首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

2.
The textural and chemical evolution of allanite and monazite along a well‐constrained prograde metamorphic suite in the High Himalayan Crystalline of Zanskar was investigated to determine the P–T conditions for the crystallization of these two REE accessory phases. The results of this study reveals that: (i) allanite is the stable REE accessory phase in the biotite and garnet zone and (ii) allanite disappears at the staurolite‐in isograd, simultaneously with the occurrence of the first metamorphic monazite. Both monazite and allanite occur as inclusions in staurolite, indicating that the breakdown of allanite and the formation of monazite proceeded during staurolite crystallization. Staurolite growth modelling indicates that staurolite crystallized between 580 and 610 °C, thus setting the lower temperature limit for the monazite‐forming reaction at ~600 °C. Preservation of allanite and monazite inclusions in garnet (core and rim) constrains the garnet molar composition when the first monazite was overgrown and subsequently encompassed by the garnet crystallization front. Garnet growth modelling and the intersection of isopleths reveal that the monazite closest to the garnet core was overgrown by the garnet advancing crystallization front at 590 °C, which establishes an upper temperature limit for monazite crystallization. Significantly, the substitution of allanite by monazite occurs in close spatial proximity, i.e. at similar P–T conditions, in all rock types investigated, from Al‐rich metapelites to more psammitic metasedimentary rocks. This indicates that major silicate phases, such as staurolite and garnet, do not play a significant role in the monazite‐forming reaction. Our data show that the occurrence of the first metamorphic monazite in these rocks was mainly determined by the P–T conditions, not by bulk chemical composition. In Barrovian terranes, dating prograde monazite in metapelites thus means constraining the time when these rocks reached the 600 °C isotherm.  相似文献   

3.
Incipient charnockites have been widely used as evidence for the infiltration of CO2‐rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene‐bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak‐metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn‐metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high‐grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali‐rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma.  相似文献   

4.
The Ross orogen of Antarctica is an extensive (>3000 km‐long) belt of deformed and metamorphosed sedimentary rocks and granitoid batholiths, which formed during convergence and subduction of palaeo‐Pacific lithosphere beneath East Gondwana in the Neoproterozoic–early Palaeozoic. Despite its prominent role in Gondwanan convergent tectonics, and a well‐established magmatic record, relatively little is known about the metamorphic rocks in the Ross orogen. A combination of garnet Lu–Hf and monazite U–Pb (measured by laser‐ablation split‐stream ICP‐MS) geochronology reveals a protracted metamorphic history of metapelites and garnet amphibolites from a major segment of the orogen. Additionally, direct dating of a common rock‐forming mineral (garnet) and accessory mineral (monazite) allows us to test assumptions that are commonly used when linking accessory mineral geochronology to rock‐forming mineral reactions. Petrography, mineral zoning, thermobarometry and pseudosection modelling reveal a Barrovian‐style prograde path, reaching temperatures of ~610–680 °C. Despite near‐complete diffusional resetting of garnet major element zoning, the garnet retains strong rare earth element zoning and preserves Lu–Hf dates that range from c. 616–572 Ma. Conversely, monazite in the rocks was extensively recrystallized, with concordant dates that span from c. 610–500 Ma, and retain only vestigial cores. Monazite cores yield dates that overlap with the garnet Lu–Hf dates and typically have low‐Y and heavy rare earth element (HREE) concentrations, corroborating interpretations of low‐Y and low‐HREE monazite domains as records of synchronous garnet growth. However, ratios of REE concentrations in garnet and monazite do not consistently match previously reported partition coefficients for the REE between these two minerals. High‐Y monazite inclusions within pristine, crack‐free garnet yield U–Pb dates significantly younger than the Lu–Hf dates for the same samples, indicating recrystallization of monazite within garnet. The recrystallization of high‐Y and high‐HREE monazite domains over >50 Ma likely records either punctuated thermal pulses or prolonged residence at relatively high temperatures (up to ~610–680 °C) driving monazite recrystallization. One c. 616 Ma garnet Lu–Hf date and several c. 610–600 Ma monazite U–Pb dates are tentatively interpreted as records of the onset of tectonism metamorphism in the Ross orogeny, with a more robust constraint from the other Lu–Hf dates (c. 588–572 Ma) and numerous c. 590–570 Ma monazite U–Pb dates. The data are consistent with a tectonic model that involves shortening and thickening prior to widespread magmatism in the vicinity of the study area. The early tectonic history of the Ross orogen, recorded in metamorphic rocks, was broadly synchronous with Gondwana‐wide collisional Pan‐African orogenies.  相似文献   

