首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Leping coal is known for its high content of “barkinite”, which is a unique liptinite maceral apparently found only in the Late Permian coals of South China. “Barkinite” has previously identified as suberinite, but on the basis of further investigations, most coal petrologists conclude that “barkinite” is not suberinite, but a distinct maceral. The term “barkinite” was introduced by (State Bureau of Technical Supervision of the People's Republic of China, 1991, GB 12937-91 (in Chinese)), but it has not been recognized by ICCP and has not been accepted internationally.In this paper, elemental analyses (EA), pyrolysis-gas chromatography, Rock-Eval pyrolysis and optical techniques were used to study the optical features and the hydrocarbon-generating model of “barkinite”. The results show that “barkinite” with imbricate structure usually occurs in single or multiple layers or in a circular form, and no definite border exists between the cell walls and fillings, but there exist clear aperture among the cells.“Barkinite” is characterized by fluorescing in relatively high rank coals. At low maturity of 0.60–0.80%Ro, “barkinite” shows strong bright orange–yellow fluorescence, and the fluorescent colors of different cells are inhomogeneous in one sample. As vitrinite reflectance increases up to 0.90%Ro, “barkinite” also displays strong yellow or yellow–brown fluorescence; and most of “barkinite” lose fluorescence at the maturity of 1.20–1.30%Ro. However, most of suberinite types lose fluorescence at a vitrinite reflectance of 0.50% Ro, or at the stage of high volatile C bituminous coal. In particular, the cell walls of “barkinite” usually show red color, whereas the cell fillings show yellow color under transmitted light. This character is contrary to suberinite.“Barkinite” is also characterized by late generation of large amounts of liquid oil, which is different from the early generation of large amounts of liquid hydrocarbon. In addition, “barkinite” with high hydrocarbon generation potential, high elemental hydrogen, and low carbon content. The pyrolysis products of “barkinite” are dominated by aliphatic compounds, followed by low molecular-weight aromatic compounds (benzene, toluene, xylene and naphthalene), and a few isoprenoids. The pyrolysis hydrocarbons of “barkinite” are mostly composed of light oil (C6–C14) and wet gas (C2–C5), and that heavy oil (C15+) and methane (C1) are the minor hydrocarbon.In addition, suberinite is defined only as suberinized cell walls—it does not include the cell fillings, and the cell lumens were empty or filled by corpocollinites, which do not show any fluorescence. Whereas, “barkinite” not only includes the cell walls, but also includes the cell fillings, and the cell fillings show bright yellow fluorescence.Since the optical features and the hydrocarbon-generating model of “barkinite” are quite different from suberinite. We suggest that “barkinite” is a new type of maceral.  相似文献   

2.
A unique Upper Permian coal, Leping coal, is widely distributed in South China. The coal samples studied in the paper were collected from two mines in the Shuicheng coalfield of Guizhou Province, southwest China. The geochemical works including coal petrography, maceral content, Rock–Eval pyrolysis, and kinetic modelling of hydrocarbon-generating have been carried out on whole coal and individual macerals. The higher contents of volatile matter, elemental hydrogen, and tar yield, and the high hydrocarbon generation potential of the Leping coals are attributed to their high content of “barkinite”, a special liptinite maceral.The hydrocarbon generation potential of “barkinite” (S2=287 mg/g, hydrogen index (HI)=491 mg/g TOC) is greater than that of vitrinite (S2=180 mg/g, HI=249 mg/g TOC), and much higher than that of fusinite (S2=24 mg/g, HI=35 mg/g TOC). At the same experimental conditions, “barkinite” has a higher threshold and a narrower “oil window” than those of vitrinite and fusinite, and consequently, can generate more hydrocarbons in higher coalification temperature and shorter geological duration. Data from the activation energy distributions indicate that “barkinite” has a more homogenous chemical structure than that of vitrinite and fusinite. The above-mentioned characteristics are extremely important for exploring hydrocarbon derived from the Leping coals in South China.  相似文献   

3.
Combining vitrinite reflectance (VR) and fluorescence alteration of multiple macerals (FAMM) analyses provide insights into the chemical nature of vitrinites (i.e., perhydrous vs. orthohydrous vs. subhydrous compositions) in Permian Gondwana coals of the Paraná Basin, Brazil. The FAMM-derived equivalent VR (EqVR) values and relationships with VR can be determined according to calibration curves based largely on Permian Gondwana coals of eastern Australia.The analytical results indicate that vitrinites in the Paraná Basin coals studied generally range from orthohydrous to perhydrous, with interpreted VR suppression ranging up to 0.2% absolute for the most perhydrous case. The EqVR values of the Santa Catarina coals, which range from about 0.85% to 0.95% differ from VR values by about 0.10–0.15% absolute, potentially having significant implications on coal utilization.The causes of vitrinite reflectance suppression in the Paraná Basin coals are as yet poorly understood, but are likely to be related to a combination of factors.  相似文献   

