首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比   总被引:15,自引:3,他引:15  
南岭地区的钨锡和稀土矿床都与花岗岩类有直接成因联系,但二者的成矿作用有许多不同之处.钨锡是典型的热液成矿,而稀土则主要形成于风化作用.随着花岗岩类的分异演化,岩石中的W、Sn等元素含量逐渐增加,因此钨锡等矿床主要与高度分异演化的晚阶段小岩体有关;但是稀土的表现与钨锡不同,由于花岗岩类的分异演化导致稀土栽体黑云母及许多副矿物的减少,因此稀土元素含量在晚阶段岩体中反而降低.赣南的五里亭-大吉山岩体、桂东北的花山-姑婆山岩体等提供了很好的范例.因此,南岭地区与风化壳型稀土矿床有关的岩石主要有:印支期准铝质花岗岩,燕山期A型花岗岩,燕山中-晚期黑云母二长花岗岩等.  相似文献   

2.
南岭地区燕山期花岗岩可分为壳源重熔及其分异型(C 型)、壳幔混合及其分异型(H 型)和铝质A 型花岗岩三大类。 原生锡矿(包括云英岩型、变花岗岩型、矽卡岩型、石英脉型、破碎带蚀变岩型和斑岩型六个主要类型)与H 型和铝质A 型花岗岩关系密切。本区矿床(点)主要沿古板块结合带、大型隆起区与坳陷区结合部、深大断裂(带)等三个部位分布, 具体分布在一带(NE 向锡田-骑田岭-九嶷山-花山、姑婆山钨锡多金属成矿带)和六区(康家湾-大义山锡多金属成矿 集中区、都庞岭锡多金属成矿集中区、粤北赣南锡多金属成矿集中区、湘东赣西锡钨多金属成矿集中区、丹池锡铅锌多金 属成矿集中区、九万大山锡多金属成矿集中区)。南岭地区从晋宁期到燕山晚期均有与花岗岩有关的锡矿床(点)形成,其 中,燕山期150~160 Ma 为南岭成岩成矿高峰期。提出南岭成矿带作为找矿重点的11 个找矿远景区,具体找矿工作应围绕以 下几个方向展开:(1)老矿山的深部及外围找矿;(2)深入岩基找矿;(3)隐伏花岗岩分布区找矿;(4)区域性不同方向 构造带交汇地带找矿;(5)寒武系与泥盆系不整合面附近有望找到破碎带蚀变岩型(底砾岩型)钨锡矿;(6)远离花岗岩 岩体破碎带蚀变岩型钨锡矿的寻找。  相似文献   

3.
南岭钨锡花岗岩的地质特征及成矿作用   总被引:2,自引:0,他引:2  
南岭钨锡花岗岩按主要成矿金属可分为钨成矿花岗岩,钨锡铌钽成矿花岗岩,钨锡多金属成矿花岗岩和锡成矿花岗岩。中生代是本区钨锡花岗岩的主要成矿时代。各类钨锡花岗岩的地质、地球化学特性反映了它们相互之间成因上的区别和联系。本区钨锡花岗岩的成岩成矿作用特征是:①复式岩体分异完善多期多阶段成岩晚期成矿型,②复式岩株活动频繁多阶段成岩多阶段成矿型,岩浆杂岩组合酸性花岗岩成矿型,④火山—侵入作用的次火山—斑岩成矿型,⑤深成混合岩化花岗岩化超变质岩区花岗岩浆高侵位斑岩成矿型,⑥古老花岗岩体成矿型。钨锡花岗岩的地质和成矿作用特征是与其所处的大地构造环境的区域地质构造性质息息相关。  相似文献   