5.
Secular changes in the architecture, thermal state, and metamorphic style of global orogens are thought to have occurred since the Archean; however, despite widespread research, the driving mechanisms for such changes remain unclear. The Paleoproterozoic may prove to be a key era for investigating secular changes in global orogens, as it marks the earliest stage of an eon that saw the onset of modern-style global tectonics. The 2.1 Ga granulite-facies Mistinibi-Raude Domain (MRD), located in the Southeastern Churchill Province, Canada, offers a rare exposure of Paleoproterozoic high metamorphic grade supracrustal sequences (Mistinibi Complex, MC). Rocks from this domain were subjected to petrochronological investigations to establish PTtX evolutions and to provide first order thermal state, burial and exhumation rates, and metamorphic gradients for the transient Paleoproterozoic times. To obtain comprehensive insight into the PTtX evolution of the MRD, we used multi-method geochronology—Lu–Hf on garnet and U–Pb on zircon and monazite—integrated with detailed petrography, trace element chemistry, and phase equilibria modelling. Despite the extensive use of zircon and monazite as geochronometers, their behaviour in anatectic conditions is complex, leading to substantial ambiguity in interpreting the timing of prograde metamorphism. Our results indicate a clockwise metamorphic path involving significant melt extraction from the metasedimentary rocks, followed by cooling from >815°C to ~770°C at ~0.8 GPa. The timing of prograde burial and cooling from supra- to subsolidus conditions is constrained through garnet, monazite, and zircon petrochronology at 2,150–2,120 Ma and at 2,070–2,080 Ma, respectively. These results highlight long-lived residence of the rocks at mid-crustal supra-solidus conditions (55–70 Ma), with preserved prograde and retrograde supra-solidus monazite and zircon. The rocks record extremely slow burial rates (0.25–0.30 km/Ma) along a high metamorphic gradient (900–1,000°C/GPa), which appears symptomatic of Paleoproterozoic orogens. The MC did not record any significant metamorphism after 2,067 Ma, despite having collided with terranes that record high-grade metamorphism during the major 1.9–1.8 Ga Trans-Hudson orogeny. The MC would therefore represent a remnant of a local early Paleoproterozoic metamorphic infrastructure, later preserved as superstructure in the large hot Trans-Hudson orogen.  相似文献   

6.
Testing the fidelity of thermometers at ultrahigh temperatures   总被引:1,自引:0,他引:1  
A highly residual granulite facies rock (sample RG07‐21) from Lunnyj Island in the Rauer Group, East Antarctica, presents an opportunity to compare different approaches to constraining peak temperature in high‐grade metamorphic rocks. Sample RG07‐21 is a coarse‐grained pelitic migmatite composed of abundant garnet and orthopyroxene along with quartz, biotite, cordierite, and plagioclase with accessory rutile, ilmenite, zircon, and monazite. The inferred sequence of mineral growth is consistent with a clockwise pressure–temperature (PT) evolution when compared with a forward model (PT pseudosection) for the whole‐rock chemical composition. Peak metamorphic conditions are estimated at 9 ± 0.5 kbar and 910 ± 50°C based on conventional Al‐in‐orthopyroxene thermobarometry, Zr‐in‐rutile thermometry, and calculated compositional isopleths. U–Pb ages from zircon rims and neocrystallized monazite grains yield ages of c. 514 Ma, suggesting that crystallization of both minerals occurred towards the end of the youngest pervasive metamorphic episode in the region known as the Prydz Tectonic Event. The rare earth element compositions of zircon and garnet are consistent with equilibrium growth of these minerals in the presence of melt. When comparing the thermometry methods used in this study, it is apparent that the Al‐in‐orthopyroxene thermobarometer provides the most reliable estimate of peak conditions. There is a strong textural correlation between the temperatures obtained using the Zr‐in‐rutile thermometer––maximum temperatures are recorded by a single rutile grain included within orthopyroxene, whereas other grains included in garnet, orthopyroxene, quartz, and biotite yield a range of temperatures down to 820°C. Ti‐in‐zircon thermometry returns significantly lower temperature estimates of 678–841°C. Estimates at the upper end of this range are consistent with growth of zircon from crystallizing melt at temperatures close to the elevated (H2O undersaturated) solidus. Those estimates, significantly lower than the calculated temperature of this residual solidus, may reflect isolation of rutile from the effective equilibration volume leading to an activity of TiO2 that is lower than the assumed value of unity.  相似文献   

