首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地质旅游资源的开发与保护   总被引:4,自引:0,他引:4  
地质旅游资源是以地质遗亦为依托的旅游资源,开发地质旅游资源可以提高人们的生活质量,促进经济发展。必须实行“在保护开发,在开发中保护”的总原则,实现地质旅游资源的可持续发展。  相似文献   

2.
刘斌 《中国地质》2000,(1):15-17
江泽民总书记在去年3月15日召开的中央人口、资源、环境工作座谈会上指出:“我们对国土资源的保护和管理必须严而又严。总的原则是,在保护中开发,在开发中保护。资源开发  相似文献   

3.
我国可持续发展的意义和思路   总被引:1,自引:0,他引:1  
竺玉林 《浙江地质》2001,17(1):85-89
可持续发展强调经济与环境的协调,追求的是人与自然的和谐,强调经济发展和环境保护相互联系和不可分割。特别是在经济高速增长的情况下,必须强化环境与资源的保护,做到资源的合理开发、节约使用和持续利用。  相似文献   

4.
保护和合理利用资源必须求直务实   总被引:1,自引:0,他引:1  
江泽民总书记在去年中央人口、资源、环境工作座谈会指出:“我们对国土资源的保护与管理必须严而又严.总的原则是:在保护中开发,在开发中保护.资  相似文献   

5.
张培元 《中国地质》1999,(12):16-18
今年3月,江泽民总书记在中央人口、资源、环境工作座谈会上指出,我们对国土资源的保护和管理必须严而又严。总的原则是,在保护中开发,在开发中保护。资源开发和节  相似文献   

6.
今年3月13日召开的中央人口资源环境座谈会上,中共中央总书记、国家主席江泽民指出,我们对国土资源的保护和管理必须严而又严,总的原则是,在保护中开发,在开发中保护。资源开发和节约并举,把节约放在首位,努力提高资源  相似文献   

7.
试论有序开发西部优势煤炭资源   总被引:2,自引:1,他引:2  
煤炭是我国的主要能源,也是人类生存环境的重要污染,为保证煤炭工业的健康可持续发展,必须发展洁净技术,开发利用优质,洁净煤资源,中国西部有丰富的优势煤资源,西部大开发为煤炭工业的发展提供了新的机遇,但对西部的煤炭资源,必须合理规划,有序开发,实现资源开发和生态保护的良好循环。  相似文献   

8.
对山东省矿产资源可持续开发利用的思考   总被引:1,自引:0,他引:1  
在今年3月13日召开的中央人口、资源、环境工作座谈会上,中共中央总书记、国家主席江泽民指出,我们对国土资源的保护和管理必须严而又严。总的原则是,在保护中开发,在开发中保护。资源开发和节约并举,把节约放在首位,努力提高资源利用率。要积极推进资源  相似文献   

9.
问题的提出江泽民同志在中央召开的人口、资源、环境工作座谈会上指出,我们对国土资源的保护和管理必须严而又严.总的原则是,在保护中开发,在开发中保护.资源开发和节约并举,把节约放在首位,努力  相似文献   

10.
矿产资源战略事关国家经济安全。经济全球化的新形势和中国现代化进程中面临的工业化任务,决定了在资源战略的选择上,必须做好充分利用“两种资源、两个市场”这篇文章,以满足经济和社会可持续发展对矿产资源的需求。合理开发利用和保护国内资源,积极参与国际资源竞争是一条必由之路,本文就此提出了几点看法。  相似文献   

11.
成矿定量预测与深部找矿   总被引:19,自引:1,他引:18  
赵鹏大 《地学前缘》2007,14(5):1-10
成矿预测是在不确定条件下制定最优决策的工作。成矿预测作为一种地质系统,与其他技术、经济系统存在重要区别。由于矿床类型的多样性,矿床成因的复杂性,控矿因素的隐蔽性和找矿信息的多解性,成矿预测结果具有不确定性并常常因人而异。探索成矿预测过程客观化、定量化和精确化一直是成矿预测学的前沿课题。文中以个旧锡矿为例展示致矿地质异常与矿体空间产出及分布的密切关系,强调以"求异"准则为指导的成矿定量预测的重要性。当今地质勘查工作面临深部找矿问题,论文从深部找矿的概念、类型、目标、效益等方面简要介绍了国外理论研究和找矿实践概况。强调深部找矿中要加强地壳深部结构的研究,要重视深部找矿的经济"回报率"和勘查项目的"转化率"的重要性。  相似文献   

12.
Under the ever-present solar radiation, photosynthetic organisms on Earth evolved structurally-sophisticated photosynthetic systems. However, little attention has been paid to the inherent impact of sunlight illumination on the inorganic minerals widespread on the Earth surface. We discovered for the first time the solar energy conversion system of the “mineral coatings” on the Earth's surface (aka“mineral membrane”), which exerts potential oxygen-production and carbon-sequestration functions on the Earth surface. Our finding shed a light on the photoelectric effect and non-classical photosynthesis involving natural semiconducting minerals. In this contribution, we studied the semiconducting property and photoelectron energy of typical minerals in the “mineral membrane”, focusing primarily on the photoelectric effect in and oxygen-production/carbon-sequestration function of ferromanganese oxides, as well as relevant geological records. We propose that birnessite, goethite and hematite, the semiconducting minerals commonly found in the “mineral membrane”, can perform sensitive and stable photon-to-electron conversion under solar radiation. The non-classical mineral photosynthetic function we put forth is as follows: Solar energy utilization by inorganic minerals resembles photosynthesis in regarding to oxygen evolution and carbon fixing, and the “mineral membrane” may take part in both photocatalytic water-oxidation reaction and transformation of atmospheric CO2into marine carbonate. In addition, minerals might as well have promoted photosynthesis in photosynthetic organisms. During the water-oxidation reaction, the inorganic cluster Mn4CaO5of photosystem II cycles through redox intermediates that are analogous to birnessite both in structure and component. Thus, it is fair to postulate that birnessites could play a role in the initiation of the photosynthesis in cyanobacteria, as minerals could weaken the hydrogen bond strength and alter water properties, thus facilitating water oxidation and photosynthesis. This observation offers further insights into the molecular mechanism of mineral participation in photosynthesis in photosynthetic organisms.  相似文献   