4.
白干湖—戛勒赛一带钨锡成矿与岩枝、岩珠状更长花岗岩等小岩体密切相关。戛勒赛矿床含矿更长花岗岩LA-ICP-MS锆石U-Pb年龄为(429.5±3.3)Ma,εHf(t)为-11.05~7.40,平均为-1.26,T2DM为944~2111Ma,平均为1492Ma;地球化学特征上,富集Rb、Cs、Nb、Sn,亏损Ba、Zr、Hf、Th、Sr、Ti、V、La等。该带与钨锡成矿关系密切的花岗岩均为早志留世局部拉张环境下地幔底侵重熔古老长英质地壳所形成,更长花岗岩小岩体为富含流体的残余岩浆所形成。综合研究认为,钨锡成矿作用主要有2个阶段:第一阶段发生在加里东期地幔底侵重熔古老长英质地壳形成的含W花岗质岩浆侵入过程中,形成了深部二长花岗岩岩基、浅部更长花岗岩小岩体,在小岩体顶边部及与地层接触带中形成云英岩型、矽卡岩型钨矿体;第二阶段,岩浆期后热液淋滤围岩W、Sn等金属,形成含钨锡成矿流体,沿裂隙充填形成了石英脉型钨锡矿体。  相似文献   

5.
锡田钨锡多金属矿田位于南岭成矿带中段,发育多期次岩浆活动与钨锡成矿. 为了厘清花岗岩与钨锡成矿的时空关系,采用野外调查、显微鉴定、锆石U-Pb同位素定年与岩石地球化学的方法对矿田内多期次花岗岩岩体(脉)的空间分布、岩石类型、成岩时代、地球化学组成等进行了研究. 结果表明,锡田矿田发生了三期岩浆事件,分别为加里东期(435~441 Ma)、印支期(220~230 Ma)、燕山期(141~160 Ma);三期花岗岩普遍富集大离子亲石元素Rb、K、U、Th等,亏损Ti、P、Sr、Ba等微量元素,具明显的负Eu异常,其中加里东期花岗岩与印支期花岗岩为S型花岗岩,而燕山期花岗岩为A型花岗岩;不同时期花岗岩中的成矿元素从加里东期→印支期→燕山期逐渐升高,特别是W、Sn元素在燕山期白云母与二云母花岗岩中最为富集,这与华南地区燕山期钨锡大爆发的时间是一致的;印支期岩体接触带发育少量矽卡岩型Fe-Cu-W多金属矿床,燕山期岩体接触带也发育矽卡岩型W-Sn多金属矿床,并在附近陡倾的张裂隙中发育多个中大型石英脉型W-Sn矿床,而加里东期岩体附近尚未发现钨锡矿化. 因此,锡田矿田的多期次花岗岩与钨锡多金属成矿是时空耦合的,且成矿以燕山期矽卡岩型与石英脉型钨锡矿为主.   相似文献   

6.
南岭与中生代花岗岩类有关的成矿作用及其大地构造背景   总被引:72,自引:2,他引:70  
由于受到来自印支半岛的挤压,在华南内部发生了以碰撞-挤压-推覆-隆升为主的印支造山运动。南岭地区印支期花岗岩(240~205Ma)主要形成于碰撞及“后碰撞”(post-collision)的动力学环境,但没有造成大规模的金属成矿作用。南岭地区从燕山期进入后造山(post-orogeny)地球动力学环境。从花岗岩类的成矿学特征及其大陆动力学背景出发,尝试把燕山期划分为早、中,晚三期。南岭地区燕山早期(185~170Ma)出现了玄武质岩浆活动、双峰式岩浆活动、A型花岗岩及板内高钾钙碱性岩浆活动,反映了岩石圈的局部“伸展一裂解”和地幔物质的上涌,伴随Pb,Zn,Cu,Au成矿作用。燕山中期南岭地区岩石圈全面拉张一减薄,地幔上涌一玄武质岩浆底侵引发大规模的地壳熔融,导致大范围陆壳重熔型花岗岩的生成。该期的第一阶段(170~150Ma)以大规模花岗岩类侵位为主,第二阶段(150~140Ma)花岗岩类活动很少,却发生了W,Sn及其他稀有金属的大规模成矿作用。燕山晚期虽然是华南地区岩石圈全面发生裂解的时期,但由于受太平洋构造体系的影响,在南岭东端至东南沿海广大地区,燕山晚期(140~65Ma)出现了先挤压、后拉张的动力学背景,在100Ma前形成的钙碱性和橄榄安粗两个系列的岩浆活动,伴随Au,Ag,Pb—Zn,Cu,(Mo,Sn)等成矿作用。而在南岭地区,该时期花岗质火山-侵入杂岩及基性岩脉等广泛发育,有关的成矿作用以火山岩型U矿、斑岩型Sn矿,以及印支期花岗岩中的铀活化成矿作用为特征。  相似文献   