7.
The Palaeo‐Mesoproterozoic metapelite granulites from northern Garo Hills, western Shillong‐Meghalaya Gneissic Complex (SMGC), northeast India, consist of resorbed garnet, cordierite and K‐feldspar porphyroblasts in a matrix comprising shape‐preferred aggregates of biotite±sillimanite+quartz that define the penetrative gneissic fabric. An earlier assemblage including biotite and sillimanite occurs as inclusions within the garnet and cordierite porphyroblasts. Staurolite within cordierite in samples without matrix sillimanite is interpreted to have formed by a reaction between the sillimanite inclusion and the host cordierite during retrogression. Accessory monazite occurs as inclusions within garnet as well as in the matrix, whereas accessory xenotime occurs only in the matrix. The monazite inclusions in garnet contain higher Ca, and lower Y and Th/U than the matrix monazite outside resorbed garnet rims. On the other hand, matrix monazite away from garnet contains low Ca and Y, and shows very high Th/U ratios. The low Th/U ratios (<10) of the Y‐poor garnet‐hosted monazite indicate subsolidus formation during an early stage of prograde metamorphism. A calculated P–T pseudosection in the MnCKFMASH‐PYCe system indicates that the garnet‐hosted monazite formed at <3 kbar/600 °C (Stage A). These P–T estimates extend backward the previously inferred prograde P–T path from peak anatectic conditions of 7–8 kbar/850 °C based on major mineral equilibria. Furthermore, the calculated P–T pseudosections indicate that cordierite–staurolite equilibrated at ~5.5 kbar/630 °C during retrograde metamorphism. Thus, the P–T path was counterclockwise. The Y‐rich matrix monazite outside garnet rims formed between ~3.2 kbar/650 °C and ~5 kbar/775 °C (Stage B) during prograde metamorphism. If the effect of bulk composition change due to open system behaviour during anatexis is considered, the P–T conditions may be lower for Stage A (<2 kbar/525 °C) and Stage B (~3 kbar/600 °C to ~3.5 kbar/660 °C). Prograde garnet growth occurred over the entire temperature range (550–850 °C), and Stage‐B monazite was perhaps initially entrapped in garnet. During post‐peak cooling, the Stage‐B monazite grains were released in the matrix by garnet dissolution. Furthermore, new matrix monazite (low Y and very high Th/U ≤80, ~8 kbar/850–800 °C, Stage C), some monazite outside garnet rims (high Y and intermediate Th/U ≤30, ~8 kbar/800–785 °C, Stage D), and matrix xenotime (<785 °C) formed through post‐peak crystallization of melt. Regardless of textural setting, all monazite populations show identical chemical ages (1630–1578 Ma, ±43 Ma). The lithological association (metapelite and mafic granulites), and metamorphic age and P–T path of the northern Garo Hills metapelites and those from the southern domain of the Central Indian Tectonic Zone (CITZ) are similar. The SMGC was initially aligned with the southern parts of CITZ and Chotanagpur Gneissic Complex of central/eastern India in an ENE direction, but was displaced ~350 km northward by sinistral movement along the north‐trending Eastern Indian Tectonic Zone in Neoproterozoic. The southern CITZ metapelites supposedly originated in a back‐arc associated with subducting oceanic lithosphere below the Southern Indian Block at c. 1.6 Ga during the initial stage of Indian shield assembly. It is inferred that the SMGC metapelites may also have originated contemporaneously with the southern CITZ metapelites in a similar back‐arc setting.  相似文献   

8.
Collision‐related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from metasedimentary sources. However, in the late Neoproterozoic calcalkaline (CA) batholiths of the Arabian–Nubian Shield (ANS), which constitutes the northern half of the East African orogen, any sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here, we use paired in situ LASS‐ICP‐MS measurements of U–Th–Pb isotope ratios and REE contents of monazite and xenotime and SHRIMP‐RG analyses of separated zircon to demonstrate direct linkage between migmatites and granites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth at 640–600 Ma, in metapelites, migmatites and peraluminous granites of three metamorphic suites: Abu‐Barqa (SW Jordan), Roded (S Israel) and Taba–Nuweiba (Sinai, Egypt). The distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions, involving partial melting, prevailed for c. 10 Ma, from 620 to 610 Ma. REE abundances in monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates cluster at 600–580 Ma, recording retrogression to greenschist facies conditions as garnet continued to destabilize. Phase equilibrium modelling and mineral thermobarometry yield P–T conditions of ~650–680°C and 5–7 kbar, consistent with either water‐fluxed or muscovite‐breakdown melting. The expected melt production is 8–10 vol.%, allowing a melt connectivity network to form leading to melt segregation and extraction. U–Pb ages of zircon rims from leucosomes indicate crystallization of melt at 610 ± 10 Ma, coinciding with the emplacement of a vast volume of CA granites throughout the northern ANS, which were previously considered post‐collisional. Similar monazite ages (c. 620 Ma) retrieved from the amphibolite facies Elat schist indicate that migmatites are the result of widespread regional rather than local contact metamorphism, representing the climax of the East African orogenesis.  相似文献   