13.
地球上生物因受到太阳光辐射作用而进化出结构精致的光合作用系统。太阳光辐射对地球表面广泛分布的无机矿物的影响与响应机制长期未被重视与理解。我们新发现的地表“矿物膜”转化太阳能系统,具有潜在的产氧固碳作用,体现出自然界中固有的矿物光电效应与非经典光合作用。本文在总结自然界中矿物光电子能量特征,特别是地表“矿物膜”特征及其光电效应性能的基础上,重点探讨铁锰氧化物矿物表现出的光电效应、产氧固碳作用与地质记录。提出矿物享有光电效应特性,地表“矿物膜”富含水钠锰矿、针铁矿、赤铁矿等天然半导体矿物,在日光辐射下具有稳定而灵敏的光电转换性能,产生矿物光电子能量;提出矿物拥有非经典光合作用的性能,自然界无机矿物转化太阳能系统类似生物光合作用吸收转化太阳能的产氧固碳系统,地表“矿物膜”光催化裂解水产氧作用及其转化大气和海洋二氧化碳为碳酸盐矿物作用,孕育出“矿物光合作用”;提出矿物具有促进生物光合作用的功能,生物光合作用中心Mn4CaO5在裂解水产氧过程中产生成分和结构类似水钠锰矿的锰簇化合物结构体,初步认为水钠锰矿可能促使蓝细菌光合作用系统的起源,矿物影响与削弱水分子氢键以改变水的性质,可提高水的分解程度与光合作用效率,为进一步探索矿物促进生物光合作用机理提供科学技术突破的机遇。  相似文献   

14.
This paper summarizes advances since 1987 in the application of glacial sediment sampling to mineral exploration (drift prospecting) in areas affected by continental or alpine glaciation. In these exploration programs, clastic glacial sediments are tested by geochemical or mineralogical methods to detect dispersal trains of mineral deposit indicators that have been glacially transported from source by mechanical processes. In glaciated terrain the key sampling medium, till, is produced by abrasion, crushing and blending of rock debris and recycled sediment followed by down-ice dispersal ranging from a few metres to many kilometres. As a consequence of the mid-1980s boom in gold exploration, the majority of case studies and regional till geochemical surveys published in the past decade deal with this commodity. Approximately 30% of Canada and virtually all of Fennoscandia have been covered by regional till geochemical surveys that aid mineral exploration and provide baseline data for environmental, agricultural, and landuse planning. The most profound event in drift prospecting in the last decade, however, has been the early-1990s explosion in diamond exploration which has dramatically increased the profile of glacial geology and glacial sediment sampling and stimulated changes in sampling and analytical methods.  相似文献   

15.
Except for the fringing reef, the limestones of Christmas Island in the Indian Ocean are of Late Eocene (Tertiary “b") and Early Miocene (Tertiary “e” to “f") age. The Upper Eocene limestone is an algal limestone containing Discocyclina, Nummulites, and Heterostegina. The Lower Miocene limestone is an algal limestone containing in its lower part species of Lepidocyclina (Eulepidina) followed by Miogypsinoides dehaarti. Miogypsinoides dehaarti extends into the zone of Flosculinella bontangensis. No rocks younger than Burdigalian were identified other than on the fringing reef which contains an assemblage of Pliocene‐Pleistocene Foraminifera.  相似文献   

16.
Oceanic manganese nodules, for long the cornucopia of sea floor mineral deposits, have lost much of their economic attractiveness in recent years as a result of depressed metal prices and difficulties surrounding their potential extraction under the Law of the Sea Convention. In their place, commerical interest in mineral deposits within Exclusive Economic Zones has increased, while the scientific world is enamoured with the black smokers discharging at mid–ocean ridges and the polymetallic sulphides that precipitate from them.  相似文献   

17.
18.
The dominant reaction determining the chemistry of fluids in a geothermal system of the New Zealand type consists of the conversion of primary plagioclase by CO2 to calcite and clays with log pco2 = 15.26 ? 7850/(t + 273.2), temperature t in °C. Subsequent reactions involving secondary minerals control relative CO2-H2S-contents. The distribution of mineral phases throughout a geothermal system reflects the stepwise conversion of thermodynamically unstable primary phases through a series of intermediate, metastable phases to a thermodynamically stable, secondary assemblage. The relative stabilities of these phases was evaluated on the basis of their solubilities, the least soluble aluminiumsilicate representing the thermodynamically most stable phase under a given set of conditions. Observed assemblages of secondary minerals in geothermal systems represent indicators allowing mineral/fluidinteraction conditions to be evaluated on the basis of multi-component mineral stability diagrams.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号