7.
蔡永丰 《地质与勘探》2018,54(5):940-956
中生代时期华南地区发育强烈的几乎同时期的花岗质岩浆作用和成矿作用,为阐明两者的联系,本文以桂东北花山岩体为研究对象,对其进行了详细的矿物化学成分、锆石U-Pb年代学和地球化学分析,并探讨了其成岩成矿作用。分析结果表明,花山岩体黑云母的含铁指数为0.68~0.80,属于铁叶云母,具有低的氧逸度;长石的端员组分主要为Ab,Or和An组分含量较低,斜长石主要为奥长石。年代学测试结果表明花山岩体形成于162 ± 1 Ma,为中侏罗纪晚期,与区域上钨锡成矿时代一致。花山岩体具有高硅富碱、贫CaO、MgO、Sr、Ba等特征,其FeOT/MgO和Ga/Al比值较高,同时富含Sn、Rb、Y、Zr、Nb和REE(除Eu外),表现出与A型花岗岩相似的地球化学特征。综合上述数据资料并结合区域地质资料,表明花山地区花岗岩的侵位时代分为燕山早期和燕山晚期两期次,而不是前人认为的形成于三个期次,其形成可能与岩石圈的拉张减薄有关;本区花岗岩低氧逸度、较高含铁指数及成岩温度等特征均有利于W-Sn矿床的形成,是本区钨锡矿床勘探的重点区域。  相似文献   

8.
越城岭-猫儿山地区花岗岩特征及成矿   总被引:2,自引:1,他引:1  
冯国玉  黄杰  何方 《矿产与地质》2009,23(5):412-417
越城岭-猫儿山地区花岗岩类岩石出露很广,侵入时代从加里东期至燕山期,为一套富硅、铝过饱和、燕山早期花岗岩体略富碱、分异演化程度较高的中粒-细粒黑云母花岗岩、二云母花岗岩和白云母花岗岩。岩石具有明显的富K2O,贫Na2O特征,为富含W、Sn、Pb和Bi的岩体,具备了为钨锡多金属矿化提供成矿物质和成矿热流体的内在条件。区内钨锡钼矿化与燕山早期花岗关系密切,矿床(点)产于细粒花岗岩周边、细粒花岗岩体与围岩接触带附近。  相似文献   

9.
南岭中段以花山一姑婆山为起点,发育一条南西-北东向的燕山早期富钨锡A型花岗岩带,其中姑婆山岩体以其富含暗色微粒包体( MME)而闻名.为寻找岩浆混合的矿物学证据并探索基性岩浆与钨锡富集的关系,我们使用电子探针对姑婆山岩体花岗岩和暗色包体中的副矿物进行了系统的成分分析和对比.研究首次确认了暗色包体的铁镁矿物解理中含有岩浆...  相似文献   

10.
华仁民 《地质论评》2005,51(6):633-639
南岭地区陆壳重熔型花岗岩类的成岩作用与相关的成矿作用之间存在着明显的时间差,主要表现为3种情况:①南岭地区大部分“花岗岩型”铀矿床的花岗岩成岩时间是印支期,但铀的成矿作用主要发生在燕山晚期,其间存在着巨大的时间差;②在燕山中期第一阶段(170~150Ma)达到高潮的陆壳重熔型花岗岩类,其相关的钨锡等稀有金属矿化多发生在燕山中期第二阶段(150~139Ma),成岩与成矿相差十几百万年;③燕山晚期许多浅侵位的花岗质岩体与相关的锡、铀矿化之间也存在明显的时间差。这一时间差反映了成岩作用与成矿作用之间在物质来源和地质构造背景等方面的差异,可能揭示了花岗岩与矿床在形成机制上的根本性差异。南岭地区大规模金属成矿作用主要与拉张的动力学背景、壳幔相互作用、高的热流值,以及深部流体的参与密切相关。  相似文献   

