首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
青藏高原向东挤出的变形响应及南北地震带构造组成   总被引:12,自引:1,他引:12  
张家声  李燕  韩竹均 《地学前缘》2003,10(Z1):168-175
受青藏高原物质在南北挤压下向东逸出的影响 ,四川地块、鄂尔多斯地块、川滇地块和滇西地块均发生了不同性质的变形响应。根据航磁异常揭示的四川、鄂尔多斯盆地基底构造样式和滇西地区的地质构造研究结果 ,在主要由变质褶皱基底组成的四川地块发生平行龙门山断层的逆冲推覆 ,基底岩石发生递进褶皱缩短的同时 ,由华北变质结晶基底组成的鄂尔多斯地块在前期逆冲推覆构造的基础上 ,结晶基底沿一系列近东西向左行走滑断层向东错移。滇西和川滇地块则分别沿金沙江—红河断裂 (2 0Ma前后 )和鲜水河—小江断裂 (5Ma前后 )发生了大规模的左行位移。发生在滇西、川滇、四川和鄂尔多斯地块上的最新构造变动叠加或改造了先存构造 ,并且表现为从南向北、由盖层向基底发展的趋势 ,变形程度自西向东减弱 ,反映了青藏高原持续同构造伸展作用的边缘和远程效应。青藏高原东缘多层次、多阶段的现今构造变动引发的地震活动组成了宏观的南北地震带。  相似文献   

2.
青藏高原现今构造变形特征与GPS速度场   总被引:105,自引:12,他引:105  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):442-450
文章以青藏高原的GPS观测数据为基础 ,结合活动地质构造资料 ,研究了青藏高原的现今构造变形状态和机制 ,并探讨青藏高原现今构造变形所反映的大陆内部动力学过程。GPS观测的速度矢量揭示了青藏高原整体向北和向东运动的趋势 ,平行于印度和欧亚板块碰撞方向上的地壳缩短量约是 38mm/a ,而青藏高原周边主要断裂带的滑动速率均在 10mm/a以下。大约 90 %的印度与欧亚板块相对运动量被青藏高原的地壳缩短所吸收和调节。GPS速度矢量由南向北逐渐向东偏转 ,向东的分量也增加 ,形成了以羌塘地块北部 (或玛尼—玉树—鲜水河断裂 )和祁连山中部为中心的两个地壳物质向东流动带。青藏高原的向东挤出实际上是地壳物质在印度板块推挤下和周边刚性地块阻挡下围绕东构造结发生的顺时针旋转。  相似文献   

3.
青藏高原东缘活动构造   总被引:74,自引:0,他引:74  
青藏高原东缘由岷山断块和龙门山构造带构成。以活动构造地貌学为主线,在解析该地区主干断裂晚第四纪以来活动的地质地貌表现的基础上,对一批断裂运动学和史前强震活动的定量数据进行分析研究,结果表明:在岷山断块中,虎牙断裂的平均左旋滑动速率为1.4 mm/a,垂直滑动速率为0.3 mm/a。岷江断裂的平均垂直滑动速率介于0.37 mm/a~0.53 mm/a之间,左旋位错量与垂直位错量大致相当;在龙门山构造带中,茂汶-汶川断裂、北川-映秀断裂和彭县-灌县断裂的平均垂直滑动速率均在1 mm/a左右,且几条主干断裂的右旋位错量与垂直位错量相当。结合震源机制解结果和GPS测量资料,建立晚新生代以来青藏高原东缘向南东方向逸出的构造变形模式。  相似文献   

4.
STYLE AND CONSEQUENCE OF STRAIN PARTITION IN THE NORTHEAST MARGIN OF QINGHAI—TIBET PLATEAU  相似文献   

5.
关于汶川地震发震机制   总被引:10,自引:0,他引:10  
2008年5月12日汶川8级地震的发震断层是四川龙门山逆冲带的前锋灌县—安县断层,或此断层附近新产生相同产状的断层。发震断层走向NE倾向NW,逆冲兼右行平移。汶川地震的发震机制是印藏陆-陆碰撞后,印度次大陆活塞状嵌入欧亚板块造成青藏高原东部向SEE方向近水平挤压,在龙门山冲断带前锋向东南逆冲到四川盆地,构造应力积累和释放的结果。汶川地震演示了一个青藏高原东缘龙门山隆起的构造模型,即其经由龙门山冲断带的地壳冲断作用和缩短作用而隆升。这与Burchfiel的模型不同,该模型认为龙门山上升是由于韧性下地壳流受到四川盆地高强度地壳阻挡而上涌所致。这两种模型可能各有其适用时间阶段,然而本文的模型是不可或缺的,因汶川地震已显示了它的真实性。  相似文献   