4.
The occurrence and distribution of major and trace elements have been investigated in two coal-bearing units in the Chonqing mining district (South China): the Late Permian and Late Triassic coals.The Late Permian coals have higher S contents than the Late Triassic coals due to the fixation of pyrite in marine-influenced coal-forming environments. The occurrence of pyrite accounts for the association of a large number of elements (Fe, S, As, Cd, Co, Cu, Mn, Mo, Ni, Pb, Sb, Se, and Zn) with sulphides, as deduced from the analysis of the density fractions. The marine influence is probably also responsible for the organic association of B. The REEs, Zr, Nb, and Hf, are enriched by a factor of 2–3 with respect to the highest levels fixed for the usual worldwide concentration ranges in coal for these elements. The content of these elements in the Late Permian coal is higher by a factor of 5–10 with respect to the Late Triassic coal. Furthermore, other elements, such as Cu, P, Th, U, V, and Y, are relatively enriched with respect to the common range values, with maximum values higher than the usual range or close to the maximum levels in coal. The content of these elements in the Late Permian coal is higher than the Late Triassic coal. These geochemical enrichments are the consequence of the occurrence, in relatively high levels, of phosphate minerals, such as apatite, xenotime, and monazite, as deduced from the study of the density fractions obtained from the bulk coal.The Late Triassic coal has a low sulphur content with a major organic affinity. The trace element contents are low when compared with worldwide ranges for coal. In this coal, the trace element distribution is governed by clay minerals, carbonate minerals, and to a lesser extent, by organic matter and sulphide minerals.Major differences found between late Permian and Triassic coals are probably related to the source rocks, given that the main source rock of the late Permian epicontinental marine basin is the Emeishan basalt formation, characterised by a high phosphate content.  相似文献   

5.
用配有自行研制的程序控温仪的显微热台,观察研究了P1、T3两时代煤显微组分的加热性状和焦炭的显微特征,由此揭示了不同时代等变质煤结焦性差异的原因,提出了标准活性组分(Vt,st)的新概念;确定了测定混煤中镜质体反射率的方法;最后以重钢焦化厂大量200kg焦炉试验为基础,用计算机进行数理统计分析,优选出标准活性组分(Vt,st)、镜质体随机反射率(Rran)及其标准差(S)三个参数,建立了能准确定量预测焦炭机械强度的数学模型。经焦化厂使用证实,用该方法预测和控制焦炭强度不但准确度高、简单易行,而且可适用于我国大多数焦化企业由不同煤田的多矿点供煤且常有混煤、煤质不稳定的复杂状况。  相似文献   

6.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   

7.
为了探讨中国西南地区二叠系乐平统(上二叠统)龙潭组中下部煤系不同煤组分中砷、硒的含量和演化及古环境意义,对近10年来采集于中国西南扬子地台的二叠系乐平统龙潭组主采煤层的原煤、亮煤、煤矸石、黄铁矿结核等样品中砷、硒元素含量进行了测定和分析,并与中国华北地台一些煤矿的上石炭统-下二叠统太原组、山西组的原煤、镜煤、亮煤、煤矸石、黄铁矿结核等样品中砷、硒含量进行对比分析。结果表明:西南地区乐平统龙潭组煤的砷、硒含量变化较大,但总体高于华北晚石炭世和早二叠世煤的砷、硒含量;西南二叠系乐平统龙潭组大多数的亮煤中砷、硒含量高于原煤全煤样(刻槽样)中的砷、硒含量,也远远高于同煤层煤矸石的含量,龙潭组部分亮煤的砷含量尤其高,为55~338 mg/kg,还发现砷含量为89 mg/kg的亮煤。但华北上石炭统-下二叠统的镜煤中的砷、硒含量与之相反,低于原煤全煤样的砷、硒含量,其中砷含量非常低,为063~129 mg/kg。说明西南地区上二叠统煤中的砷和硒与煤的有机质密切相关,可能主要来源于成煤古植物。在西南乐平世早、中期第Ⅰ幕陆生生物集群灭绝事件期间,陆生动物的食物--植物中有毒有害元素砷、硒含量明显增加,陆生环境或泥炭沼泽中可溶性砷、硒含量增加。  相似文献   

