首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The results of this study were used to identify a reversed polarity magnetozone, referred to as M17r, in Berriasian sections of the Nordvik Peninsula (northern East Siberia) within the normal polarity magnetozone (M18n) from previous studies. The new magnetozone embraces the Volgian–Ryazanian boundary (Chetaites chetae/C. sibiricus zonal boundary). It was also found that the former magnetozone M17r at Nordvik, which includes the C. sibiricus/Hectoroceras kochi zonal boundary should correspond to magnetozone M16r. Using magnetostratigraphic and biostratigraphic criteria proves that the Boreal C. sibiricus Zone is correlated with at least the major part of the Tethyan Tirnovella occitanica Zone, and the Boreal H. kochi Zone is correlated with the lower part of the Malbosiceras paramimounum Subzone of the Tethyan Fauriella boissieri Zone.  相似文献   

2.
This study summarizes the final results of magnetostratigraphic and micropalaeontological investigations of the Tithonian/Berriasian boundary (J/K) limestones at the locality of Brodno near ilina, Western Carpathians, West Slovakia. The aim is to prepare the background for correlation of a Late Tithonian and Early Berriasian biostratigraphic zonation with global magnetoevents (manifested in detailed magnetostratigraphic profiles) between the Tethyan realm and other regions, particularly the Boreal and Pacific realms. Suitable physical properties of the limestones studied, a favourable geological setting and rich microfossil assemblages (calpionellids) at Brodno (magnetozones M21r to M18r) allowed a systematic collection of new data on the original synoptic section, which now has the character of a high-resolution profile across the J/K boundary. Two reverse subzones detected within magnetozones M20n and M19n are named ‘Kysuca Subzone’ and ‘Brodno Subzone’, respectively. Both can be correlated with analogous subzones in the M-sequence of marine anomalies. Their existence can also be confirmed in the Bosso Valley section in Umbria, central Italy. A detailed study of the interval between magnetozones M20n and M17r in the Bosso Valley profile is presently in its final stage. Both magnetostratigraphic profiles, from the Brodno and Bosso Valley localities, were thoroughly investigated in the intervals close to the J/K boundary and are still unique among continent-based profiles in the detection and precise definition of both reverse subzones within M20n and M19n. Samples collected from the boundary strata of the reverse Kysuca Subzone at Brodno indicated a transition from N (R) to R (N) polarity of the Earth's palaeomagnetic field within a time interval of c. ±5 ka. Limestone samples (total number N=368) were subjected to progressive thermal demagnetization in 10–12 thermal fields and to subsequent multi-component analysis of remanence. The C-component, as the carrier of palaeomagnetic directions, was determined in the temperature interval of 300° to 540°, or possibly 580°C. Magnetomineralogical analyses of pilot samples and unblocking temperatures determined for all samples showed that magnetite is the carrier of remanent magnetization. The positions of the individual events of calpionellid stratigraphy relative to the global magnetic polarity timescale are precisely defined. The base of the Calpionella Standard Zone, which is considered a provisional J/K boundary indicator in ammonite-free sections in the Tethyan realm, lies within magnetozone M19n at the level of 35% of its local thickness. None of the boundaries in the calpionellid zonation coincides precisely with any of those in the palaeomagnetic zonation, but the first appearance ofCalpionella grandalpina , indicating the base of the Intermedia Subzone, lies in close proximity to the base of magnetozone M19r.  相似文献   

3.
Upper Tithonian–Berriasian pelagic carbonates in the Central Western Carpathians, Tatra Mts (southern Poland), with well-established bio- and magnetostratigraphy, provide excellent possibilities of testing magnetic and geochemical methods as proxies of palaeoenvironmental changes in the Western Tethys at the Jurassic/Cretaceous boundary. Magnetic susceptibility (MS), field spectral gamma-ray (GRS) as well as CaCO3, total organic carbon (TOC), and elemental analyzes were performed in the Pośrednie III section. MS reveals very good negative correlation with CaCO3 content as well as positive correlation with Al, Zr, Ti and other lithogenic elements and therefore it might be interpreted as a proxy of a detrital input into the basin. Abrupt MS variations correlate well with relative sea-level changes and indicate regressive intervals (MS highs) in the upper Tithonian/lowermost Berriasian (M20r to M19n2n) and upper Berriasian (M16n) and transgressive interval (MS low) in the lower to middle Berriasian (M18r to M17r). Long-term MS variations might be linked to a palaeoclimatic-controlled enhanced continental runoff. Geochemical data (P, Th/U, Mn, Cd, Ni, Mo and TOC content) point to a productivity increase and a slight oxygen deficiency in the lower and middle Berriasian, which corresponds to MS low values and typical calpionellid limestone sedimentation. Timing of major palaeoenvironmental turnovers might be correlated also with general palaeoclimatic trends in the Western Tethys and Western Europe: cooling in the late Tithonian followed by a temperature increase throughout the Berriasian and an important humidity increase in the middle Berriasian (M17n).  相似文献   