11.
The Guposhan–Huashan district is an important W–Sn–Sb–Zn–(Cu) metallogenic area in South China. It is located in the middle‐west segment of the Nanling Range. Granitoids in the Guposhan–Huashan district possess certain properties of A‐type or I‐type granites. The W–Sn–Sb–Zn mineralization in the district is closely associated with magma emplacement. Two igneous biotite and seven hydrothermal muscovite samples from skarn, veins and greisenization ores were analyzed by Ar–Ar methods. Two igneous biotite samples from fine‐grained quartz monzodiorite and fine‐grained biotite granite show plateau ages of 168.7 ± 1.9 Ma and 165.0 ± 1.1 Ma, respectively. Seven hydrothermal muscovite samples from ores yield plateau ages as two groups: 165 Ma to 160 Ma and 104 Ma to 100 Ma. These data suggest that the emplacement of fine‐grained granitoids in this district is coeval with the main phase magma emplacement, different from previous studies. The W–Sn–Sb–Zn mineralization took place in two stages, i.e. the Middle–Late Jurassic and early Cretaceous. W–Sn mineralization in the Guposhan–Huashan district is closely related to the magmatism, which was strongly influenced by underplating of asthenospheric mantle along trans‐lithospheric deep faults and related fractures.  相似文献   

12.
通过对南岭西段花山和姑婆山花岗岩基地质-岩石地球化学特征研究,判明它们的侵位深度(5.5km)、围岩温度(196℃)及岩浆初始温度(950℃),建立起花山和姑婆山岩基的数学计算模型,计算得出:花山-姑婆山花岗岩熔体侵位后,其初始温度降低至结晶温度所需的时间(△tco1)分别为4.14 Ma(花山)和4.36Ma(姑婆山...  相似文献   

13.
Huashan, Guposhan and Qitianling are three similar and representative metaluminous A-type tin granites in the western Nanling Range, China. They all have a high oxidization state with magnetite as the dominant Fe–Ti oxide. This study presents an understanding of systematic mineralogy of Sn-bearing minerals (biotite, titanite, magnetite and cassiterite) in the three granites. Biotite has an annite composition and both electron-microprobe and LA-ICP-MS analyses indicate trace amounts of tin in biotite (approximately 100–20 ppm). Chloritization of biotite is accompanied by formation of Sn-rich rutile and cassiterite. Titanite has a long history of crystallization from the early-magmatic stage through the late-magmatic stage to the hydrothermal stage. Owing to its solid-solution relationship with malayaite (CaSnSiO5), titanite always contains tin to various extents. Early-magmatic titanite contains about 0.5 wt.% SnO2, while the late-magmatic titanite is markedly enriched in tin (on average 14.8 and 3.4 SnO2 in titanite from the Qitianling and Huashan granites, respectively). Magnetite grains typically display a trellis structure with ilmenite lamellae, where microinclusions of cassiterite (<1 μm in size) are present. This is likely consistent with features of the “oxy-exsolution” process of Sn-bearing titanomagnetite precursor. Cassiterite may be observed as late-magmatic phase, but most commonly appears as an alteration product of other primary minerals. All tin-bearing minerals in the three granites record a complete process of tin mineralization in granite. The features of tin in primary biotite, titanite and magnetite reflect an initial enrichment during the early stage of magmatic crystallization of the Huashan, Guposhan and Qitianling granites. Association of interstitial Sn-titanite and cassiterite suggests further tin enrichment related to fractional crystallization of granitic magmas. Fluids and alteration of primary minerals play an important role in the leaching, concentration and transportation of Sn during hydrothermal processes, which favors vein-type Sn mineralization.  相似文献   

