comparative experimental sets with or without the cell and extracellular enzymes. The temporal variations of both the amount of the precipitates and the pH values of the solution were measured by a spectrophotometer and a pH meter, respectively. The morphological characteristics of the calcium carbonate precipitates were observed with environmental scanning electronic microscopy (ESEM). The growth of 5C-1 was found to greatly promote the pH value of the liquid medium in the first 2 days, which favors the formation of calcium carbonate. No precipitates were formed with the pH value lower than 8.6, though the pH value was demonstrated to be not the only factor controlling the formation of the calcium carbonate. The accumulation of extracellular polysaccharide substance was observed to favor the precipitate formation. Only when both factors reached a threshold did the precipitates form with the addition of CaCl2. Cells and extracellular enzymes were not the factors that limit the precipitate formation in our microbial systems. The precipitates of a variety of morphological features including dumb bells, peanuts, irregular and spherical and rhombic forms were mainly observed in our microbial systems but not in the chemical control system. Interestingly, imprints of bacterial cells and spores were observed to be present on the surface of the precipitates of a peanut or a dumb bell form, probably indicative of the microbial escaping mechanism during the mineralization of calcium carbonate.  相似文献   

15.
微生物诱导碳酸钙沉积(MICP)作用是一种新型的土体改良技术。钙源作为MICP反应中重要的反应物,对微生物诱导碳酸钙沉积的效果有重要的影响。目前应用最广泛的钙源——氯化钙(CaCl2),具有成本高,环境污染性大的缺点。为此,文章提出利用石灰石粉提取钙源,通过在石灰石粉中加入乙酸溶液,释放钙离子用于微生物固化土体。通过开展无侧限抗压强度试验以及微观结构的扫描电镜观测、碳酸钙含量测定等分析,验证利用石灰石粉提取的钙源用于微生物诱导碳酸钙沉积作用固化土体的可行性,同时与醋酸钙和氯化钙固化砂柱进行了对比分析。研究结果表明:(1)石灰石粉用于微生物固化土体具有可行性,固化后砂柱的强度和碳酸钙含量较高,结构完整性高;(2)不同钙源固化砂柱的力学特性不同但均呈典型的脆性破坏模式,其中醋酸钙固化砂柱的无侧限抗压强度略高于石灰石钙源固化砂柱,氯化钙固化砂柱的无侧限抗压强度则远低于前两者且表面更加粗糙,孔隙更多,破坏后的完整性更低;(3)不同钙源固化砂柱的碳酸钙含量不同。醋酸钙和石灰石钙源固化砂柱的碳酸钙含量相近,而氯化钙固化砂柱中碳酸钙含量较低。不同钙源固化砂柱的碳酸钙含量和无侧限抗压强度基本呈正相关关系;(4)醋酸钙和石灰石钙源固化砂柱中砂土颗粒的表面和接触点间均沉积大量碳酸钙,碳酸钙晶体主要为薄片状堆叠的方解石。氯化钙固化砂柱中碳酸钙沉积量低于前两者,碳酸钙晶体主要为六面体状的方解石;(5)不同钙源主要通过影响微生物成矿过程的晶型、晶貌、晶体含量、晶体分布及胶结特征来改变固化效果。  相似文献   

16.
碳酸钙颗粒的细菌诱导形成   总被引:1,自引:0,他引:1  
为研究胶质芽孢杆菌(Bacillus mucilaginosus)在特定条件下能否诱导合成碳酸钙,作者采用胶质芽孢杆菌两种常用 基本培养基(有氮培养基和无氮培养基),以磷灰石矿物为钙源,进行了利用胶质芽孢杆菌促进碳酸钙形成的实验,借助扫 描电镜(SEM)、能谱定量分析(EDS)和X-射线衍射(XRD)等手段观察分析形成碳酸钙的晶体结构和化学组成。结果表 明,胶质芽孢杆菌能促进碳酸钙晶体的形成,在有氮加磷矿粉的细菌培养液中形成的碳酸钙多于无氮加磷矿粉的细菌培养 液,在有氮加磷矿粉的细菌培养液中观察到柱状碳酸钙的形成。作者认为,胶质芽孢杆菌通过其风化作用及较强的吸附功能, 利用其分泌的碳酸酐酶(CA)和溶解CO2在分解磷灰石的过程中促进了碳酸钙的形成。  相似文献   

17.
砂土地基发生渗漏时容易引发地基塌陷和工程结构破坏等工程安全问题。利用微生物-膨润土联合矿化的方法开展了大尺寸砂柱的防渗模型试验,研究了砂土的颗粒粒径、浆液的液固比与注浆次数等因素对砂柱的渗透特性、内部侵蚀特性及膨润土与碳酸钙沉淀分布的影响,分析了处理后试样的封堵稳定性和微观结构,进一步评估了微生物-膨润土联合矿化方法的处理效果。结果表明,通过微生物-膨润土联合矿化方法可以有效地提高砂土的防渗效果与封堵稳定性。经过1~3次注浆后,试样的渗透系数最大可以降低4个数量级,并且渗透过程中的侵蚀速率也得到了成倍的降低,最低达到了0.51 g/(s·m2)。针对膨润土与碳酸钙沉淀在砂土封堵中起到的作用,分析了微生物-膨润土联合矿化方法的防渗机制。该研究成果证实了微生物-膨润土联合矿化方法应用于砂土防渗工程的可行性,为微生物注浆技术解决砂土地基渗漏问题提供了重要参考。  相似文献   

18.
为了探究培养方式(振荡和静置) 对细菌诱导形成的碳酸盐矿物种类和形态的影响,本文在B4培养基中分别对蜡状 芽孢杆菌(GW-1菌株)、赖氨酸芽孢杆菌(GW-2菌株) 和微杆菌(GW-3菌株) 三种细菌进行了为期40天的振荡培养实验 及相应的无菌对照实验,重点利用X-射线衍射仪和扫描电子显微镜分别对矿物成分和形态进行了测定和观察,并将观测结 果与静置条件下的结果进行了对比。结果表明:(1) 三种细菌均具有促进碳酸盐矿物沉淀的功能,但能力有所不同,从大 到小的顺序为GW-2>GW-1>GW-3;(2) 在振荡和静置两种培养方式下,GW-1和GW-2菌株诱导形成的矿物均为方解石, 而GW-3菌株诱导形成的矿物均为球霰石。这说明细菌种类是影响矿物相的重要因素,培养方式对矿物相无明显的影响; (3) 对于GW-1和GW-2菌株,其在振荡培养条件下诱导形成的矿物形态呈现多样化,而在静置培养条件下形成的矿物形态 则比较单一。对于GW-3菌株,其诱导形成的矿物均为球形,与培养方式无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号