4.
As a result of detail sampling and paleomagnetic study of the 27-m-thick section of Jurassic-Cretaceous boundary beds in the Nordvik Peninsula (Anabar Bay, Laptev Sea), a succession of M-zones correlative with chrons M20n-M17r is established for the first time in the Boreal deposits. Inside the normal polarity zone corresponding to Chron M20n, a thin interval of reversed polarity, presumably an equivalent of the Kysuca Subzone (M20n.1r), is discovered. The other thin interval of reversed polarity established within the next normal polarity zone (M19n) is correlated with the Brodno Subzone (M19n.1r). The same succession of normal and reversed polarity zones has been discovered recently in the Jurassic-Cretaceous boundary beds of the Tethyan sections: in the Bosso Valley (Italy), at the Brodno (Slovak Republic) and Puerto Escaño (Spain) sites. Correlation of successions established lead us to conclusion, that the Jurassic-Cretaceous boundary corresponds in the Panboreal Superrealm to a level within the Craspedites taimyrensis Zone of the upper Volgian Substage. Hence, the greatest part of Volgian Stage should be included into the Jurassic System. Biostratigraphic data do not contradict this conclusion.  相似文献   

5.
6.
The first detailed stratigraphic succession of the Upper Cretaceous continental record from the Upper Aude Valley (southern France) is presented together with a magnetostratigraphic study. The combined stratigraphy and magnetostratigraphy of the Marnes rouges inférieures Fm (Lower Red Marls), constrained by biochronological markers such as charophyte occurrence and revised dinosaur eggshells, results in a succession of fluvial red beds dated from chron C32n to the top of chron C31r. It implies an earliest Maastrichtian age close to the C32n.1n-C31r reversal for the majority of the dinosaur sites including Bellevue. In contrast, the upper Maastrichtian is likely represented by a short interval within the lacustrine-palustrine Calcaires et argiles de Vignevieille Fm (Vignevieille Limestones), or it might even not be recorded. The proposed age indicates that the marine to continental transition, as a result of the Late Cretaceous transgression, took place earlier in the north Pyrenean basin than in the southern area.  相似文献   

7.
An early Berriasian (Berriasella jacobi Zone) ammonite fauna is described for the first time from the Alborz Mountains in northwest Iran. It has been collected from a section located near the village of Shal (Talesh region); in addition to rare phylloceratids, lytoceratids and Neolissoceras, the majority of ammonites belong to the neocomitid subfamily Berriasellinae. With the exception of a new genus and species, Taleshites fuersichi, these taxa are common in European and North African Tethyan successions. Associated calpionellids confirm the early Berriasian age of the ammonite-bearing levels.  相似文献   

8.
Section of the middle and upper Volgian substages and basal Boreal Berriasian in the Cape Urdyuk-Khaya (Nordvik Peninsula) is largely composed of dark argillites substantially enriched in Corg. Characteristic of the section is a continuous succession of ammonite, foraminiferal, ostracode, and dinocyst zones known also in the other Arctic areas. Boundaries of the upper Volgian Substage are recognizable only based on biostratigraphic criteria. The succession of the middle Volgian Taimyrosphinctes excentricus to basal Ryazanian Hectoroceras kochi zones is characterized. The range of the substage is revised. The lower Exoticus Zone, where ammonites characteristic of the Nikitini Zone upper part in the East European platform have been found, is referred to the middle Volgian Substage. Newly found ammonites are figured. Two possible positions of the Jurassic-Cretaceous boundary in the Arctic region, i.e., at the lower and upper boundaries of the Chetae Zone at the top of the upper Volgian Substage, are discussed.  相似文献   