14.
十杭带是华南内陆一条重要的北北东向、具有高εNd (t )值和低t DM值的花岗岩带,该带在湘南—桂北段的花岗质岩体(千里山、骑田岭、西山、金鸡岭、花山和姑婆山等)均形成于151~163 Ma间。但从西南往东北方向,形成时代有逐渐变年轻的趋势。这些岩体在地球化学组成上显示出较为相似的特征,岩石均富碱、高钾,富含Rb,Th,U等大离子亲石元素(LILE)和REE,Nb,Ta,Zr,Hf等高场强元素(HFSE)。在地球化学图解上均落入A型花岗岩区域,因此该花岗岩带应属于一条A型花岗岩带。进一步划分,这些花岗岩应该属于A2亚类。这些花岗岩均具有较低的(87Sr/86Sr)i 值、较高的εNd (t )值和相对低的Nd模式年龄值,但从西南往东北方向,εNd (t )值具有逐渐降低的趋势。在这些花岗质岩体中暗色包体非常发育,岩石学和地球化学,特别是锆石的Hf同位素组成,指示这些花岗质岩石是通过壳-幔岩浆混合作用形成的,幔源岩浆端元来自亏损地幔,可能是软流圈地幔物质的直接参与。该A型花岗岩带可能形成于古太平洋板块俯冲引起的弧后或弧内拉张构造环境,软流圈地幔上涌及诱发的幔源岩浆沿超壳深断裂底侵,导致了强烈的壳幔岩浆混合作用,形成了该花岗岩带。该拉张事件从西南往东北方向进行,拉张强度由强变弱,混入花岗岩中的地幔物质也由多变少。该花岗岩带也是我国 一条重要的W-Sn多金属成矿带。研究表明,这些花岗岩均属于富Sn花岗岩,但Sn在这些花岗岩中的富集机制与传统的结晶分异富集的方式不同。该区锡矿化类型十分丰富,除了存在传统的岩浆热液演化成矿外,还存在新类型的绿泥石化花岗岩锡矿化,丰富了A型花岗岩的成矿理论。  相似文献   

15.
The Xinlu Sn‐polymetallic ore field is located in the western Nanling Polymetallic Belt in northeastern Guangxi, South China, where a number of typical skarn‐, hydrothermal vein‐type tin deposits have developed. There are two types of Sn deposits: skarn‐type and sulfide‐quartz vein‐type. The tin mineralizations mainly occur on the south side of the Guposhan granitic complex pluton and within its outer contact zone. To constrain the Sn mineralization age and further understand its genetic links to the Guposhan granitic complex, a series of geochronological works has been conducted at the Liuheao deposit of the ore field using high‐precision zircon SHRIMP U‐Pb, molybdenite Re‐Os, and muscovite Ar‐Ar dating methods. The results show that the biotite‐monzogranite, which is part of the Xinlu intrusive unit of the Guposhan complex pluton, has a SHRIMP U‐Pb zircon age of 161.0 ± 1.5 Ma. The skarn‐type ore has a 40Ar‐39Ar muscovite plateau age of 160 ± 2 Ma (same as its isochron age), and the sulfide‐quartz vein‐type ore yields an Re‐Os molybdenite isochron age of 154.4 ± 3.5 Ma. The magmatic‐hydrothermal geochronological sequence demonstrated that the hydrothermal mineralization took place immediately following the emplacement of the monzogranite, with the skarn metasomatic mineralization stage predating the sulfide mineralization stage. Geochronologically, we have compared this ore field with 26 typical Sn deposits distributed along the Nanling Polymetallic Belt, leading to the suggestion of the magmatic‐metallogenic processes in the Xinlu ore field (ca. 161–154 Ma) as a component of the Early Yanshanian large‐scale Sn‐polymetallic mineralization event (peaked at 160–150 Ma) in the Nanling Range of South China. Petrogenesis of Sn‐producing granite and Sn‐polymetallic mineralization were probably caused by crust–mantle interaction as a result of significant lithospheric extension and thinning in South China in the Late Jurassic.  相似文献   

