首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
盾构隧道施工引起地表下土体变位的分析评估   总被引:2,自引:0,他引:2  
王占生  王梦恕  张弥 《岩土力学》2009,30(6):1699-1704
目前对盾构隧道施工引起的地表下土体变位进行预测分析的研究还相对较少,尤其是缺乏简单实用的工程估算方法。在深埋隧道周围土体弹性位移计算方法及盾构间隙参数研究成果的基础上,通过相应的分析和假设提出了一种预测盾构隧道施工引起地表下土体水平变位的简便估算方法。另外,在已有研究成果基础上,提出了一种新的盾构隧道沉降槽的描述方法,并结合Mair等提出的计算公式对盾构隧道施工引起的地表下土体沉降变位进行预测。通过与有限元计算结果及一些典型盾构隧道监测数据的对比分析,证明提出的估算方法能够较好地预测实际工程中盾构隧道施工引起的地表下土体的变位情况。  相似文献   

2.
针对在建基坑工程对既有桥梁造成影响的问题,依托徐州土岩组合地区某地铁基坑工程,通过研究软土地区基坑开挖墙后地表沉降预测理论,推导出该工程的墙后地表沉降曲线。通过Midas数值软件模拟与现场监测综合分析的方法,研究了基坑开挖对墙后地表和扩展基础桥墩造成的沉降影响。研究表明:在整个开挖过程中,基坑周边地表沉降曲线呈"勺形"分布,第三层土体开挖对地表沉降的影响最大;桥墩与相同位置地表在各开挖阶段的沉降量分别占其最终沉降量的比例基本一致;基坑开挖对桥墩造成的倾斜角度会随桥墩下卧土体沉降曲线的变化而变化,桥墩受基坑开挖造成的沉降影响会随其基础埋深的增加而减弱。该研究可为类似工程设计和施工提供参考。  相似文献   

3.
隧道开挖引起土层沉降槽曲线形态的分析与计算   总被引:24,自引:7,他引:17  
姜忻良  赵志民  李园 《岩土力学》2004,25(10):1542-1544
假定由于隧道开挖在地表以下土层所形成的沉降槽的体积等于地层损失以及各土层沉降槽曲线仍可用正态分布函数表示。在此假定下,首次提出可以通过对隧道中心线以上土体的沉降值的分析,研究不同深度土层沉降槽曲线宽度系数,并且通过回归分析,提出用于计算不同深度土层沉降槽曲线宽度系数的公式,为计算隧道开挖引起的地表以下土体任一点的竖向沉降提供了一种有效方法,通过工程实例的计算证明了该方法的适用性。  相似文献   

4.
魏纲  周杨侃 《岩土力学》2016,37(Z2):113-119
提出近距离双线水平平行盾构施工引起的总的地表沉降曲线符合正态分布规律。基于单线随机介质理论简化公式,针对现有不足,建立修正的随机介质理论简化计算公式,可以计算近距离双线平行盾构施工引起的地表沉降,同时能够考虑沉降曲线的不对称性,对计算参数取值进行了探讨。算例分析结果表明,文中方法预测值与实测值比较吻合,且计算比较简便。实测数据统计结果表明,先行隧道开挖后双线隧道的半径收敛值比先行隧道半径收敛值要大,而主要影响角则变小;提出可直接用于近距离界定的式(6),认为双线隧道的地表沉降曲线形状与P值大小有关,近距离的界定范围为 。  相似文献   

5.
提出近距离双线水平平行盾构施工引起的总的地表沉降曲线符合正态分布规律。基于单线随机介质理论简化公式,针对现有不足,建立修正的随机介质理论简化计算公式,可以计算近距离双线平行盾构施工引起的地表沉降,同时能够考虑沉降曲线的不对称性,对计算参数取值进行了探讨。算例分析结果表明,文中方法预测值与实测值比较吻合,且计算比较简便。实测数据统计结果表明,先行隧道开挖后双线隧道的半径收敛值比先行隧道半径收敛值要大,而主要影响角则变小;提出可直接用于近距离界定的式(6),认为双线隧道的地表沉降曲线形状与P值大小有关,近距离的界定范围为P≤1.1。  相似文献   

