首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
广东陆丰硫铁矿首次发现碲铋及多种硫盐矿物广东陆丰硫铁矿自1958年建矿以来,一直作为单独硫铁矿开采。我们在对该矿床物质组分研究过程中,首次发现硫化物、银矿物及少见复杂硫盐矿物十多种。其中AU,*g,Cu,Te,Bi等伴生元素均达到综合利用品位。尤其是...  相似文献   

2.
四川石棉碲矿床地球化学特征研究   总被引:5,自引:0,他引:5  
刘埃平  钟子川 《地球化学》1996,25(4):365-371
研究了世界首例碲矿床的地球化学特征,特别是微量分散元素碲富集成矿的地球化学条件。此矿床属Te-Bi-Au-Ag组合型中温热液矿床,矿体为碳酸盐脉和磁黄铁矿脉,矿石平均品位:Te5.98%、Bi8.02%、Au9.73×10-6、Ag37.45×10-6。成矿元素Te、Au、Ag主要来源于深部富含CO2、S的热流体。此热流体沿深大断裂上升至地壳浅部时,从围岩中浸取了大量的成矿元素Bi、Fe等。热液中的硫优先与铁结合生成磁黄铁矿析出,降低了热液中的硫浓度,从而促使分散元素碲与其沉淀剂Bi、Ag、Au相结合呈碲铋矿物、碲银矿和碲金矿等独立矿物形式沉淀,并富集成矿。  相似文献   

3.
山东夏甸金矿及其外围矿区隐伏矿体定位预测   总被引:5,自引:0,他引:5  
总结国内103个、国外35个含硫盐矿物金矿床的特征,发现蚀变岩型金矿中出现硫盐矿物的概率较大,为034,且以Cu的硫盐矿物为主,其概率为063。含硫盐矿物金矿围岩蚀变类型多样,并以硅化、黄铁矿化、绢云母化为主。探讨了As,Sb,Bi,Te等的活动及硫盐矿物的形成与Au的释放、搬运、沉淀、富集的内在联系,并指出硫盐矿物的找矿预测意义。  相似文献   

4.
官田黄铁矿矿床为一浅成低温水热脉状黄铁矿矿床,物质成分复杂,伴生有Cu、Au、Ag、Te、Bi等多种有益组分。矿床外围有铅、锌、钼等共生矿产。这些有益主元素或伴生元素的分布规律与大气降水成矿作用、两种不同性质溶液在运移途中相遇造成成矿元素淀积的成矿作用及构造变动密切相关。  相似文献   

5.
北京市得田沟金矿床矿物特征和金的赋存状态   总被引:1,自引:2,他引:1  
得田沟金矿床是受韧性剪切带控制的石英脉-蚀变岩型金矿床。容矿岩石主要为太古宙受混合岩化的角闪岩相变岩系。矿石矿物主要为黄铁矿、方铅矿、闪锌矿、黄铜矿、碲铅矿及金、银(铋)的单质和化合物等;脉石矿物主要为石英、方解石、绿泥石、绿帘石、绢云母、阳起石等。Au、Ag(Bi)主要呈细粒自然金、自然银、碲金银矿、针碲金银矿、碲银矿、六方碲银矿、螺状硫银矿、未定名矿物AgS1+xTe1-x和Bi5Te6存在。  相似文献   

6.
烧锅营子金矿黄铁矿的化学成分标型特征   总被引:1,自引:0,他引:1  
黄菲  王建国 《贵金属地质》1997,6(2):132-139
烧锅营子金矿床的黄铁矿形成于早,中,晚3期,是主要的矿石矿物和载金矿物,其中以中期黄铁矿为最主要的载金者。黄铁矿的化学成分为;TFe43.34%-45.52%,S46.58%-48.86%,,与标准黄铁矿相比显示亏铁,亏硫特点,黄铁矿为含丰富的微量元素,有Au,Ag,As,Sb,Bi,Cu,Zn,Pb,Co,Ni,W,Mo,Se等。其中Au,Ag,Cu,Pb,Zn,Bi含量较高,而As,Sb低,S  相似文献   