9.
Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.  相似文献   

10.
This study presents a re-examination of historical specimens (DG136 and DG167) from the Monashee complex in the southeastern Canadian Cordillera that are critical to the current understanding of rare earth element (REE) distribution between garnet and monazite (and other accessory minerals) during metamorphism. Nine-hundred and fifty-one new monazite petrochronology spot analyses on 29 different grains across two specimens outline detailed (re)crystallization histories. Trace element data collected from the same ablated volume, interpreted in the context of new phase equilibria modelling that includes monazite, xenotime and apatite, link ages to specific portions of the pressure–temperature (P-T) paths followed by the specimens. These linkages are further informed by garnet Lu-Hf geochronology and xenotime petrochronology. The clockwise P-T paths indicate prograde metamorphism was ongoing by ca. 80 Ma in both specimens. The structurally deeper specimen, DG136, records peak P-T conditions of ~755–770 ℃ and 8.8–10.4 kbar, interpreted to coincide with (re-)crystallization of low Y monazite at ~75–70 Ma. Near-rim garnet isopleths from DG167 cross in the observed peak assemblage field at ~680 °C and 9.3 kbar. These conditions are interpreted to correspond with low Y monazite (re-)crystallisation at ~65 Ma. Both specimens record decompression along their retrograde path coincident with high Y 70–55 Ma and 65–55 Ma monazite populations in DG136 and DG167, respectively. These findings broadly agree with those initially reported ~20 years ago and confirm early interpretations using trace elements in monazite as generally reliable markers of metamorphic reactions. Modern phase equilibria modelling and in situ petrochronological analysis, however, provide additional insight into monazite behaviour during anatexis and the effects of potential trace element buffering by REE-bearing phases such as apatite.  相似文献   

11.
In Rogaland, South Norway, a polycyclic granulite facies metamorphic domain surrounds the late‐Sveconorwegian anorthosite–mangerite–charnockite (AMC) plutonic complex. Integrated petrology, phase equilibria modelling, monazite microchemistry, Y‐in‐monazite thermometry, and monazite U–Th–Pb geochronology in eight samples, distributed across the apparent metamorphic field gradient, imply a sequence of two successive phases of ultrahigh temperature (UHT) metamorphism in the time window between 1,050 and 910 Ma. A first long‐lived metamorphic cycle (M1) between 1,045 ± 8 and 992 ± 11 Ma is recorded by monazite in all samples. This cycle is interpreted to represent prograde clockwise P–T path involving melt production in fertile protoliths and culminating in UHT conditions of ~6 kbar and 920°C. Y‐in‐monazite thermometry, in a residual garnet‐absent sapphirine–orthopyroxene granulite, provides critical evidence for average temperature of 931 and 917°C between 1,029 ± 9 and 1,006 ± 8 Ma. Metamorphism peaked after c. 20 Ma of crustal melting and melt extraction, probably supported by a protracted asthenospheric heat source following lithospheric mantle delamination. Between 990 and 940 Ma, slow conductive cooling to 750–800°C is characterized by monazite reactivity as opposed to silicate metastability. A second incursion (M2) to UHT conditions of ~3.5–5 kbar and 900–950°C, is recorded by Y‐rich monazite at 930 ± 6 Ma in an orthopyroxene–cordierite–hercynite gneiss and by an osumilite gneiss. This M2 metamorphism, typified by osumilite paragenesis, is related to the intrusion of the AMC plutonic complex at 931 ± 2 Ma. Thermal preconditioning of the crust during the first UHT metamorphism may explain the width of the aureole of contact metamorphism c. 75 Ma later, and also the rarity of osumilite‐bearing assemblages in general.  相似文献   

