首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

2.
Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.  相似文献   

3.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

4.
S. P. Neves  A. Vauchez 《Lithos》1995,34(4):275-299
Field and petrographic evidence together with major element geochemistry suggest that mixing and mingling of magmas of contrasting compositions were important petrogenetic processes in the Fazenda Nova/Serra da Japeganga plutonic complex of Northeast Brazil. The complex was emplaced at pressures of 300–500 MPa in amphibolite facies metamorphic rocks of Neoproterozoic age and consists of three main rock types: (1) coarse-grained granite; (2) porphyritic granite and (3) diorite to quartz-monzodiorite. The latter two make up the Fazenda Nova batholith which is located on the northwestern side of the sinistral, NE-trending, Fazenda Nova strike-slip shear zone. NE-plunging stretching lineations in the shear zone suggest that this batholith represents an uplifted, and therefore deeper, portion of the complex. The structure of the complex reflects the stratigraphy in a magma chamber, with the porphyritic granite above the diorite and below the coarse-grained granite.

The porphyritic granite has a uniform composition, intermediate in mafic mineral content, quartz, and majorelements between the coarse-grained granite and the diorite. It is free of disequilibrium mineral assemblages, and locally displays gradational contacts with the overlain coarse-grained granite. Most elements display linear correlation with SiO2 in Harker diagrams. These features are interpreted as resulting from mixing of almost crystal-free felsic and intermediate magmas. Fluid dynamic calculations using the coarse-grained granite and the silica-poorest diorite as end-members in the mixing process show that mechanical mixing was possible, and thermal modelling suggests that the formation of an homogeneous hybrid may have been achieved in less than 50,000 yr.

The diorites contain corroded K-feldspar megacrysts, and range in composition from low to relatively high silica contents, partly overlapping with the porphyritic granite. This suggests that a new mixing event occurred during the crystallisation of the porphyritic granite, this time producing a heterogeneous, xenocryst-bearing, dioritic hybrid. Abundant enclaves of diorite in the porphyritic granite, despite their textural diversity, are typically devoid of chilled margins, and were therefore formed relatively early in the crystallisation history of the granite. They are interpreted as liquid droplets separated from the heterogeneous hybrid magma through convection currents and incorporated in the, crystallising granitic magma.

Subsequently, during the crystallisation of the porphyritic granite, mafic magma supply to the batholith continued at a declining rate, probably assisted by the development of the Fazenda Nova shear zone. This leads to the production of stromatitic-like structures, with alternating bands of mutually contaminated granite and diorite, then to the intrusion of contorted synplutonic dykes, and, finally, of late-stage dykes, some of which with chilled finer-grained margins.  相似文献   


5.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

6.
近代花岗岩研究的回顾   总被引:19,自引:1,他引:18  
近代花岗岩实验和地球化学的研究使花岗岩研究走向一个最终成因和在地构造环境变迁结合的动力学方向。  相似文献   

7.
Slaby  E.; Martin  H. 《Journal of Petrology》2008,49(2):353-391
The Hercynian, post-collisional Karkonosze pluton contains severallithologies: equigranular and porphyritic granites, hybrid quartzdiorites and granodiorites, microgranular magmatic enclaves,and composite and lamprophyre dykes. Field relationships, mineralogyand major- and trace-element geochemistry show that: (1) theequigranular granite is differentiated and evolved by smalldegrees of fractional crystallization and that it is free ofcontamination by mafic magma; (2) all other components are affectedby mixing. The end-members of the mixing process were a porphyriticgranite and a mafic lamprophyre. The degree of mixing variedwidely depending on both place and time. All of the processesinvolved are assessed quantitatively with the following conclusions.Most of the pluton was affected by mixing, implying that hugevolumes (>75 km3) of mafic magma were available. This maficmagma probably supplied the additional heat necessary to initiatecrustal melting; part of this heat could have also been releasedas latent heat of crystallization. Only a very small part ofthe Karkonosze granite escaped interaction with mafic magma,specifically the equigranular granite and a subordinate partof the porphyritic granite. Minerals from these facies are compositionallyhomogeneous and/or normally zoned, which, together with geochemicalmodelling, indicates that they evolved by small degrees of fractionalcrystallization (<20%). Accessory minerals played an importantrole during magmatic differentiation and, thus, the fractionalcrystallization history is better recorded by trace rather thanby major elements. The interactions between mafic and felsicmagmas reflect their viscosity contrast. With increasing viscositycontrast, the magmatic relationships change from homogeneous,hybrid quartz diorites–granodiorites, to rounded magmaticenclaves, to composite dykes and finally to dykes with chilledmargins. These relationships indicate that injection of maficmagma into the granite took place over the whole crystallizationhistory. Consequently, a long-lived mafic source coexisted togetherwith the granite magma. Mafic magmas were derived either directlyfrom the mantle or via one or more crustal storage reservoirs.Compatible element abundances (e.g. Ni) show that the maficmagmas that interacted with the granite were progressively poorerin Ni in the order hybrid quartz diorites—granodiorites—enclaves—compositedykes. This indicates that the felsic and mafic magmas evolvedindependently, which, in the case of the Karkonosze granite,favours a deep-seated magma chamber rather than a continuousflux from mantle. Two magma sources (mantle and crust) coexisted,and melted almost contemporaneously; the two reservoirs evolvedindependently by fractional crystallization. However, maficmagma was continuously being intruded into the crystallizinggranite, with more or less complete mixing. Several lines ofevidence (e.g. magmatic flux structures, incorporation of granitefeldspars into mafic magma, feldspar zoning with fluctuatingtrace element patterns reflecting rapid changes in magma composition)indicate that, during its emplacement and crystallization, thegranite body was affected by strong internal movements. Thesewould favour more complete and efficient mixing. The systematicspatial–temporal association of lamprophyres with crustalmagmas is interpreted as indicating that their mantle sourceis a fertile peridotite, possibly enriched (metasomatized) byearlier subduction processes. KEY WORDS: Bohemian Massif; fractional crystallization; geochemical modelling; hybridization; Karkonosze  相似文献   