9.
There is no international consensus regarding the GSSP for the Berriasian, the basal stage of the Cretaceous System. Any of the events discussed by the international expert community can be regarded as a marker of the Jurassic/Cretaceous boundary: a phylogenetic change of taxa, paleomagnetic reversal, or isotopic excursion. However, the problem of identification of this level in Boreal sections can be solved only using a combination of data obtained by paleontological and nonpaleontological methods of stratigraphy (bio-, chemo-, magnetostratigraphy, etc.). With any of the accepted markers, the Jurassic/Cretaceous boundary in Siberian sections will be within the upper part of the regional Bazhenovo Horizon. The least interval of the uncertainty of the position of this boundary in Siberian sections will be ensured by the selection of one of two markers: biostratigraphic (base of the Pseudosubplanites grandis Subzone) or magnetostratigraphic (base of the M18r magnetozone).  相似文献   

10.
Ammonite Fauriella boissieri (Pictet), the index species of the Berriasian upper zone, is described for the first time as taxon occurring in the Crimean Mountains. In the Berriasian sections of the central Crimea and Chatyr-Dag massif, species F. boissieri are encountered only in association with upper Berriasian ammonites. The Berriasian-Valanginian boundary has not been identified based on ammonites in the Crimean Mountains. Consequently, there is no reason to include the otopeta Zone into the boissieri Zone in the rank of its upper subzone.  相似文献   

11.
In this study we analyze the importance of new magnetostratigraphic data on the Nordvik section for solving the problem of detailed Tethyan–Boreal correlation around the Jurassic–Cretaceous boundary with a special emphasis on the aspects of interpretation of the paleomagnetic data in magnetostratigraphic studies and the need for the integrated (paleontological and paleomagnetic) approach to recognition of the base of the Berriasian.  相似文献   

12.
The base of the Saerba Member (Mbr) of the Hongguleleng Formation (Fm.) probably lies in the Famennian Palmatolepis crepida Zone; the Longkou Mbr is probably a sedimentary wedge that thins out northwards; the Duguer Mbr has an approximate age from the upper part of the Pa. marginifera Zone or the Lower Pa. rugosa trachytera Zone through the top of the Pa. perlobata postera Zone; the Wulan Mbr has an age approximately corresponding to the whole Pa. gracilis expansa Zone. In the Bulongguoer section, the Lower Mbr of the Hongguleleng Fm. corresponds to Famennian Pa. crepida Zone through Pa. marginifera Zone; the Middle Mbr probably ranges from the Pa. r. trachytera Zone through the Pa. g. expansa Zone. The basal Namu Mbr of the Heishantou Fm. is probably the product during and after the Hangenberg Event in the upper part of the Siphonodella praesulcata Zone, which is still within the Devonian. In this context, the underlying Chasi Mbr may approximately correspond to the lower part of the S. praesulcata Zone (before the Hangenberg Event). Lateral distribution of strata indicates that the Upper Devonian in the Gennaren and Saerba areas each constitutes a structure of syncline, which differs from the previous recognition of a monocline structure.  相似文献   

13.
The 5th meeting of the IUGS Lower Cretaceous Ammonite Working Group (the Kilian Group) held in Ankara, Turkey, 31st August 2013, discussed the Mediterranean ammonite zonation, and its calibration with different ammonite zonal schemes of the Boreal, Austral and Central Atlantic realms. Concerning the standard zonation, that corresponds to the zonal scheme of the West Mediterranean province, some changes have been made on two stages. For the Valanginian, the Busnardoites campylotoxus Zone was abandoned; the upper part of the lower Valanginian is now characterised by the Neocomites neocomiensiformis and Karakaschiceras inostranzewi zones. For the upper Barremian, the former Imerites giraudi Zone is here subdivided into two zones, a lower I. giraudi Zone and an upper Martellites sarasini Zone. The I. giraudi Zone is now subdivided into the I. giraudi and Heteroceras emerici subzones, previously considered as horizons. The current M. sarasini and Pseudocrioceras waagenoides subzones correspond to the lower and upper parts of the M. sarasini Zone, respectively. The Anglesites puzosianum Horizon is kept. The Berriasian, Hauterivian, Aptian and Albian zonal schemes have been discussed but no change was made. The upper Hauterivian zonal scheme of the Georgian (Caucasus) region (East Mediterranean province) has been compared with the standard zonation. Discussions and some attempts at correlations are presented here between the standard zonation and the zonal schemes of different palaeobiogeographical provinces: the North-West European area for the Valanginian and Hauterivian, the Argentinean region for the Berriasian, Valanginian and Hauterivian, and the Mexican area for the Valanginian–Hauterivian and Aptian–lower Albian. The report concludes with some proposals for future work.  相似文献   