6.
ACTIVE DEFORMATION STYLE IN SOUTH-EASTERN AND NORTH MARGINS OF TIBETAN PLATEAU  相似文献   

7.
Little attention had been paid to the intracontinental strike-slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re-measured GPS data in 2003, an increasing amount of attention has been paid to this neglected fault. The local relief and transverse swath profile show that the Longriba fault is the boundary line that separates the high and flat tomography of the Tibet plateau from the high and precipitous tomography of Orogen. In addition, GPS data shows that the Longriba fault is the boundary line where the migratory direction of the Bayan Har block changed from eastward to southeastward. The GPS data shows that the Longriba fault is the boundary fault of the sub-blocks of the eastern Bayan Har block. We built three-dimensional models containing the Longriba fault and the middle segment of the Longmenshan fault, across the Bayan Har block and the Sichuan Basin. A nonlinear finite element method was used to simulate the fault behavior and the block deformation of the Eastern Tibetan Plateau. The results show that the low resistivity and low velocity layer acts as a detachment layer, which causes the overlying blocks to move southeastward. The detachment layer also controls the vertical and horizontal deformation of the rigid Bayan Har block and leads to accumulation strain on the edge of the layer where the Longmenshan thrust is located. After a sufficient amount of strain has been accumulated on the Longmenshan fault, a large earthquake occurs, such as the 2008 Wenchuan earthquake. The strike slip activity of the Longriba fault, which is above the low resistivity and low velocity layer, partitions the lateral displacements of the Bayan Har block and adjusts the direction of motion of the Bayan Har block, from the eastward moving Ahba sub-block in the west to southeastward moving Longmenshan sub-block in the east.  相似文献   

8.
The Olary Block comprises a set of Palaeoproterozoic to Mesoproterozoic basement inliers that were deformed together with the Neoproterozoic sedimentary cover of the Adelaide Geosyncline during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across this region show shortening of less than 20%. These basement inliers represent the interface between a region of thick‐skinned deformation bordering the Curnamona Craton to the north and a region of thin‐skinned deformation to the south and west in the Nackara Arc. The basement inliers represent upthrust segments of the subsided basin margin with the sedimentary package thickening to the south and to the west. Earlier formed extensional faults provided the major strain guides during Delamerian shortening. An early phase of east‐west shortening is interpreted to be synchronous with dextral strike‐slip deformation along basement‐relay structures (e.g. Darling River lineament). During progressive shortening the tectonic transport direction rotated into a northwest to north direction, coeval with the onset of the main phase of thin‐skinned fold deformation in the adjacent Nackara Arc.  相似文献   

9.
THE BALANCED CROSS-SECTION AND SHORTENING IN QIANGTANG TERRAIN QINGHAI—TIBET PLATEAU  相似文献   

10.
青藏高原北部白垩纪隆升的证据   总被引:24,自引:6,他引:18  
李海兵  杨经绥 《地学前缘》2004,11(4):345-359
认为青藏形成统一大陆应该在印支期晚期古特提斯洋关闭和海水退出时。由于来自冈瓦纳大陆的羌塘微陆块向NE斜向俯冲 ,产生了印支期的阿尼玛卿、柴北缘和阿尔金大规模走滑断裂的形成 ,并且由于东部受到华南板块的阻挡 ,形成南北向的龙门山褶皱带。此阶段 ,地势较低 ,海拔不高。直至中特提斯洋在白垩纪早期关闭 ,来自冈瓦纳大陆的冈底斯微陆块沿班公湖—怒江一线俯冲到北部高原的下面 ,由于高原北部受到塔里木—阿拉善地块的阻挡 ,东部受到南中国板块的阻挡 ,高原北部开始隆升 ,形成高原雏形。高原南北统一大陆形成于新特提斯洋的关闭和印度板块沿雅鲁藏布江缝合带与欧亚大陆碰撞时 ,并在新近纪后开始快速抬升 ,形成现今的高原地貌 ,这已是共识。值得讨论的是 ,如何识别高原北部白垩纪时期的隆升 ,以及其对建立高原隆升模型和计算高原北部隆升速率的贡献。  相似文献   

11.
全球定位系统测量与青藏高原东部流变构造   总被引:22,自引:3,他引:19       下载免费PDF全文
通过1991~1997年期间高精度全球定位系统测量,建立了青藏高原东部及其邻区的现代地壳运动速度场。相对成都,鲜水河-小江断裂以西的藏东-滇中地区的运动速度变动在1.57~17.49mm/a之间,总体为8mm/a以上。该断裂以东地区的运动速度小,约为0~7mm/a。在此基础上,通过对围绕东喜马拉雅构造结的涡旋和川西地区的涡旋的认定,以及它们在地壳变形中的作用的分析,阐述了青藏高原东部及其邻区深部物质流变的主要形式和地壳流变构造。  相似文献   