8.
东昆仑造山带花岗岩中广泛发育暗色微粒包体,含有丰富的壳幔岩浆混合作用的证据,被认为是研究岩浆混合作用的天然场所。适逢近阶段同源花岗岩谱系填图方案在造山带岩浆混合(浆混)花岗岩图区实践时深受质疑,本研究以东昆仑加鲁河地区浆混花岗岩为例,开展浆混花岗岩区专题填图试点工作,旨在探索一套适合浆混花岗岩填图的岩石单位划分方案。从野外地质、岩相学、岩石和矿物化学等不同角度论证了加鲁河花岗闪长岩及其内部包体形成于开放体系下的壳幔岩浆混合作用。在填图工作中,将图区内的岩浆岩划分为浆混花岗岩和非浆混花岗岩2个超单元。以岩浆混合作用为理论依据,将浆混花岗岩超单元划分为基性端元、酸性端元和浆混产物3个二级单位,对于2个端元岩石单位按照其矿物组成、结构构造等方面的差异(岩浆演化导致)再次划分最基本岩石单位——侵入体,对于浆混产物单位,建议可按照岩浆混合程度差异或者内部包体变化规律灵活划分基本岩石单位——浆混体。由此建立了一套可与同源花岗岩谱系单位相兼容的浆混花岗岩谱系单位划分方案,为岩浆混合花岗岩区开展填图工作提供了初步探索方案。  相似文献   

9.
Tholeiitic lavas of the Servilleta Basalt exhibit only subtletextural and mineralogical evidence for a hybrid origin, butelemental and isotopic analyses of these basalts are best modeledin terms of mixing Servilleta parent magma with a range of contemporaneousandesite and dacite magmas. Cryptic compositional heterogeneitiesin some flows interpreted as hybrids apparently reflect incompletehomogenization following pre-emptive magma mingling. The generalscarcity of mixing-related textural disequilibrium is ascribedin part to mixing of mineralogically similar end-members. Eradicationof some phenocrysts during post-mixing residence and evolutionin a convecting magma body may be an even more important factor. Eruptions of hybrid magmas may frequently be triggered by magmamixing events (i.e. injection or replenishment), and minglingof compositionally diverse magmas may ensue as a consequenceof tapping a compositionally graded or layered magma chamber.These hybrids are instantly recognizable by the preservationof disequilibrium textures and mineral assemblages, and by discontinuouscompositional heterogeneities. Cryptic hybrids, which have notpreserved this record, will be recognizable as mixed magmasprimarily by geochemical evidence for open system evolution.  相似文献   

