首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
通过对喜马拉雅三叠纪到第三纪区域沉积特征分析,阐明了雅鲁藏布喜马拉雅特提斯造山带从裂谷—被动大陆边缘—前陆盆地的沉积盆地演化史。随着以雅鲁藏布带为代表的喜马拉雅特提斯打开,三叠纪到早侏罗世为特提斯早期裂开的大陆边缘裂谷盆地。早期裂谷中心部位不是现在大陆缝合线的雅鲁藏布一带,而在低分水岭带。晚侏罗世到早白垩世,雅鲁藏布江南测为典型被动大陆边缘,其沉积盆地沉降、海平面变化与沉积作用相吻合。晚白垩世到第三纪为前陆盆地演化阶段,从沉积作用可以识别出晚白垩世晚期为造山第一暮,第三纪初为第二幕。  相似文献   

2.
安徽沿江中新生代盆地位于大别山造山带南缘,为先挤压、后伸展形成的叠合盆地,是探讨扬子板块陆内深俯冲—大别山造山带隆起与中、下扬子盆地沉降的耦合关系的理想场所。在早中生代,大别山为华南和华北大陆碰撞造山带,华南地壳向深处俯冲并承受超高压变质作用,超高压变质岩不断向上折返,沿江坳陷具有前陆盆地性质,盆地充填有晚三叠世—中侏罗世磨拉石层序;在晚中生代,在中国东部整体的拉张背景下,大别山变质带完全折返上隆,处于变质核杂岩隆升状态,而沿江坳陷具有裂陷盆地性质,充填有晚侏罗世—早白垩世、晚白垩世—古近纪两个红色碎屑构造层序,起因于地壳拆沉而产生的均衡隆升和伸展断陷的构造耦合。  相似文献   

3.
辽西中生代构造运动可划分为印支早期(早、中三叠世)、印支晚期(晚三叠世)、燕山早期(早侏罗世)、燕山中期(中、晚侏罗世)、燕山晚期(早白垩世)、燕山末期(晚白垩世)6个构造幕。中生代造山带有别于板缘或板间造山带的一种特殊类型的造山带,也不是板缘或板间造山带的一个发展阶段。因此,具有独特的大地构造背景、造山期前演化历史,以及造山带构造变形变质、岩浆活动、沉积作用等特点。中生代板内造山过程是复杂的、多阶段的、非单一的过程,三叠纪以来,共经历了多次裂陷与伸展、挤压与收缩作用和多阶段的盆地发展历史。在每一次盆地演化过程中,在早期表现为裂陷与伸展作用,并有中基性—中酸性火山岩浆喷发和侵入,具有从早期向晚期岩浆由偏基性向偏酸性演化的特点,同时形成断陷盆地,沉积陆源粗碎屑建造;中期,断陷盆地向坳陷盆地转化,沉积陆源细碎屑和含煤及红色建造;晚期表现为挤压和收缩的造山作用,使地层褶皱,并发育逆冲断层,盆地抬升遭受剥蚀,从此构成了一个火山喷发—沉积盆地从形成→发展→萎缩→消亡的完整过程。这样多旋回的变化,塑造了辽西地区的中生代板内造山过程。  相似文献   

4.
构造解析表明,现今观察到的中扬子地区中部江汉叠合盆地主体构造格架面貌大体形成于印支 早燕山碰撞造山期;其中,主造山初期前陆盆地发育阶段,盆区东、西部构造形变差异明显,晚期经调整而渐趋平衡,由此显现华南与华北两大陆块在碰撞造山过程中可能先后经历了早期点状接触与陆间斜向俯冲和晚期线状接触与陆内俯冲两个发展阶段。晚燕山期以来,盆地裂陷阶段构造格架的分区发育与右行旋转特点,证明中扬子地区曾发生过双向伸展和构造旋转作用,暗示晚燕山 早喜马拉雅期华南与华北两大陆块可能处于逐渐焊合的过程,研究区总体处于造山后陆内应力场调整阶段。盆地坳陷期发育阶段山盆非耦合面貌及壳幔“立交桥”式结构特征展示晚喜马拉雅期以来叠合盆地南、北边缘造山带已进入去根与裂解过程中。  相似文献   

5.
合肥盆地白垩纪地层及盆地演化   总被引:1,自引:0,他引:1  
杜长洲  孙亚力  张立明 《安徽地质》2007,17(4):241-243,269
合肥盆地白垩纪地层分为二统四组,岩性特征明显,物源主要来自大别造山带和张八岭造山带.白垩纪初期在大规模右旋走滑拉伸条件下的伸展变形,导致地下热能释放,形成盆地.早白垩世由于盆山幕式构造作用和深断裂的走滑作用,造成盆地的差异性隆升.晚白垩世合肥盆地转入应力松驰、整体不均匀抬升的坳陷初始阶段.末期由应力松驰转为受SW-NE向挤压应力的发展阶段,形成箕状断陷盆地.  相似文献   