12.
青藏高原对四川盆地的挤压作用导致了龙门山断裂带的形成及其山脉的隆起。本文以龙门山附近区域板块运动以及深部岩体力学特性为背景,采用FLAC3D软件模拟再现了时间跨度为700万年的龙门山区域构造系统演化过程。研究结果表明:在板块运动作用下,F1、F2和F3断层依次形成,贯通的断层对地表的抬升具有较强的控制作用,当断层贯通于地表后,龙门山及其以西的川西高原持续隆起,平均抬升速率约为138mm/yr,而龙门山断裂带以东的川西坳陷只有较小的抬升量,从而导致川西高原抬升8996 m, 致使该区域产生6000m左右的落差,模拟的地形特征与目前的龙门山地形地貌基本相似。依据模拟结果与实测资料,绘制了龙门山断裂带形成及其附近区域地形地貌的演化过程图,呈现了板块挤压、断层塑性位错、地表侵蚀和沉积作用等因素共同作用对地形地貌的塑造过程。  相似文献   

13.
新生代以来,印度板块与欧亚大陆的碰撞和持续的汇聚在青藏高原西北部的帕米尔地区造成了强烈的陆内变形,形成一系列典型的构造地貌。文章在卫片解译、DEM数据处理的基础上,结合野外地质、地貌观察与测量,对帕米尔东北缘的构造地貌与活动构造特征进行了研究,取得以下认识: 1)在英吉沙地区,通过测量地貌变形面计算出英吉沙背斜隆起高度约为230m,并利用面积平衡法估算出英吉沙背斜的最小构造缩短量约为110m,参考前人的年代学数据计算出英吉沙背斜在中更新世以来的最低隆升速率约为0.23mm/a,最小构造缩短速率约为0.11mm/a; 2)在帕米尔前缘,乌泊尔断裂为一条伴随右旋走滑分量的逆冲断裂,该断裂的右旋走滑作用错断了古近纪地层及流过断裂的河流,通过测量单次地震造成的水系错断量并参考前人研究的该地区大震复发周期约为1000年,估算出该断裂的平均走滑速率为 4.0~6.8mm/a,并推测断裂开始活动的时间大约在 2.2~3.0Ma以前; 3)对喀什地区构造地貌特征的观察与研究表明,明尧勒-喀什背斜和阿图什-踏浪河背斜可能分别为帕米尔东北缘西昆仑山山前冲断带和西南天山山前冲断带的前缘,该地区以西,帕米尔东北缘西昆仑山和西南天山两大构造系统已经发生了碰撞和拼贴。  相似文献   

14.
THREE-DIMENSIONAL DEFORMATION ALONG THE ALTYN TAGH FAULT ZONE AND UPLIFT OF THE ALTYN MOUNTAIN, NORTHERN TIBET  相似文献   

15.
The north–south trending Xiaojiang fault system accommodates ~10–12 mm/yr sinistral motions between southeastern Tibet and south China. In the south segment, the fault system composes mainly of four parallel strike-slip faults, namely from west to east, the Luzhijiang fault, the Yimen fault, the Puduhe fault, and the Xiaojiang fault. Geological and Seismological observations have shown that these strike-slip faults are all of active, while the slip rates of the Luzhijiang, the Yimen, and the Puduhe faults are much less than that of the Xiaojiang fault. We use finite element modeling to explore the mechanical relation between crustal rheology, effective fault friction and long-term slip rate partitioning among the four parallel faults. The individual faults are simplified as vertical discontinuities embedded in the crust as geophysical explorations have predicted. A large number of models are tested, associating with variations of the crustal rheolohy and the effective fault friction of individual faults. Result shows that if crust bounding the faults trends to behave like rigid blocks and decoupled mechanically from underlying layer, the modeled result is hard to approximate slip rates of the individual faults. To better fit slip rates of the individual faults, viscous deformation of the lower crust should be included. With a heterogeneously viscous lower-crust model that is built upon thermal structure of the heat flow data, associating with relatively low effective friction of the Xiaojiang fault, the modeled results fit the geological slip rates well, with ~1–1.5 mm/yr for the Luzhijiang, the Yimen and the Puduhe faults, and ~6–6.5 mm/yr for the Xiaojiang fault. Thus, in the southward movement of the Tibetan plateau around the eastern Himalayan syntaxis, slip partitioning among the Xiaojiang fault system should be related to viscous deformation of the lower crust associated with different strength of the individual faults, highlighting that deformation of this fault system is coupled mechanically between the frictional upper crust and the viscous lower crust.  相似文献   