6.
艾传志  王芝银 《岩土力学》2010,31(2):541-546
在既有公路下进行浅埋隧道开挖会引起地层产生位移,导致地表沉降。为了保证施工安全,快速精确地计算地层位移及应力,有效地控制地表沉降,对浅埋隧道的设计与施工均十分重要。在镜像法原理的基础上,引入等效模量当层法,推导出了在有上覆不同材料下浅埋圆形隧道开挖引起地层位移、应力及地表沉降的解析分布规律。计算结果表明,既有路基下开挖隧道引起地层产生的位移和应力解析解能够很好地体现上层高弹性模量路基对沉降及应力的扩散作用,可以求得隧道开挖后洞周地层包括上覆路基及下卧层中任意位置处的位移、应力以及地表沉降,为在双层地基材料中开挖浅埋隧道引起地层位移及地表沉降的计算提供了一种新的解析方法。  相似文献   

7.
地铁双隧道施工引起地表沉降及变形的随机预测方法   总被引:3,自引:1,他引:2  
刘大刚  陶德敬  王明年 《岩土力学》2008,29(12):3422-3426
地铁施工引起地表沉降及变形的预测和控制是一个有待于深入研究的重要课题。地铁区间隧道大多为近距离的双孔平行隧道,两隧道开挖引起的地表沉降及变形往往相互叠加,导致沉降及变形预测更加困难。以随机介质理论为基础,对预测公式进行了改进,实现了双孔平行隧道施工引起的地表沉降、水平位移、水平变形、倾斜、曲率预测,研发了城市隧道开挖引起的地表沉降及变形预测系统。对多处双孔平行隧道工程进行了理论预测与验证,实测沉降证明了理论方法与预测系统的科学性和有效性。  相似文献   

8.
软土基坑开挖引起的坑外地表沉降预测数值分析   总被引:2,自引:0,他引:2  
尹盛斌  丁红岩 《岩土力学》2012,33(4):1210-1216
通过对基坑开挖过程的有限元数值模拟可知,当围护结构发生正向、反向转动及挠曲等3种基本变形模式时,坑外地表沉降分布具有较为明显的规律,均可采用统一格式的指数曲线进行模拟,即可得到坑外地表沉降曲线的经验公式。利用正向、反向转动及挠曲等3种基本变形模式对围护结构的任意变形模式进行拟合,求得3种基本模式的最大位移值,然后根据3种基本模式所对应的坑外地表沉降经验公式,求得每一基本模式所对应的坑外地表沉降分量,并进行叠加,从而求得坑外地表沉降分布曲线。  相似文献   

9.
软土流变性对深基坑周围地表沉降的影响分析   总被引:1,自引:0,他引:1  
在实测资料和前人研究的基础上,分析了软土地区深基坑围护结构水平位移值和墙后地表沉降的变化规律。对围护结构水平位移进行二次曲线拟合,假设地表沉降曲线形态可用正态分布密度函数来描述,利用地层损失法计算各工况下墙后最大地表沉降,并与各工况下实测最大地表沉降比较,提出了软土流变性对地表沉降规律的滞后影响。  相似文献   

10.
城市地铁隧道开挖引起过大的地表沉降会对隧道工程本身及地表建筑物造成危害。有效预计并合理控制隧道开挖引起的地表沉降具有重要的实践意义。以武汉地铁虎名区间隧道开挖工程为背景,运用有限元数值模拟软件MIDAS/GTS建立隧道断面开挖的数值模型,计算隧道开挖引起的地表沉降量,与实测沉降量进行拟合; 根据隧道开挖过程中对应地表及临近建筑物的实际情况,优化开挖断面围岩预处理方案,建立优化后的断面开挖模型。模拟结果表明,优化后地表沉降仍在安全范围内,可以为类似工程沉降控制提供参考。  相似文献   