7.
《国外铀金地质》1995,12(1):32-38,52
LadyBountiful脉金矿位于中绿片岩相变质的OraBanda绿岩层中,主要以构造晚期Liberty花岗闪长岩为主岩。金矿化沿石英脉状的,左旋的脆性断裂带产出,此断裂带横切Liberty花岗闪长岩和Pleasant山岩床。石英脉的结构表明,与金有关的单脉发育分为2个阶段,高品位矿化局限于第2阶段。矿石矿物包括黄铁矿,黄铜矿、磁黄铁矿、方铅矿、闪锌矿、Au-Ag-Bi-Pb-碲化物和自然金。流  相似文献   

8.
黄典豪  丁孝石  吴澄宇  张长江 《地质学报》1991,65(2):127-140,T001
本矿床是燕山期的热液充填-交代脉状铅-锌-银矿床。其中伴生有综合利用伤值的金、银。金、银主要呈微粒自然金、银金矿、脆银矿、螺状硫银矿、深红银矿、黝锑银矿和自然银产出。金矿物常与辉铋铅矿、自然铋、未命名的Bi_2Te矿物相伴生,包裹于或充填于黄铁矿、铁闪锌矿、含铁闪锌矿和方铅矿的微裂隙中。银矿物通常产于方铅矿、铁闪锌矿和黄铁矿的解理或裂隙内,但不与金、铋矿物伴生。金、银矿化晚于铅、锌矿化,而金矿化相对早于银矿化。  相似文献   

9.
曾志雄 《湖南地质》1998,17(4):251-252,266
本文分析了不同矿石中Ag与Pb、Zn、Cu、S等元素的相关性,并根据银含量变化规律,银矿物组合特征,划分Pb(Zn)-Ag-Sn-Sb和Cu(Mo)-Ag-Te-Bi两个不贩银的矿化组合。  相似文献   

10.
江西盘古山-黄沙黑钨矿石英脉矿床铋硫盐矿物再研究   总被引:6,自引:0,他引:6  
江西于都盘古山-黄沙的铋硫盐矿物的种属较多,前已查明的有17种,其中有未定久铋硫盐矿物2种,主要是PbS-Bi2S3系列和PbS-Ag2S-Bi2O3系列的铋硫盐矿物。  相似文献   

11.
《Ore Geology Reviews》2011,43(1):32-46
Hydrothermal pyrite contains significant amounts of minor and trace elements including As, Pb, Sb, Bi, Cu, Co, Ni, Zn, Au, Ag, Se and Te, which can be incorporated into nanoparticles (NPs). NP-bearing pyrite is most common in hydrothermal ore deposits that contain a wide range of trace elements, especially deposits that formed at low temperatures. In this study, we have characterized the chemical composition and structure of these NPs and their host pyrite with high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), analytical electron microscopy (AEM), and electron microprobe analysis (EMPA). Pyrite containing the NPs comes from two types of common low-temperature deposits, Carlin-type (Lone Tree, Screamer, Deep Star (Nevada, USA)), and epithermal (Pueblo Viejo (Dominican Republic) and Porgera (Papua New-Guinea)).EMPA analyses of the pyrite show maximum concentrations of As (11.2), Ni (3.04), Cu (2.99), Sb (2.24), Pb (0.99), Co (0.58), Se (0.2), Au (0.19), Hg (0.19), Ag (0.16), Zn (0.04), and Te (0.04) (in wt.%). Three types of pyrite have been investigated: “pure” or “barren” pyrite, Cu-rich pyrite and As-rich pyrite. Arsenic in pyrite from Carlin-type deposits and the Porgera epithermal deposit is negatively correlated with S, whereas some (colloform) pyrite from Pueblo Viejo shows a negative correlation between As + Cu and Fe. HRTEM observations and SAED patterns confirm that almost all NPs are crystalline and that their size varies from 5 to 100 nm (except for NPs of galena, which have diameters of up to 500 nm). NPs can be divided into three groups on the basis of their chemical composition: (i) native metals: Au, Ag, Ag–Au (electrum); (ii) sulfides and sulfosalts: PbS (galena), HgS (cinnabar), Pb–Sb–S, Ag–Pb–S, Pb–Ag–Sb–S, Pb–Sb–Bi–Ag–Te–S, Pb–Te–Sb–Au–Ag–Bi–S, Cu–Fe–S NPs, and Au–Ag–As–Ni–S; and (iii) Fe-bearing NPs: Fe–As–Ag–Ni–S, Fe–As–Sb–Pb–Ni–Au–S, all of which are in a matrix of distorted and polycrystalline pyrite. TEM-EDX spectra collected from the NPs and pyrite matrix document preferential partitioning of trace metals including Pb, Bi, Sb, Au, Ag, Ni, Te, and As into the NPs. The NPs formed due to exsolution from the pyrite matrix, most commonly for NPs less than 10 nm in size, and direct precipitation from the hydrothermal fluid and deposition into the growing pyrite, most commonly for those > 20 nm in size. NPs containing numerous heavy metals are likely to be found in pyrite and/or other sulfides in various hydrothermal, diagenetic and groundwater systems dominated by reducing conditions.  相似文献   