14.
Five successive ammonite assemblages are distinguished in the basal part (Riasanites rjasanensis Zone s. l.) of the Ryazanian Stage of the East European platform. These are (from the base upward) (1) Hectoroceras tolijense; (2) Hectoroceras kochi; (3) Riasanites swistowianus; (4) Riasanites rjasanensis; and (5) Transcaspiites transfigurabilis assemblages. Two lower assemblages consist entirely of boreal taxa, which occur in association with diverse ammonites of the Tethyan origin higher in the section. The data obtained show that three upper assemblages are correlative with the Berriasian Dalmasiceras tauricum, Riasanites rjasanensis-Spiticeras cautleyi, and Euthymiceras euthymi subzones of the northern Caucasus. The succession of five–six ammonite assemblages established in the East European platform above the top of the Craspedites nodiger Zone may correspond to the same number of ammonite assemblages characterizing lower subzones of the standard Berriasian. Berriasella rulevae Mitta, sp. nov. from the upper part of the Riasanites rjasanensis Zone (transfigurabilis biohorizon) is described.  相似文献   

15.
The present study analyses the stratal architecture of the Late Jurassic (Kimmeridgian) to Early Cretaceous (Berriasian) sedimentary succession of Mount Salève (E France), and four Berriasian stratigraphic intervals containing four sequence-boundary zones reflecting lowering trends of the relative sea-level evolution. Massive Kimmeridgian limestones characterized by the presence of colonial corals appear to be stacked in an aggrading pattern. These non-bedded thick deposits, which are interpreted to have formed in balance between relative sea-level rise and carbonate accumulation, suggest a keep-up transgressive system. Above, well-bedded Tithonian-to-Berriasian peritidal carbonates reflect a general loss of accommodation. These strata are interpreted as a highstand normal-regressive unit. During the early phase of this major normal regression, the vertical repetition of upper intertidal/lower supratidal lithofacies indicates an aggrading depositional system. This is in agreement with an early stage of a highstand phase of relative sea level. The Berriasian sequence-boundary zones investigated (up to 4 m thick) developed under different climatic conditions and correspond to higher-frequency, forced- and normal-regressive stages of relative sea-level changes. According to the classical sequence-stratigraphic principles, these sequence-boundary zones comprise more than one candidate surface for a sequence boundary. Three sequence-boundary zones studied in Early Berriasian rocks lack coarse siliciclastic grains, contain a calcrete crust, as well as marly levels with higher abundances of illite with respect to kaolinite, and exhibit fossilized algal-microbial laminites with desiccation polygons. These sedimentary features are consistent with more arid conditions. A sequence-boundary zone interpreted for the Late Berriasian corresponds to a coal horizon. The strata above and below this coal contain abundant quartz and marly intervals with a higher kaolinite content when compared to the illite content. Accordingly, this Late Berriasian sequence-boundary zone was formed under a more humid climate. The major transgressive–regressive cycle of relative sea level identified and the climate change from more arid to more humid conditions recognized during the Late Berriasian have been reported also from other European basins. Therefore, the Kimmeridgian to Berriasian carbonate succession of Mount Salève reflects major oceanographic and climatic changes affecting the northern margin of the Alpine Tethys ocean and thus constitutes a reliable comparative example for the analysis of other coeval sedimentary records. In addition, the stratigraphic intervals including sequence-boundary zones characterized in this study constitute potential outcrop analogues for sequence-boundary reflectors mapped on seismic profiles of subsurface peritidal carbonate successions. The detailed sedimentological analyses provided here highlight that on occasions the classical principles of sequence stratigraphy developed on seismic data are difficult to apply in outcrop. A sequence-boundary reflector when seen in outcrop may present successive subaerial exposure surfaces, which formed due to high-frequency sea-level changes that were superimposed on the longer-term trend of relative sea-level fall.  相似文献   