11.
杨泽飞  魏纲  林磊磊  张世民 《岩土力学》2013,34(Z2):338-343
盾构法隧道施工引起的土体超孔隙水压力消散,会导致工后地表继续沉降。在前人研究基础上,提出了隧道周围土体的初始超孔隙水压力计算方法。采用分层总和法,计算由于扰动区内土体超孔隙水压力消散引起的地表固结沉降量,结合施工阶段地表沉降量,叠加得到总的工后横向地表沉降。提出了固结开始t时刻的地表总沉降量计算方法,研究了地表沉降速率随时间的变化。算例分析结果表明:本文方法计算得到的横向地表沉降曲线符合正态分布规律,与实测值吻合;地表总沉降速率的发展也与实测沉降速率曲线相符。  相似文献   

12.
佘芳涛  王永鑫  张玉 《岩土力学》2015,36(Z1):287-292
地铁隧道施工过程中,地表纵向沉降槽最大倾斜率及其出现的时机对地面和地下建筑物的安全评价非常重要。针对目前采用累积概率曲线描述纵向沉降曲线的不足,依据黄土地区地铁隧道暗挖施工引起地表纵向沉降槽特征的研究,寻求一种能反映地表纵向沉降规律的函数,引入掌子面地表位移释放率和地表纵向沉降最大斜率2个特征值,提出基于特征值的地表纵向沉降预测方法。研究结果表明,黄土地区暗挖法地铁隧道施工过程,老黄土-古土壤地层掌子面地表位移释放率和地表纵向沉降最大斜率均较大,饱和软黄土地层的较小。经过数学严密推导,提出一种考虑掌子面地表位移释放率和地表纵向沉降最大斜率的地表纵向沉降预测分析方法,分析了其随着特征值的敏感性,验证了预测方法的可靠性和合理性。研究成果对于分析和预测地铁隧道施工引起地表不均匀沉降对地面与地下建筑的影响具有重要的意义。  相似文献   

13.
顾剑波  钱建固 《岩土力学》2015,36(Z1):465-470
将任意挡墙水平变位模式分解为抛物线柔性模式和梯形刚性模式,并通过求解平面应变方程,得到挡墙在抛物线柔性变位模式下的理论解,给出地表土体的沉降曲线,分析土体沉降规律,同时将理论解应用于工程案例分析,通过与4个基坑开挖实例沉降归一化曲线的对比,分析解的适用性。结果显示,当挡墙发生抛物线变位模式时,地表沉降整体规律为向下凹槽型,最大沉降发生在距离墙背一定距离处,与实际情况相符。理论解形式表明,最终的表达式与弹性参量无关;归一化的沉降曲线显示,理论预测的最大沉降位置与实测值接近,且土体沉降模式与实测结果一致,说明理论解是合理的。  相似文献   

14.
张戎泽  钱建固 《岩土力学》2015,36(10):2921-2926
针对刚性挡墙不同变位模式,对基坑开挖过程中地表沉陷规律进行模型试验研究。开展的模型试验分别模拟了挡墙在平移(T模式)、绕墙趾转动(RB模式)和绕墙顶转动(RT模式)3种基本刚性变位模式下诱发的墙后地表沉陷,得到了土体沉陷曲线的分布规律。结果表明,挡墙平移时,墙后地表沉降呈勺型分布,最大沉降紧靠墙背处;挡墙绕墙趾转动时,墙后地表沉降近似呈三角形分布,最大沉降紧靠墙背处;挡墙绕墙顶转动时,墙后地表沉降近似呈抛物线分布,最大沉降位于距墙背一定距离的位置处。挡墙变位距离相同时,对于绕墙趾和绕墙顶转动模式,墙后土体沉陷的面积基本相等,两者沉陷面积之和近似等于平移模式的土体沉陷面积,另外,挡墙变位面积与墙后土体沉陷面积也近乎一致。将试验观察的沉陷曲线与既有的解析解作了对比分析,验证了二者的一致性。  相似文献   