6.
盆地-山岭耦合体系与地球动力学机制   总被引:40,自引:1,他引:39  
刘和甫 《地球科学》2001,26(6):581-596
盆山耦合分析应该将地球动力学环境和板块运动学序列结合起来, 根据地球动力学环境所提出的: 伸展构造体系、挤压构造体系、走滑构造体系和克拉通构造体系进行定性与定量分析; 依照板块运动学序列所划分的主要旋回: 裂解阶段、俯冲阶段、碰撞阶段和后造山阶段进行定位与定时分析.伸展构造体系在离散期为陆内裂陷盆地及伸展造山带; 在聚合期为弧后裂陷盆地及张性岩浆弧造山带; 在后造山期为后继裂陷盆地及晚期伸展造山带.挤压构造体系在俯冲期为弧后前陆盆地及俯冲造山带; 在碰撞期为周缘前陆盆地及碰撞造山带; 在再活动期为再生前陆盆地及再生造山带.走滑构造体系在伸展期为走滑拉分盆地及剪张山岭; 在挤压期为走滑挠曲盆地及剪压造山带.克拉通构造体系在裂解期为克拉通内部盆地; 在拼合期为克拉通边缘盆地.   相似文献   

7.
沔阳—当阳前陆盆地自北而南可划分为五个构造单元 :桐柏山—大别山基底卷入推覆构造带、南大巴山—大洪山叠瓦逆冲断裂构造带、沔阳—当阳拗陷变形带、宜昌—沙市前陆斜坡带、黄陵—松滋前缘隆起带。盆地的形成与南大巴山—大洪山造山带的发育密切相关。盆地经历了加里东期、海西—印支期南秦岭洋盆、北华南洋盆的两次“开 (降 )、合 (升 )” ,燕山早期陆内俯冲造山成盆及燕山晚期—喜马拉雅期陆内伸展断陷的演化。盆地油气资源丰富 ,具三套有效烃源岩 :晚奥陶世—早志留世广海陆棚相泥页岩 ,二叠纪滨岸沼泽相含煤泥岩 ,晚三叠世—早侏罗世湖泊—沼泽相暗色泥页岩、煤系泥岩和煤岩。中三叠世—早第三纪为油气生成高峰期。油气运移指向主要为南西方向的前缘隆起  相似文献   

8.
文章探讨了塔里木盆地北缘和南天山造山带的盆-山耦合和构造转换过程。塔里木盆地属于典型的叠合盆地,经历了多期构造演化。研究表明,在地史时期中,塔里木盆地北缘和相邻南天山造山带经历了多期和复杂的盆山耦合和盆山转换过程,形成多种类型盆山耦合和转换方式。(1)按时间域可划分为:早古生代陆内裂陷盆地-早期伸展造山-晚期挤压造山耦合,晚古生代陆内裂陷盆地-弧后造山-晚期碰撞造山耦合,中生代陆内前陆盆地-挤压造山耦合,古近纪前陆盆地-挤压造山耦合,新近纪—第四纪再旋回前陆盆地-挤压造山耦合;(2)按深度域可划分为:深部地幔俯冲型盆-山耦合,地壳分层滑脱拆离型盆-山耦合,基底滑脱拆离型盆-山耦合,古生代伸展和逆冲推覆型盆-山耦合,中—新生代逆冲推覆型盆-山耦合;(3)按运动学和动力学可划分为:逆冲推覆型盆-山耦合和接触关系、重力滑脱型盆-山耦合和接触关系、走滑转换型盆山耦合和接触关系、深部岩浆上涌焊接型盆-山耦合和接触关系、鳄鱼嘴型盆-山耦合和接触关系。  相似文献   

9.
江汉盆地与周缘山系构成伸展型复合盆山体系,周缘山系的差异隆升可能与江汉盆地沉降、迁移和构造变形具有协同演化关系.通过沉降史模拟,表明江汉盆地裂陷期具有幕式特征,可分为3个裂陷幕:裂陷Ⅰ幕发生在晚白垩世,裂陷Ⅱ幕发生在古新世沙市组-早始新世新沟咀组沉积时期,而裂陷Ⅲ幕则发生在早始新世荆沙组-渐新世荆河镇组沉积时期.沉降中心发生有规律的迁移,裂陷Ⅱ幕沉降中心由裂陷Ⅰ幕条带状、多方向、多中心向西迁移到江陵凹陷,裂陷Ⅲ幕沉降中心向东迁移到潜江凹陷.伸展型复合盆山体系下盆地沉降中心有规律的迁移可能受多种因素的影响,其盆地周缘山系的差异隆升与盆地沉降中心的迁移显示出此消彼长的响应关系.晚白垩世末至始新世初盆地东缘山系(大别造山带、幕阜山和鄂东冲断带)剥蚀隆升,盆地沉降中心向西迁移.始新世末至渐新世盆地西缘山系(黄陵隆起、湘鄂西冲断带)抬升,盆地沉降中心向东迁移,沉降中心呈现出远离隆起端的"背离式"迁移.地幔底辟作用的差异性变化控制着盆地沉降中心的迁移.   相似文献   