10.
The Ghansura Rhyolite Dome of the Bathani volcano-sedimentary sequence in eastern India originated from a subvolcanic felsic magma chamber that was intruded by volatile-rich basaltic magma during its evolution leading to the formation of a porphyritic andesite. The porphyritic andesite consists of rapakivi feldspars, which are characterized by phenocrysts of alkali feldspar mantled by plagioclase rims. Results presented in this work suggest that intimate mixing of the mafic and felsic magmas produced a homogeneous hybrid magma of intermediate composition. The mixing of the hot volatile-rich mafic magma with the relatively colder felsic magma halted undercooling in the subvolcanic felsic system and produced a hybrid magma rich in volatiles. Under such conditions, selective crystals in the hybrid magma underwent textural coarsening or Ostwald ripening. Rapid crystallization of anhydrous phases, like feldspars, increased the melt water content in the hybrid magma. Eventually, volatile saturation in the hybrid magma was reached that led to the sudden release of volatiles. The sudden release of volatiles or devolatilization event led to resorption of alkali feldspar phenocrysts and stabilizing plagioclase, some of which precipitated around the resorbed phenocrysts to produce rapakivi feldspars.  相似文献   

11.
In this paper we document widespread coeval felsic-mafic magma interaction and progressive hybridization near Gurgunta in the northern part of Eastern Dharwar Craton (EDC) where mafic magma pulses have injected into a 2.5 Ga granite pluton. The pluton contains voluminous pink porphyritic facies with minor equigranular grey facies. The mafic body shows compositional variation from diorite to meladiorite with hornblende as the chief mafic mineral with lesser clinopyroxene and biotite. The observed variation on binary diagrams suggests that granite was evolved by fractional crystallization. Chemical characteristics such as higher Al2O3 and moderate to high CaO, Mg#, Ni, Cr, Co and V are interpreted by slab-melting. Mafic bodies show lower SiO2, Na2O and K2O; but higher CaO, Mg#, FeO, Cr, Ni and V; higher LREE with moderate to higher HREE which suggest their derivation from mantle. A major active shear zone has played an important role at the time of synplutonic mafic injection and hybridization process. Field evidences suggest that the synplutonic mafic body has injected into the crystallizing felsic magma chamber in successive stages. The first stage injection has resulted in extensive mixing and hybridization due to the liquidus state of resident felsic magma to which hot mafic magma was injected. However, progressive mixing produced heterogeneity as the xenocrysts started mechanically dispersed into hybrid magma. The second stage injection, after a time gap, encountered colder and viscous hybrid magma in the magma chamber, which inhibited free injection. As a consequence, the mafic magma spread into magma chamber as flows, producing massive mafic bodies. However, with the continued mafic pulses and the heat gradient, the viscosity contrasts of mafic magma and felsic magma were again lowered resulting in second stage mixing. This episode was followed by mingling when the granite was almost crystallized, but still viscous enough to accommodate lamellar and ribbon like mafic penetrations to produce mingling. The successive mixing and mingling processes account for the observed heterogeneity in the granite pluton.  相似文献   

12.
The Gil-Marquez Complex is an exceptional outcrop of plutonic rocks ranging in composition from diorites to granites emplaced into Devonian terrigenous metasediments of the southernmost part of the Hercynian basement of Iberia. A combined study of this complex, including field geology, petrology, structural geology and geochemistry, reveals that it represents an ancient conduit of magma transport through the continental crust. This conduit allowed the intrusion of magmas of contrasted compositions. Two end-members and several hybrids are identified. The first end-member is a biotite granite and the second is a basaltic magma generated by partial melting of a depletedmantle source. Both magmas rose through a common channel in which favorable conditions for unstable flow and magma mixing occurred. The observed relations in the Gil-Márquez Complex show that mixing in conduits may be an important mechanism for producing homogeneous hybrid magmas.  相似文献   

13.
马绪宣  施彬  熊发挥  李海兵 《岩石学报》2020,36(10):3063-3080
冈底斯岩浆带位于拉萨地体南缘,其形成过程主要受中生代新特提斯洋板片俯冲和新生代印度-亚洲陆-陆碰撞控制,是揭示青藏高原形成过程和深化大陆动力学研究的天然实验室。曲水岩基位于冈底斯岩浆带中段,介于拉萨和曲水之间,主要由花岗闪长岩、花岗岩、闪长岩和辉长岩组成。岩基花岗质岩体中包含大量暗色岩浆包体,包体产出状态有同侵位岩墙、包体墙、包体群等,表明岩浆混杂与混合现象。前人关于曲水岩基做了大量研究工作,取得很多进展,比如,发现这些暗色岩浆包体与寄主岩具有相同的结晶时代,主要集中在55~45Ma。但是,关于曲水岩基形成在俯冲背景还是碰撞背景还存在着争论。这些广泛分布的暗色岩浆包体和寄主岩的关系,及其所代表的岩浆混合过程还需要精细的矿物学工作。因此,本文在综合分析野外岩性分布、暗色岩浆包体出露形态的基础上,重点选择花岗闪长质寄主岩和其中的暗色岩浆包体中的角闪石进行矿物显微结构和构造的分析,并结合电子探针数据,以探求曲水岩基的岩浆混合过程。我们初步认为曲水岩基的形成经历两期混合过程:早期的基性岩浆和酸性岩浆端元在深部的混合;晚期基性、酸性岩浆混合后的中性岩浆爆破、上升,并继续与酸性岩浆混合。此外,曲水岩基形成于俯冲到碰撞的转换过程,受控于俯冲板片作用所产生的弧型岩浆和板片回旋及稍后的断离所产生的地幔岩浆双重作用。  相似文献   