8.
Petrographic investigations of serial ply samples from five high- to medium-volatile bituminous coal seams from Australia (4) and Canada (1) reveal substantial in-seam variations in the reflectance and monochromatic microfluorescence intensities of the maceral subgroup telovitrinite. The variations consist of one case of reflectance enhancement and fluorescence suppression, and four cases of reflectance suppression and fluorescence enhancement. The single case of reflectance enhancement and fluorescence suppression is due to the oxidation of the vitrinite nuclei at the sequence boundary between the Bayswater and Upper Wynn seams in New South Wales. The four cases of reflectance suppression and fluorescence enhancement result from the syn- and epigenetic absorption by the vitrinite nuclei of hydrogen donated by, presumably, anaerobic bacteria-generated lipids. Two of the coals are marine-influenced: the Liskeard Seam from the Bowen Basin by combined syngenetic and epigenetic effects, and the Greta Seam from the Sydney Basin mainly by epigenetic contact with sea water. For both coals, the results are strong vitrinite reflectance suppression and fluorescence enhancement. The remaining two coals, the Bulli Seam from the Sydney Basin and a coal seam from the Gates Formation in British Columbia, show moderate epigenetic effects on the optical properties of telovitrinite by fresh-water. In the Bulli Seam which was studied in two adjacent localities, the reflectance suppression and fluorescence enhancement of telovitrinite are stronger under sandstone roof than under shale roof. In some cases, the epigenetic effects are superimposed on syngenetic telovitrinite reflectance and fluorescence variations resulting from the cogeneration and mixing of different telovitrinite precursors, for example, autochthonous roots and hypautochthonous or allochthonous shoots. A measure of the degree of dispersal and mixing is the coefficient of variation of telovitrinite reflectance and/or fluorescence. This coefficient correlates well with detrital minerals and dispersed macerals, e.g., inertodetrinite and, to a lesser extent, sporinite. Some comments are made on slitted so-called pseudovitrinite which is regarded as a telovitrinite that was subjected to very weak post-coalification desiccation and possibly oxidation without losing much of its thermoplastic properties.  相似文献   

9.
<正>In order to study the accumulation mechanism of"barkinite",eight Late Permian channel benches(approximately 15-cm across and 10-cm deep) were taken from the Jinshan Mine,Anhui Province,China.The samples were analyzed by microscopical and geochemical methods.The microscopical observations indicate that the occurrence modes of"barkinite"in this area are different from those in other areas of China.The ratios of structureless"barkinite"are much higher in the Jinshan Mine,probably due to the flow-water and marine influenced environments.Furthermore, vitrinite macerals also show a strong fluorescence.The vitrinite fluorescence characteristics have not been observed in the Permian"barkinite"coals from northern China.The composition and variation of minerals in the column section also showed that the swamps in the study area were seriously influenced by seawater in the early and late stage during the peat accumulation.  相似文献   

10.
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions.  相似文献   

11.
Coal balls were collected from four coal beds in the southeastern part of the Illinois Basin. Collections were made from the Springfield, Herrin, and Baker coals in western Kentucky, and from the Danville Coal in southwestern Indiana. These four coal beds are among the principal mineable coals of the Illinois Basin and belong to the Carbondale and Shelburn Formations of late Middle Pennsylvanian age. Vegetational composition was analyzed quantitatively. Coal-ball samples from the Springfield, Herrin, and Baker are dominated by the lycopsid tree Lepidophloios, with lesser numbers of Psaronius tree ferns, medullosan pteridosperms, and the lycopsid trees Synchysidendron and Diaphorodendron. This vegetation is similar to that found in the Springfield and Herrin coals elsewhere in the Illinois Basin, as reported in previous studies. The Danville coal sample, which is considerably smaller than the others, is dominated by Psaronius with the lycopsids Sigillaria and Synchysidendron as subdominants.Coal balls from the Springfield coal were collected in zones directly from the coal bed and their zone-by-zone composition indicates three to four distinct plant assemblages. The other coals were analyzed as whole-seam random samples, averaging the landscape composition of the parent mire environments. This analysis indicates that these coals, separated from each other by marine and terrestrial-clastic deposits, have essentially the same floristic composition and, thus, appear to represent a common species pool that persisted throughout the late Middle Pennsylvanian, despite changes in baselevel and climate attendant the glacial–interglacial cyclicity of the Pennsylvanian ice age. Patterns of species abundance and diversity are much the same for the Springfield, Herrin, and Baker, although each coal, both in the local area sampled, and regionally, has its own paleobotanical peculiarities. Despite minor differences, these coals indicate a high degree of recurrence of assemblage and landscape organization. The Danville departs dramatically from the dominance–diversity composition of the older coals, presaging patterns of tree–fern and Sigillaria dominance of Late Pennsylvanian coals of the eastern United States, but, nonetheless, built on a species pool shared with the older coals.  相似文献   