12.
The last (decompression) stages of the metamorphic evolution can modify monazite microstructure and composition, making it difficult to link monazite dates with pressure and temperature conditions. Monazite and its breakdown products under fluid‐present conditions were studied in micaschist recovered from the cuttings of the Pontremoli1 well, Tuscany. Coronitic microstructures around monazite consist of concentric zones of apatite + Th‐silicate, allanite and epidote. The chemistry and microstructure of the monazite grains, which preserve a wide range of chemical dates ranging from Upper Carboniferous to Tertiary times, suggest that this mineral underwent a fluid‐mediated coupled dissolution–reprecipitation and crystallization processes. Consideration of the chemical zoning (major and selected trace elements) in garnet, its inclusion mineralogy (including xenotime), monazite breakdown products and phase diagram modelling allow the reaction history among accessory minerals to be linked with the reconstructed P–T evolution. The partial dissolution and replacement by rare earth element‐accessory minerals (apatite–allanite–epidote) occurred during a fluid‐present decompression at 510 ± 35 °C. These conditions represent the last stage of a metamorphic history consisting of a thermal metamorphic peak at 575 °C and 7 kbar, followed by the peak pressure stage occurring at 520 °C and 8 kbar. An anticlockwise P–T path or two clockwise P–T loops can fit the above P–T constraints. The former path may be related to a context of late Variscan strike‐slip‐dominated exhumation with minor Tertiary (Alpine‐related) reworking and fluid infiltration, while the latter requires an Oligocene–Miocene fluid‐present tectono‐metamorphic overprint on the Variscan paragenesis.  相似文献   

13.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   

14.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

15.
Polymetamorphic garnet micaschists from the Austroalpine Saualpe Eclogite Unit (Kärnten, Austria, Eastern Alps) display complex microstructural and mineral–chemical relationships. Automated scanning electron microscopy routines with energy dispersive X‐ray (EDX) spectral mapping were applied for monazite detection and garnet mineral–chemical characterization. When the Fe, Mg, Mn and Ca element wt% compositions are used as generic labels for garnet EDX spectra, complex zonations and porphyroblast generations can be resolved in complete thin sections for selective electron‐microprobe analyses. Two garnet porphyroblast generations and diverse monazite age populations have been revealed in low‐Ca and high‐Al‐metapelites. Garnet 1 has decreasing Mn, constant Ca and significantly increasing Mg from cores to rims. Geothermobarometry of garnet 1 assemblages signals a crystallization along a M1 prograde metamorphism at ~650 °C/6–8 kbar. Sporadic monazite 1 crystallization started at c. 320 Ma. Subsequent pervasive 300–250 Ma high‐Y and high‐Gd monazite 1 formation during decompression coincided with the intrusion of Permian and Early Triassic pegmatites. Monazite 1 crystallized along the margin of garnet 1. Coronas of apatite and allanite around the large 320–250 Ma monazite signal a retrogressive stage. These microstructures suggest a Carboniferous‐to‐Early‐Permian age for the prograde M1 event with garnet 1. Such a M1 event at an intermediate‐P/T gradient has not yet been described from the Saualpe, and preceded a Permo‐Triassic low‐P stage. The M2 event with garnet 2 postdates the corona formation around Permian monazite. Garnet 2 displays first increasing XCa at decreasing XMg, then increasing XCa and XMg, and finally decreasing XCa with increasing XMg, always at high Ca and Mg, and low Mn. This records a P–T evolution which passed through eclogite facies conditions and reached maximum temperatures at ~750 °C/14 kbar during decompression‐heating. A monazite 2 population (94–86 Ma) with lower Y and Gd contents crystallized at decreasing pressure during the Cretaceous (Eo‐Alpine) metamorphism M2 at a high‐P/T gradient. The Saualpe Eclogite Unit underwent two distinct clockwise metamorphic cycles at different P–T conditions, related to continental collisions under different thermal regimes. This led to a characteristic distribution pattern of monazite ages in this unit which is different from other Austroalpine basement areas.  相似文献   

16.
Small oval‐shaped, unshielded monazite grains found in a Variscan garnet–muscovite‐bearing mylonitic paragneiss from the Liegendserie unit of the Münchberg Metamorphic Complex in the northwestern Bohemian Massif, central Europe, yield only pre‐Variscan ages. These ages, determined with the electron microprobe, have maxima at c. 545, 520 and 495 Ma and two side‐maxima at 455 and 575 Ma, and are comparable with previously determined ages of detrital zircon reported from paragneisses elsewhere in the NW Bohemian Massif. The pressure (P)–temperature (T) history of this mylonitic paragneiss, determined from contoured P–T pseudosections, involved an initial stage at 6 kbar/600 °C, reaching peak P–T conditions of 12.5 kbar/670 °C with partial melting, followed by mylonitization and retrogression to 9 kbar/610 °C. The monazite, representing detrital grains derived from igneous rocks of a Cadomian provenance between 575 and 455 Ma, has survived these Variscan metamorphic/deformational events unchanged because this mineral has probably never been outside its P–T stability field during metamorphism.  相似文献   