10.
准噶尔盆地的类型和构造演化   总被引:35,自引:1,他引:34  
张晓东 《地学前缘》2000,7(4):431-440
准噶尔盆地的早二叠世属于裂谷还是前陆盆地 ,存在意见分歧 ;晚二叠世—老第三纪盆地的性质也不确定。文中通过对盆地构造几何学、沉降史、热史及火山岩的综合分析研究 ,对盆地类型和构造演化获得了一些新的认识 :( 1)准噶尔盆地在早二叠世为裂谷 ,晚二叠世为热冷却伸展坳陷 ,三叠纪—老第三纪为克拉通内盆地 ,新第三纪至今 ,由于印度板块与亚洲大陆碰撞才形成陆内前陆盆地。 ( 2 )对石炭纪—早二叠世的岩浆活动结合区域构造资料的研究表明 ,准噶尔地区古生代的板块运动和造山作用具软碰撞特点 ,早二叠世的裂谷盆地是在软碰撞背景下造山带伸展塌陷的产物。 ( 3)地幔热对流作用可能是软碰撞造山后伸展塌陷的主要深部动力学机制。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Well investigated platforms have been selected in each continent, and the history of Cretaceous transgressions and regressions there is concisely reviewed from the available evidence. The factual records have been summarized into a diagram and the timing of the events correlated between distant as well as adjoining areas.On a global scale, major transgressions were stepwise enlarged in space and time from the Neocomian, via Aptian-Albian, to the Late Cretaceous, and the post-Cretaceous regression was very remarkable. Minor cycles of transgression-regression were not always synchronous between different areas. Some of them were, however, nearly synchronous between the areas facing the same ocean.Tectono-eustasy may have been the main cause of the phenomena of transgression-regression, but certain kinds of other tectonic movements which affected even the so-called stable platforms were also responsible for the phenomena. The combined effects of various causes may have been unusual in the Cretaceous, since it was a period of global tectonic activity. The slowing down of this activity followed by readjustments may have been the cause of the global regression at the end of the Cretaceous.  相似文献   

13.
The Afyon stratovolcano exhibits lamprophyric rocks, emplaced as hydrovolcanic products, aphanitic lava flows and dyke intrusions, during the final stages of volcanic activity. Most of the Afyon volcanics belong to the silica-saturated alkaline suite, as potassic trachyandesites and trachytes, while the products of the latest activity are lamproitic lamprophyres (jumillite, orendite, verite, fitztroyite) and alkaline lamprophyres (campto-sannaite, sannaite, hyalo-monchiquite, analcime–monchiquite). Afyon lamprophyres exhibit LILE and Zr enrichments, related to mantle metasomatism.  相似文献   

14.
正20140751 Guo Xincheng(Geological Party,BGMRED of Xinjiang,Changji 831100,China);Zheng Yuzhuang Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains,Xinjiang,China(Geological Review,ISSN0371-5736,CN11-1952/P,59(3),2013,p.401-412,8  相似文献   

15.
正20141058 Chen Ling(Key Laboratory of Mathematical Geology of Sichuan Province,Chengdu University of Technology,Chengdu610059,China);Guo Ke Study of Geochemical Ore-Forming Anomaly Identification Based on the Theory of Blind Source Separation(Geosci-  相似文献   

16.
SEISMIC GEOLOGY     
正20141334 Chen Kun(Institute of Geophysics,China Earthquake Administration,Beijing100081,China);Yu Yanxiang Shakemap of Peak Ground Acceleration with Bias Correction for the Lushan,Sichuan Earthquake on April20,2013(Seismology and Geology,ISSN0253-4967,CN11-2192/P,35(3),2013,p.627-633,2 illus.,1 table,9 refs.)Key words:great earthquakes,Sichuan Province  相似文献   

17.
正20141624 Cai Xiongfei(Key Laboratory of Geobiology and Environmental Geology,Ministry of Education,China University of Geosciences,Wuhan 430074,China);Yang Jie A Restudy of the Upper Sinian Zhengmuguan and Tuerkeng Formations in the Helan Mountains(Journal of Stratigraphy,ISSN0253-4959CN32-1187/P,37(3),2013,p.377-386,5 illus.,2 tables,10 refs.)  相似文献   

18.
PALEONTOLOGY     
正20142263Lü Shaojun(Geological Survey of Jiangxi Province,Nanchang 330030,China)Early-Middle Permian Biostratigraphical Characteristics in Qiangduo Area,Tibet(Resources SurveyEnvironment,ISSN1671-4814,CN32-1640/N,34(4),2013,p.221-227,2illus.,2tables,22refs.)Key words:biostratigraphy,Lower Permian,Middle Permian,Tibet  相似文献   

19.
正20142560Hu Hongxia(Regional Geological and Mineral Resources Survey of Jilin Province,Changchun 130022,China);Dai Lixia Application of GIS Map Projection Transformation in Geological Work(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.160-163,4illus.,2refs.)  相似文献   

20.
GEOCHEMISTRY     
正20140692 Duo Tianhui(No.402 Geological Team,Exploration of Geology and Mineral Resources of Sichuan Authority,Chengdu611730,China);Wang Yongli Computer Simulation of Neptunium Existing Forms in the Groundwater(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,35(3),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号