12.
This paper presents geological settings, stratigraphy, coal quality, petrography, reserves and the tectonic history of the Mongolian coal-bearing basins. This is based on a synthesis of the data from nearly 50 coal deposits. The results of ultimate and proximate analyses, and calorific value, maceral composition and vitrinite reflectance data is given.The coal deposits of Mongolia tend to become younger from west to east and can be subdivided into two provinces, twelve basins, and three areas. Main controlling factor of coal rank is the age of the coal bearing sequences. Western Mongolian coal-bearing province contains mostly high rank bituminous coal in strata from Late Carboniferous. The basins in southern Mongolia and the western part of central Mongolia have low rank bituminous coal in strata from the Permian. The northern and central Mongolian basins contain mainly Jurassic subbituminous coal, whereas the Eastern Mongolian province has Lower Cretaceous lignite. The Carboniferous, Permian and Jurassic coal-bearing sequences were mainly deposited in foreland basins by compressional tectonic event, whereas Cretaceous coal measures were deposited in rift valleys caused by extensional tectonic event. Petrographically, Mongolian coals are classified as humic type. Vitrinite/huminite groups of Carboniferous, Permian, and Cretaceous coal range from 44.9% to 82.9%. Inertinite group varies between 15.0% and 53.3%, but liptinite group does not exceed more than 7%. Jurassic coals are characterized by high percentages of vitrinite (87.3% to 96.6%) and liptinite groups (up to 11.7%). This might be explained by paleoclimatic conditions. Mongolian coal reserves have been estimated to be 10.2 billion tons, of which a predominant portion is lignite in the Eastern Mongolian province and coking coal in the South Gobi basin.  相似文献   

13.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

14.
Czechoslovak bituminous coals rich in inertinite contain a considerable amount of inertinite with a reflectance range displaced towards and partly overlapping that of the vitrinite reflectance. Together with the existence of the transitional maceral group of semivitrinite, this causes difficulties in maceral analysis as well as in the technological evaluation of these coals. The relationship between the volatile matter of vitrinite and its reflectance is very close for both vitrinite- and inertinite-rich coals. The analogous relationship between the vitrinite reflectance and the volatile matter of inertinite displays a considerable scatter due to the effects of some higher values of the volatile matter of inertinite — related to the presence of inertinite with relatively low reflectance. The results of investigations into the coking properties of coals rich in inertinite, however, do not supply any proof of a higher fusibility of these coals.  相似文献   

15.
变形煤镜质组反射率演化的地化机理及其地质意义   总被引:4,自引:0,他引:4  
通过X射线衍射(XRD)、电子顺磁共振(EPR)和核磁共振(NMR)等方法深入探讨了高温高压实验和构造煤样的化学结构演化特征,阐明了变形煤镜质组反射率的变化是其微观化学结构演化的外在反映。变形煤镜质组反射率的演化又受到应力和变形环境等因素的深刻影响,其真实地记录了构造变形历史中应力作用和应变环境等特征,是进行煤田构造研究的重要标志物之一   相似文献   

16.
The maceral and microlithotype composition of selected coals has been investigated with respect to the grinding properties, specifically Hardgrove grindability index (HGI), of the coals. The study expands upon previous investigations of HGI and coal petrology by adding the dimension of the amount and composition of the microlithotypes. Coal samples, both lithotypes and whole channels, were selected from restricted rank ranges based on vitrinite maximum reflectance: 0.75–0.80% Rmax, 0.85–0.90% Rmax and 0.95–1.00% Rmax. In this manner, the influence of petrographic composition can be isolated from the influence of rank. Previous investigations of high volatile bituminous coals demonstrated that, while rank is an important factor in coal grindability, the amount of liptinite and liptinite-rich microlithotypes is a more influential factor. In this study, we provide further quantitative evidence for the influence of microlithotypes on HGI and, ultimately, on pulverizer performance.  相似文献   