16.
南岭地区钨锡花岗岩的成矿矿物学:概念与实例   总被引:7,自引:0,他引:7  
南岭地区的钨锡成矿作用与花岗岩岩浆活动有十分密切的关系。花岗岩的物源与成矿元素的初始富集、花岗岩的分异程度和花岗岩中流体性质与活动性集中体现了花岗岩对成矿的控制能力,即花岗岩的成矿能力。初步建立了南岭地区钨锡花岗岩的成矿矿物学研究体系。黑云母、榍石、锆石、锡石、金红石、黑钨矿、白钨矿和钨铁铌矿等是讨论的重点矿物,它们可用于判别花岗岩的成矿能力。首先以矿物晶体化学为基础,介绍了上述矿物在钨锡花岗岩中的岩相学特征、内部构造和矿物化学及其变化,并分别论证了花岗岩原始含矿性、花岗岩结晶演化和花岗岩中成矿元素活动性的矿物学标志;其次,系统对比了南岭地区三类钨锡花岗岩(准铝质含锡花岗岩、过铝质含锡花岗岩和过铝质含钨花岗岩)的成矿矿物学特征。以湖南骑田岭花岗岩复式岩体为实例,进行了芙蓉- 菜岭含锡花岗岩和新田岭含钨花岗岩的成矿矿物学对比研究。前者以黑云母、榍石为典型含锡矿物,它们在流体富集阶段,经热液蚀变作用,导致锡的淋滤和结晶富集作用;后者则以出现岩浆白钨矿和黑钨矿为特征。提出的钨锡花岗岩成矿矿物学研究体系有助于深化矿床学研究和矿床勘探工作,并将在今后工作中进一步完善。  相似文献   

17.
南岭地区钨锡铌钽花岗岩及其成矿作用   总被引:26,自引:1,他引:25  
在晚侏罗世时,南岭地区发生了与花岗岩有关的钨锡铌钽大规模成矿作用。依据花岗岩的岩石学、地球化学及其矿化特征,可将南岭地区含钨锡铌钽花岗岩划分为三个主要类型:含钨花岗岩、含锡钨花岗岩和含钽铌花岗岩。含钨花岗岩的地球化学特征可归纳为铝过饱和,低Ba+Sr 和TiO2,轻重稀土比值低,铕亏损强烈,富Y 和Rb,Rb/Sr 比值高,分异强烈。含锡钨花岗岩总体特征表现为TiO2 含量高,准铝质—弱过铝质,轻重稀土比值和CaO/(K2O+Na2O)比值高,富高场强元素、稀土、Ba+Sr 和Rb,低Rb/Sr 比值,分异演化程度较低。含钽铌花岗岩的地球化学特征主要为TiO2 含量和CaO/(K2O+Na2O)比值低,Al2O3/TiO2 和Rb/Sr 比值明显偏高,强过铝质,贫Ba+Sr、稀土和高场强元素,铕亏损强烈,明显富Rb 和Nb,高度分异演化。三类含矿花岗岩具有明显不同的演化特征,成矿作用与它们的演化密切相关。黑云母花岗岩主要与锡成矿作用有关,二云母花岗岩和白云母花岗岩主要产生钨矿化或锡钨共生矿化,钠长石花岗岩主要与钽铌或锡(钨)钽铌矿化有关。总结了南岭锡钨钽铌矿床的重要类型,提出了绿泥石化花岗岩型锡矿新类型,指出南岭地区要特别注意在含锡钨花岗岩中寻找此类锡矿和云英岩- 石英脉型锡钨矿。  相似文献   

18.
桂东北富贺钟地区是广西重要的有色金属基地之一, 在姑婆山复式岩体的西南缘产出有新路、水岩坝和珊瑚3个主要钨锡多金属矿田。本文对不同矿田典型矿床分别开展了稀有气体同位素研究, 根据黄铁矿流体包裹体He、Ar、Ne同位素组成, 进一步讨论了区内钨锡成矿流体来源和壳-幔成矿作用过程。结果表明, 黄铁矿流体包裹体3He/4He=0.53~4.53 Ra、40Ar/36Ar=315.58~600.55、38Ar/36Ar=0.18688~0.19102、20Ne/22Ne=9.737~9.848、21Ne/22Ne=0.0291~0.0304, 显示成矿流体为地壳流体、幔源流体和饱和大气水的混合物, 成矿过程中有地幔物质的加入, 地幔He约占8.7%~75.7%。结合区内成岩、成矿的测年资料及岩石成因等综合分析认为, 区内中生代发生了多期次壳-幔相互作用, 且作用强度经历了强→弱→强的演化过程, 分别导致了姑婆山岩体主体岩性(165~160 Ma)和晚期细粒花岗岩(154~151 Ma)的侵位, 以及钨锡多金属成矿作用(136~100 Ma), 成矿与晚期的细粒花岗岩同位但不同时。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号