17.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

18.
In situ LA‐ICP‐MS monazite geochronology from a garnet‐bearing diatexite within the Moine Supergroup (Glenfinnan Group) NW Scotland records three temporally distinct metamorphic events within a single garnet porphyroblast. The initial growth of garnet occurred in the interval c. 825–780 Ma, as recorded by monazite inclusions located in the garnet core. Modelled P–T conditions based on the preserved garnet core composition indicate an initially comparatively high geothermal gradient regime and peak conditions of 650 °C and 7 kbar. Monazite within a compositionally distinct second shell of garnet has an age of 724 ± 6 Ma. This is indistinguishable from a SIMS age of 725 ± 4 Ma obtained from metamorphic zircon in the sample, which is interpreted to record the timing of migmatization. This second stage of garnet growth occurred on a P–T path from 6 kbar and 650 °C rising to 9 kbar and 700 °C, with the peak conditions associated with partial melting. A third garnet zone which forms the rim contains monazite with an age of 464 ± 3 Ma. Monazite in the surrounding matrix has an age of 462 ± 2 Ma. This corresponds well with a U–Pb SIMS zircon age of 463 ± 4 Ma obtained from a deformed pegmatite that was emplaced during widespread folding and reworking of the migmatite fabric. The P–T conditions associated with the final phase of garnet growth were 7 kbar and 650 °C. The monazite ages coupled with the phase relations modelled from this multistage garnet indicate that it records two Neoproterozoic tectonothermal events as well as the widespread Ordovician Grampian event associated with Caledonian orogenesis. Thus, this single garnet records much of the Neoproterozoic to Ordovician thermal history in NW Scotland, and highlights the long history of porphyroblast growth that can be revealed by in situ isotopic dating and associated P–T modelling. This approach has the potential to reveal much of the thermal architecture of Neoproterozoic events within the Moine Supergroup, despite intense Caledonian reworking, if suitable textural and mineralogical relationships can be indentified elsewhere.  相似文献   

19.
The P–T–t path of high‐P metamorphic rocks in subduction zones may reveal valuable information regarding the tectonic processes along convergent plate boundaries. Herein, we present a detailed petrological, pseudosection modelling and radiometric dating study of several amphibole schists of oceanic affinity from the Lhasa Block, Tibet. The amphibole schists experienced an overall clockwise P–T path that was marked by post‐Pmax heating–decompression and subsequent isothermal decompression following the attainment of peak high‐P and low‐T conditions (~490°C and 1.6 GPa). Pseudosection modelling shows that the amphibole schists underwent water‐unsaturated conditions during prograde metamorphism, and the stability field of the assemblage extends to lower temperatures and higher pressures within the water‐unsaturated condition relative to water‐saturated model along the prograde path. The high‐P amphibole schists were highly reduced during retrograde metamorphism. Precise evaluation of the ferric iron conditions determined from the different compositions of epidote inclusions in garnet and matrix epidote is crucial for a true P–T estimate by garnet isopleth thermobarometry. Lu–Hf isotope analyses on garnet size separates from a garnet‐bearing amphibole schist yield four two‐point garnet–whole‐rock isochron ages from 228.2 ± 1.2 Ma to 224.3 ± 1.2 Ma. These Lu–Hf dates are interpreted to constrain the period of garnet growth and approximate the timing of prograde metamorphism because of the low peak metamorphic temperature of the rock and the well‐preserved Mn/Lu growth zoning in garnet. The majority of zircon U–Pb dates provide no constraints on the timing of metamorphism; however, two concordant U–Pb dates of 222.4 ± 3.9 Ma and 223.3 ± 4.2 Ma were obtained from narrow and uncommon metamorphic rims. Coexistence of zircon and sphene in the samples implies that the metamorphic zircon growth was likely assisted by retrogression of rutile to sphene during exhumation. The near coincident radiometric dates of zircon U–Pb and garnet Lu–Hf indicate rapid burial and exhumation of the amphibole schists, suggesting a closure time of c. 224–223 Ma for the fossil ocean basin between the northern and southern Lhasa blocks.  相似文献   

20.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号