14.
Olav Eklund  Alexey Shebanov 《Lithos》2005,80(1-4):229-247
The Åva ring complex is one of four Paleoproterozoic postcollisional shoshonitic ring complexes in southwestern Finland. It is composed of ring dykes of K-feldspar megacryst-bearing granite, mingled in places with a shoshonitic monzonite, and lamprophyre dykes crosscutting all the rocks in a radial pattern. A survey was undertaken to trace the magma chamber beneath the ring complex to date it and measure some intensive parameters to clarify the crystallisation conditions at depth before the granite was emplaced in the upper crust. Mineral separates were extracted from the core zones of K-feldspar megacrysts in the granite, heavy mineral fractions (including zircons) from these separates were used for P-T assessment and age determinations, and the results were compared to data obtained from bulk rock samples. It appears that magma differentiation took place in a midcrustal magma chamber (at 4 to 7 kbar) possibly 30 Ma before the emplacement of the ring complex in the upper crust (deep assemblage 1790 Ma, shallow assemblage 1760 Ma). Relatively high activity of the alkalies and a low oxygen fugacity characterised the midcrustal chamber. The juvenile Svecofennian crust was invaded by shoshonitic magmas from an enriched lithospheric mantle over a long period of time. Some of these magmas were stored and differentiated in the middle crust before transportation to the upper crust. The results also show that coarse-grained granites may provide evidence for several magmatic evolutionary episodes, e.g., differentiation and crystallisation in different environments prior to final emplacement.  相似文献   

15.
The igneous rocks of the Kialineq centre on the coast of East Greenland at 67°N include a number of quartz syenite and granite plutons intruded 35my BP. These are subvolcanic bodies emplaced by cauldron subsidence and with ring-dike and bell-jar form. Associated with the major intrusions is an extensive acid-basic mixed magma complex. Two-liquid structures, chilling of basic against acid magma, pillows of basic in acid, and net-veining of basic by acid magma, are superbly displayed. The basic magma was of a transitional or alkaline type and underwent varying degrees of fractionation in a regime of repeated intrusions and diverse chambers. Heterogeneous hybrid rocks intermediate between basalt and quartz syenite are strongly developed and were formed by repeated mechanical mixing of contrasting magmas. The energy for this mixing probably came in the main from cauldron-block subsidence. The quartz syenite magma, which itself fractionated towards granite, has initial 87Sr/86Sr ratios the same as the basic magma and is itself believed to be a fractionation product of alkali basalt magma.  相似文献   

16.
The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ?Hf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ?Hf in two of the three analysed samples (8.8 and 10.1 ?Hf units) exceeds that expected from a single homogeneous population (~4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ?Nd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites.  相似文献   

17.
ABSTRACT

A Paleogene accretionary complex, the Mineoka–Setogawa belt is distributed adjacent to the northern portion of the collision zone between Honshu and Izu–Bonin–Mariana (IBM) arcs in central Japan, comprising a mélange of ophiolitic fragments of various sizes. The Eocene-Oligocene plutonic rocks in this belt (gabbro, diorite, and tonalite) have been interpreted as fragments brought from the deep crust beneath the IBM arc through tectonic collisions. The geochemical characteristics of the gabbro and associated basaltic dike are similar to those of the Eocene IBM tholeiitic basalt; thus, the gabbro was likely formed via the crystallization of the Eocene tholeiitic basaltic magmas, which was produced by the partial meltings of a depleted mantle wedge. A comparison with experimental results and geochemical modeling indicates that the tonalite was generated by 10–30% dehydration melting of the gabbro. Actually, Eocene–Oligocene felsic veins, which are coeval with the plutonic rocks, occur in the Mineoka–Setogawa gabbro. Plagioclase crystals in the diorite comprise Ca-rich and -poor parts in a single crystal. Their compositional characteristics are consistent with those of plagioclase in the gabbro and tonalite, respectively. The textures and chemical composition of plagioclase indicate that the diorite was formed by the mixing between mafic and silicic magmas. The whole-rock composition of the diorite also indicates the evidence for the mixing between basaltic magmas which were fractionated to variable degrees and homogeneous silicic magma. The mixing model proposed from the first direct observations of the IBM middle crust exposed on the Mineoka–Setogawa belt is applied to the genesis of the Eocene to present intermediate rocks in the IBM arc. If the continental crust were created at intra-oceanic arc settings such as the IBM arc, the magma mixing model would be one of the most likely mechanisms for the genesis of the continental crust.  相似文献   