15.
工程建设中地下水资源保护问题一直是社会各界关注的焦点。以国内首例城市地铁PBA暗挖车站边导洞内施工地下连续墙止水工程为依托,采用MIDAS/GTS NX软件重点模拟了导洞内地下连续墙施工前、施工中及施工后的地表沉降变化规律,并与现场监测数据进行对比分析。结果表明:1)地下连续墙施工前,地表沉降曲线以车站中线为中心,呈明显对称的沉降槽形式分布;2)地下连续墙施工中,单侧地下连续墙施工完成,其上方地表附近沉降影响最为明显,地表沉降量增量约占总沉降量的25%;3)左右两侧地下连续墙施工完成后,地表沉降量增量曲线类似W型;4)左右侧地连墙分别施工6幅以后,上方地表处沉降趋于稳定,沉降速率基本保持不变。  相似文献   

16.
蔡海兵  彭立敏  郑腾龙 《岩土力学》2015,36(12):3516-3522
考虑冻结壁的强制解冻过程,采用随机介质理论,建立了隧道水平冻结壁强制解冻期地表沉降的预测方法,并提出强制解冻条件下冻结壁温度场由单管解冻理论近似求解,基于所推导的单管解冻理论和崔托维奇提出的一维情况下融土层稳定融沉量公式,确定了预测方法中融土柱半径和融缩区域内半径的取值方法。将所建立的预测方法应用于隧道全断面水平冻结工程中,得到了地表沉降随强制解冻时间的分布及变化规律。研究结果表明,在冻结壁强制解冻期,其地表沉降分布规律与自然解冻期相似,但地表沉降随解冻时间呈线性增长趋势,这一特征与自然解冻期有所不同。  相似文献   

17.
从软土的结构性出发,对软土较高的孔隙比、较强的透水性以及其压缩曲线的特点等进行分析总结,对公路路基沉降计算方法作进一步探讨。反分析方法在路基沉降方面的应用已经成为预测工后沉降的一种行之有效的途径。该方法是在空域和时域内对工程进行反馈分析的方法,是动态设计的最基本也是最重要的组成部分。它不仅包括在常规设计期间内进行的各种静态分析,而且包括随施工过程,根据工程现场实测的变形及其它可观测信息进行一系列反馈处理,它将设计与施工过程密切联系起来。为了较好地预测工后沉降,从沉降固结计算的角度对模型参数进行反分析,并反演设定参数,预测了沉降趋势,并与实际观测数据及理论计算数值进行比较,对实际工程做出评价,对工后沉降做出合理地预测。  相似文献   

18.
环境因素对路基沉降影响的分析   总被引:1,自引:0,他引:1  
在秦沈线的路基沉降观测过程中,发现在上部填土荷载恒定不变的情况下,不同区段、路基的不同平面位置上测得的沉降过程曲线,有的发生陡降,有的发生较大沉降后产生回弹,在详细分析了沉降过程曲线、地下水位变化曲线等资料的基础上,发现上述异常现象是抽取地下水和冻融作用这两个环境因素所致,抽取地下水会引起沉降猛增,而冻融作用使沉降发生往复变化,本文较为详细地阐述了这两个环境因素影响沉降过程的方式,并且就抽取地下水对沉降的影响作了一些量化的分析。  相似文献   

19.
管志勇  路卫卫  戚蓝  李绍峰 《岩土力学》2008,29(5):1415-1418
将分形理论应用于建筑物地基沉降曲线分析,计算两建筑物地基各测点累计沉降曲线的盒维数。分析了测点维数变化情况与最终沉降量变化情况之间的相互关系,并得到建筑物地基的沉降曲线分形特性。测点维数的大小反映了建筑物地基沉降过程复杂度,测点维数变化与沉降量变化为对应关系,反映出地基沉降的不均匀性,分形特性分析方法从一个新的角度分析建筑物地基沉降,从曲线中也挖掘更多隐含信息。  相似文献   

20.
用曲线拟合的方法预测软土地基沉降   总被引:42,自引:8,他引:34  
潘林有  谢新宇 《岩土力学》2004,25(7):1053-1058
讨论了采用曲线拟合方法预测地基沉降的理论基础,分析比较了四种预测方法的基本原理及其特点。根据多个工程实测沉降资料,研究了这四种方法的适用条件以及优缺点,提出了应用曲线拟合方法预测实际工程地基沉降的具体技术思路和原则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号