12.
The first study of the pyrite composition from gold deposit in the Urals by the LA-ICP-MS method has been carried out. In the pyrite high contents of Au (up to 49 ppm), Ag (105 ppm), and other micronutrients (As (417 ppm), Ag (105 ppm), Co (2825 ppm), Ni (75 ppm), Cu (1442 ppm), and Zn (19 ppm)) were detected. Furthermore, an increase in the concentrations of trace elements from early to later generations of pyrite (from Py-1 to Py-3) Au, Ag, Te, Sn, Te, and Bi and depletion of Co, As, and Ni have been revealed. Gold is mainly concentrated in the pyrite of the second generation (Py-2) and occurs mostly as an “invisible” form with prevalence of nano-sized particles of native Au, similar in composition to electrum AuAg, as well as Au- and Au–Ag tellurides. The presence in the pyrite of admixtures of Cu, Co, Ni, Pb, As, and Te, possibly favors the entrance of Au into it (up to 5–50 ppm), while in common pyrite, poor in the mentioned impurities, the gold content is <1 ppm.  相似文献   

13.
The first data on native silver from the Rogovik Au–Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk–Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold–silver (Au–Ag), silver–base metal (Ag–Pb), and gold–silver–base metal (Au–Ag–Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au–Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag–Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au–Ag–Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au–Ag mineralization not only in the Omsukchan Trough, but also in OCVB as a whole, is caused by superposition of the younger Dogda–Erikit Hg-bearing belt on the older Ag-bearing Omsukchan Trough. In practice, the results can be used to determine the general line of prospecting and geological exploration at objects of this type.  相似文献   