18.
The Pleasant Bay layered gabbro-diorite complex (420 Ma) formed via repeated injections of mafic magma into a felsic magma chamber. It is dominated by repeating sequences (macrorhythmic units) with chilled gabbroic bases which may grade upward into medium-grained gabbro, diorite and granite. Each unit represents an injection of mafic magma into the chamber followed by differentiation. Increases in Sri and decreases in )Ndi with stratigraphic height indicate open-system isotopic behaviour and exchange between the mafic and felsic magmas. Isotopic variations of whole-rock samples in individual macrorhythmic units do not conform to bulk mixing or AFC models between potential parental magmas. Sr isotopic studies of single feldspar crystals from one macrorhythmic unit indicate that exchange of crystals between the resident felsic magma and mafic influxes was important, that some of the rocks contain feldspar xenocrysts, and that the rocks are isotopically heterogeneous on an intercrystal scale. Xenocryst abundance increases with stratigraphic height, suggesting that crystal exchange occurred in situ. The lack of disequilibrium textures in the xenocrystic feldspar indicates the evolved macrorhythmic magma and resident silicic magma were of a similar composition and likely in thermal equilibrium at the time of crystal transfer. Mafic chilled margins are enriched in alkalis and isotopically evolved compared with mafic dikes (representing the parental melts) and suggest rapid in-situ diffusional exchange following emplacement of individual mafic replenishments.  相似文献   

19.
The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69–77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45–60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole, sodic plagioclase, mica and quartz. The early formed gabbroic minerals (and their coronas) are very similar to phenocrysts in late basaltic dikes that cut the upper levels of the CP granite. The inferred parental magmas of both dikes and gabbros were very similar to subalkaline basalts of the Patagonian Plateau that erupted at about the same time, 35 km to the east. Mafic and silicic magmas at Cordillera del Paine are consanguineous, as demonstrated by alkalinity and trace-element ratios. However, the contemporaneity of mafic and silicic magmas precludes a parent-daughter relationship. The granitic magma most likely was derived by differentiation of mafic magmas that were similar to those that later intruded it. Or, the granitic magma may have been contaminated by mafic magmas similar to the PMC magmas before its shallow emplacement. Mixing would be favored at deeper levels when the cooling rate was lower and the granitic magma was less solidified.  相似文献   

20.
R. S. D''Lemos 《Lithos》1996,38(3-4):233-257
The contact zone between the Cobo Granite and Bordeaux Diorite Complex of Guernsey (Channel Islands, UK) displays numerous features which result from the interaction of these two penecontemporaneously emplaced intermediate to felsic magmas. Initial interaction resulted in the formation of chilled mafic enclaves in granite magma. As thermal equilibrium was approached, some physical mixing took place to produce a heterogeneous “Marginal Facies”. Continued interaction resulted in incorporation of previously mixed magma into intruding magma. The early mixed material is locally preserved as enclaves, but more commonly underwent disaggregation promoted by its incompletely crystallised nature, the mineral components becoming distributed as xenocrysts and often as microenclaves, or glomeroxenocrysts, into surrounding magma. Further modification within the contact zone was brought about by the infiltration of melt through the interconnected pore space of the magma mushes on the scale of centimetres to hundreds of metres. These processes produced geochemical profiles which do not exhibit perfect mixing trends. The petrographic and geochemical features described not only demonstrate the efficacy of mixing between partially crystallised magma mushes of broadly similar composition, but also provide criteria by which such interaction may be recognised elsewhere. Many features, in particular mineral scale disequilibria and small scale modal heterogeneity, bear striking similarities to those which occur widely in granite plutons where obvious evidence for magma mixing is absent. As such, it is possible that many granite bodies preserve a subtle record of hitherto overlooked mixing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号