16.
Here we present the magnetostratigraphic dating of the Laño locality (Condado de Treviño, northern Iberian Peninsula), one of the most noteworthy Campanian-Maastrichtian vertebrate sites of Europe. A composite section of 75 m thickness (Laño quarry) constructed from multiple, overlapping profiles and a continuous one (Faido) have been sampled for magnetostratigraphy. Thermal demagnetization techniques were systematically applied to 161 standard specimens and allowed characterizing the characteristic remanent magnetism, mostly carried out by magnetite. The palaeomagnetic signal is slightly scattered due to variety of lithologies, but the primary character can be guaranteed, since the normal and reverse directions are pseudo antiparallel; 346, 28 (α95: 11.9°, k: 5.3) and 175, −35 (α95: 16.4°, k: 4.6). Reliable samples allowed us to build the local polarity sequence made of eight magnetozones that has been used to correlate to the Global Polarity Time Scale. The age of the lower part of the Laño-village succession is basal late Campanian (Hoplitoplacenticeras marroti ammonite zone) and fits with the long reversed zone that must correlate to Chron C33r. The pattern of magnetozones allows tracking the section up to C30r at the upper part of the profile. In this correlation, the Laño vertebrate site is regarded as latest Campanian in age as it falls within the C32n (≈72–73.5 Ma). The combined lithostratigraphic and magnetostratigraphic analyses have yielded additional conclusions regarding the vertebrate assemblages that are representative of the Late Campanian of the Iberian Peninsula, in addition to highlight an older occurrence in Europe of some vertebrate groups such as salamandrid lissamphians and anguid lizards (or amphisbaenians).  相似文献   

17.
西藏色龙西山色龙群的时代及二叠系与三叠系的界线   总被引:3,自引:1,他引:2  
<正> 色龙群于1964年由希夏邦马峰登山队科学考察队(1982)命名,层型剖面在聂拉木县色龙村西北约1km的小山上,时代为二叠纪。穆恩之等(1973)认为色龙群的时代属早二叠世晚期。章炳高(1974)、吴望始(1975)、张守信、金玉玕(1976),王玉净、穆西南(1984)对色龙群的时代有类似的看法,均未提及它包含有长兴期地层的存在。饶荣标等(1985)将色龙群分为两组,上部为扒嘎组,下部为门多组。在色龙西山剖面,扒嘎组为生物碎屑灰岩,厚4.15m,含Gertholites curvatus,Thamnopora densa,Pseudofavosites irregularis,Trachypora sp.,Sinkiangopora sp.,时代属晚二叠世,与上覆下三叠统土隆组为整合接触。  相似文献   

18.
浙江桐庐县刘家奥陶纪剖面生物地层学初步研究   总被引:2,自引:0,他引:2  
新发现的浙江桐庐刘家剖面位于马金一乌镇断裂与球川一萧山断裂之间,是浙西北地区以碎屑岩沉积为主的代表性奥陶纪地层剖面。根据所获得的宁国组和胡乐组的笔石化石,初步建立了该层段的笔石生物地层序列,自下而上包括Tetragraptusapproximatus带、Corymbograptusdeflexus带、Azygograp...  相似文献   

19.
A previously uncollected fauna of ammonites, bivalves, and other molluscs, associated with radiolarian microfossils, has been newly recognized near Lawn Hill on the east coast of central Queen Charlotte Islands, British Columbia. The regional biostratigraphic zonation indicates that the Lawn Hill fauna is correlative with the Nostoceras hornbyense zonule of the Pachydiscus suciaensis ammonite biozone, recognized in the Nanaimo Group of southeast Vancouver Island. The Nostoceras hornbyense Zone (new) is herein proposed for strata of Pacific coast Canada containing the zonal index. Several molluscan taxa present in the Lawn Hill section are new to British Columbia and the ammonite fauna suggests that the Nostoceras hornbyense Zone is late Campanian in age, supported by radiolarian taxa present in the section. Strata sampled in the Lawn Hill section preserve reversed-polarity magnetization, considered likely correlative with Chron 32r. The presence of the Nostoceras hornbyense Zone on Queen Charlotte Islands is the first recognition of this zone in Canada north of central Vancouver Island and represents the youngest Cretaceous known in this region. Campanian radiolarians identified from the Lawn Hill section are also the first recognized from the Pacific coast of Canada.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号