16.
COUPLING RELATIONSHIPS BETWEEN OROGENS AND BASINS,LOWER CRUST AND UPPER CRUST IN THE QINGHAI—TIBET PLATEAU  相似文献   

17.
The apatite fission track dating of samples from the Dabashan(i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous(~90–70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene(~50–45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic(since ~10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone(PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous(~70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.  相似文献   

18.
张岳桥  李海龙 《中国地质》2016,(6):1829-1852
文章系统梳理了青藏高原东部地区晚新生代重大构造事件的沉积记录、岩浆记录和构造变形响应,重新厘定了青藏运动或横断事件的起始时限,建立了青藏高原东部晚新生代构造演化序列与挤出造山构造体系。研究认为,发生在上新世之前的青藏运动是青藏高原东部最重要的构造作用阶段,起始于距今12~8 Ma,并持续到上新世早期,持续时间达6~8 Ma。在这个构造运动阶段,青藏高原东部地块(川滇地块、川青地块、西秦岭构造带和陇中地块等)有序地向东挤出,受到鲜水河、东昆仑、海原等WNW-ESE向大型断裂左旋走滑运动调节,构造挤出同时伴随地块内部逆冲褶皱变形,导致地壳增厚和高原东缘山脉快速崛起;构造挤出也超越了现今东缘地貌边界,向东扩展导致扬子地块盖层滑脱褶皱,形成龙泉山、大凉山等褶皱构造带。上新世出现的砾石层(东缘前陆地带的大邑砾石层、临夏盆地的积石砾石层、兰州盆地的五泉砾石层等)标志了青藏高原东部差异性构造地貌的形成。上新世晚期至早更新世时期(3.6~1.0 Ma)对应一个构造松弛阶段,青藏高原东部整体进入冰冻时期,沿其东缘发育一系列受正断层控制的南北向伸展断陷盆地,如安宁河谷地、元谋盆地、盐源盆地、滇西北盆地群等,其中加积了以昔格达组为代表的稳定河湖相沉积。发生在早、中更新世之交(距今1.0~0.6 Ma)的昆—黄运动或元谋事件使青藏高原东部地块进一步向东挤出、东缘地壳逆冲增厚和年轻山系加速隆升。晚更新世以来的构造运动称为共和运动或最新构造变动阶段,起始于距今约120 ka,青藏高原东缘构造变形系统出现重大分化,南段川滇菱形地块发生绕喜玛拉雅东构造结的顺时针旋转运动,形成川滇双弧形旋扭构造体系;而中段川青地块的挤出伴随东缘龙门山断裂带的右旋走滑运动和秦岭山系的向东挤出。在这个最新构造变动阶段,青藏高原东部下地壳通道流可能是重要的深部构造驱动因素。  相似文献   

19.
SLIP RATE AND RECURRENCE INTERVAL OF STRONG EARTHQUAKE OF QIANNING—KANGDING SEGMENT ON XIANSHUIHE FAULT  相似文献   

20.
青藏高原北部发育一系列北西向大型左行走滑断裂带,目前普遍认为这些左行走滑断裂至今仍在活动,在左行走滑作用下,青藏高原东部向东挤出并伴随强烈的地块旋转运动。本文以介于东昆仑左行走滑断裂带与玉树左行走滑断裂带之间的巴颜喀拉山中央断裂(及其周缘的构造形迹)为主要研究对象,根据断层构造的直接解译标志——清晰的线性形迹和构造地貌标志如断层陡坎、断层谷地、挤压脊、地裂缝、断层走滑造成的水系错动、新老洪积扇的侧向叠加等,在高分辨率的SPOT5及中等分辨率ETM遥感影像上对研究区内北西向活动断层与北东向活动断层的空间分布、规模、活动性质、相对活动时代及活动幅度等进行了遥感分析和野外验证,并结合对断层周缘沿共轭张裂隙展布的水系与地裂缝的规模、展布方向等的统计分析,对晚第四纪应力场进行了恢复。研究表明:北西向活动断层具右行走滑兼有逆冲运动特征,北东向活动断层具左行走滑兼有正滑运动特征,二者为晚第四纪NNE向(2°)挤压应力条件下产生的北西向与北东向走滑作用的产物。北西向右行走滑作用的发现,预示着青藏高原北部第四纪以来普遍存在的北西向左行走滑作用可能在晚更新世就已终止。在此基础上,探讨了处于不同展布方向上的湖盆在同一应力条件下表现出的不同演化趋势:即在NNE向挤压应力作用下,呈北东向展布的错坎巴昂日东湖处于近东西向拉张状态,呈北西向展布的卡巴纽尔多湖变化不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号