17.
The Dniepr–Donets Basin (DDB) is a Late Devonian rift structure located within the East-European Craton. Numerical heat flow models for 13 wells calibrated with new maturity data were used to evaluate temporal and lateral heat flow variations in the northwestern part of the basin.The numerical models suggest that heat flow was relatively high during Late Carboniferous and/or Permian times. The relatively high heat flow is probably related to an Early Permian re-activation of tectonic activity. Reconstructed Early Permian heat flow values along the axial zone of the rift are about 60 mW/m2 and increase to 90 mW/m2 along the northern basin margin. These values are higher than those expected from tectonic models considering a single Late Devonian rifting phase. The calibration data are not sensitive to variations in the Devonian/Carboniferous heat flow. Therefore, the models do not allow deciding whether heat flows remained high after the Devonian rifting, or whether the reconstructed Permian heat flows represent a separate heating event.Analysis of the vitrinite reflectance data suggest that the northeastern Dniepr–Donets Basin is characterised by a low Mesozoic heat flow (30–35 mW/m2), whereas the present-day heat flow is about 45 mW/m2.  相似文献   

18.
Variously shaped discrete bodies with reflectance higher than the associated vitrinite occur in Permian coals in India, Australia and Africa and the Carboniferous coals of the United States, Canada and Europe. These bodies have been variously named by different authors. In the present paper they are described as ‘resino-inertinites’ as suggested by Lyons et al. (1982).Based on available information and our observations on Carboniferous and Permian coals, it is presumed that resino-inertinites were formed mainly from the resinous (resinite) and to some extent from the phlobaphinitic or corpocollinitic substances. Various morphological patterns developed on resino-inertinites have been interpreted to be governed by the chemical composition of their precursors and the degree of oxidation or fusinization during coalification. Influences of other vvariables viz., paleoenvironmental, paleodepositional, tectonic set up etc. on resino-inertinites are not clearly recognizable probably because all the previous effects were masked by subsequent fusinization.Different morphological features of resino-inertinites associated with early diagenetic and secondary mineralization have caused much confusion in their proper identification and classification. In order to resolve this problem, an attempt has been made to ascertain the source of resins in Indian Permian coals and their subsequent mode of transformation into resino-inertinites during coalification.Further, by critically evaluating morphological features of resino-inertinites and keeping the chemical nature of their precursors in view, a classification scheme has been proposed categorizing them into 3 types. The classification proposed may prove as a useful means for coal-seam correlation.  相似文献   

19.
根据对我国扬子地台中部奥陶纪几丁虫生物地层及其壳壁光性特征和反射率的研究,联系华南及塔里木盆地有关的资料,系统总结了我国奥陶纪、志留纪几丁虫生物组合序列的划分及其对比,探讨了几丁虫的光性特征。指出几丁虫在所切光面上具有各向同性的光性特征,只有反射率而无双反射率;在相同成熟度情况下,几丁虫的随机油浸反射率较笔石高,而较虫牙和疑源类低。通过对几丁虫反射率与同层或邻近层位中所测Ica、笔石反射率,尤其是分散有机质红外光谱分析所获等效镜质组反射率的对比说明,几丁虫的随机反射率R0为104%~170%,>17%~31%和>31%~41%时,分别相当等效镜质组反射率(R0,eq)09%~135%,>135%~22%和22%~30%,依次指示含几丁虫母岩有机质演化处于成熟、过成熟早期和过成熟晚期阶段。尽管这个对应关系还需要在今后研究中去进一步证实,但至少说明,几丁虫反射率随有机成熟度增加而增加,对于不含镜质组的晚志留世以前地层来讲,它们可以作为有机质成熟度的指示。  相似文献   

20.
Results of an organic petrographic study of the Kupferschiefer (Zechstein, Upper Permian) in northern Germany are presented. Because vitrinite occurs only sporadically in this black shale, the random reflectance (Rr) of a relatively high reflecting, vitrinite-like variety of bituminite was measured as a maturity parameter and the problems connected with this procedure were investigated.The main organic component is bituminite, generally with an abundance of more than 90%. Sporomorphs and algae are relatively scarce, inertinite is usually a trace component, and vitrinite is present only in some samples taken close to the coast of the Zechstein sea. Migrabitumen also occurs in small amounts in a few samples. The range of the bituminite reflectance values is often considerable and depends on rank, anisotropy, particle size, porosity, and shearing. Interpretation of the reflectance values is made difficult by differences of up to 0.4% Rr between layers within the Kupferschiefer. Hydrothermal alteration may also be present. The difference between the reflectance of the light and normal varieties of bituminite disappears between 0.9 and 1.2% Rr.Bituminite behaves in a way very similarly to vitrinite during coalification. Their reflectance is identical between 2 and 4% Rr. Below 2% Rr, the reflectance of bituminite is lower than that of vitrinite. Linear regression curves valid up to 4% Rr were calculated for Rmax versus Rr and for Rr versus Rmax. Taking certain limitations into consideration, bituminite reflectance may be used as a coalification parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号