14.
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是一种固体微区分析新技术。用该技术来分析矿床中硫化物的微量元素组成可以为研究成矿流体特征、矿床成因及找矿勘探提供有关的科学信息。文中以安徽铜陵矿集区内新桥Cu-Au-S矿床中的黄铁矿为研究对象,在详细的野外观察和室内鉴定的基础上,将矿床中的黄铁矿分为具有沉积特征的胶状黄铁矿(PyⅠ)、具有变形重结晶和热液叠加作用特征的细粒他形黄铁矿(PyⅡ)和具热液成因特征的中—粗粒自形黄铁矿(PyⅢ)3种类型。LA-ICP-MS原位微量元素测定结果显示,PyⅠ中相对富含Ti、Co、Ni、As、Se、Te;PyⅡ继承了PyⅠ中富含Ti、Co、Ni、As、Se、Te、Bi的特征,同时还含有不均匀分布的少量成矿元素(Cu、Pb、Zn、Au、Ag);PyⅢ中成矿元素Cu、Pb、Zn、Ag、Au以及Bi元素的含量较高,Co、Ni、As的含量较低。在元素赋存状态方面,Co、Ni、As、Se和Te均以类质同象的形式进入到了黄铁矿的晶格中;Bi在PyⅡ中主要以含Bi矿物的微细包裹体形式存在,而在PyⅢ中的Bi还部分取代了Fe而占据了晶格;Cu、Pb、Zn、Au、Ag这些成矿元素中,Cu和Zn分别以黄铜矿和闪锌矿的矿物包裹体存在于黄铁矿中;PyⅡ中所含的少量Au、Ag,可能分别以自然金和自然银的形式存在,而在PyⅢ中Au可能主要以银金矿的形式存在,Ag除了以银金矿的形式存在以外还可能赋存于黄铁矿中含铋的矿物包裹体内;Pb主要赋存于黄铁矿中的方铅矿或含铋矿物的包裹体中。在综合分析黄铁矿的结构形态和微量元素组成特征的基础上认为,PyⅠ型黄铁矿可能形成于前人提出的晚古生代海底沉积或喷流沉积环境,PyⅡ和PyⅢ型黄铁矿分别形成于中生代区域构造变形-热液叠加改造的过渡环境和热液环境,PyⅡ和PyⅢ的形成时间相近。新桥矿床的形成可能经历了晚古生代海底沉积或喷流沉积期和燕山期热液期,胶黄铁矿主要形成于沉积成矿期,而矿床中成矿物质Cu、Pb、Zn、Au、Ag等主要来自燕山期岩浆侵入作用形成的热液成矿系统。  相似文献   

15.
The Beiya deposit, located in the Sanjiang Tethyan tectonic domain (SW China), is the third largest Au deposit in China (323 t Au @ 2.47 g/t). As a porphyry-skarn deposit, Beiya is related to Cenozoic (Himalayan) alkaline porphyries. Abundant Bi-minerals have been recognized from both the porphyry- and skarn- ores, comprising bismuthinite, Bi–Cu sulfosalts (emplectite, wittichenite), Bi–Pb sulfosalts (galenobismutite, cosalite), Bi–Ag sulfosalt (matildite), Bi–Cu–Pb sulfosalts (bismuthinite derivatives), Bi–Pb–Ag sulfosalts (lillianite homologs, galena-matildite series), and Bi chalcogenides (tsumoite, the unnamed Bi2Te, the unnamed Ag4Bi3Te3, tetradymite, and the unnamed (Bi, Pb)3(Te, S)4). Native bismuth and maldonite are also found in the skarn ores. The arsenopyrite geothermometer reveals that the porphyry Au mineralization took place at temperatures in the range of 350–450 °C and at log fS2 in the range of − 8.0 to − 5.5, respectively. In contrast, the Beiya Bi-mineral assemblages indicate that the skarn ore-forming fluids had minimum temperatures of 230–175 °C (prevailing temperatures exceeding 271 °C) and fluctuating fS2fTe2 conditions. We also model a prolonged skarn Au mineralization history at Beiya, including at least two episodes of Bi melts scavenging Au. We thus suggest that this process was among the most effective Au-enrichment mechanisms at Beiya.  相似文献   

16.
在胶东莱州吴一村地区完成的3266.06 m深钻,是目前焦家金成矿带最深见矿钻孔,研究钻孔揭露的深部矿石中金矿物及黄铁矿微量元素特征,对探讨深部成矿作用演化具有重要意义。笔者采取深钻中2420~3206 m垂深的岩(矿)芯样品进行了详细的岩相学和矿相学研究,结合扫描电镜和电子探针微区分析,研究了矿石中金矿物的赋存状态和成分。对不同成矿阶段形成的黄铁矿进行了LA-ICPMS微量元素分析。研究结果表明,深部矿石中载金矿物主要为黄铁矿,其次为石英、黄铜矿、方铅矿,可见金主要以自然金和银金矿的形式存在,以晶隙金和裂隙金为主,其次为包体金。与浅部金矿床比较,深部金的成色较高。黄铁矿分为6种类型,第Ⅰ成矿阶段形成富Co型黄铁矿Py1,第Ⅱ成矿阶段形成富Ni型黄铁矿Py2a和Py2b,第Ⅲ成矿阶段形成富Au、As型黄铁矿Py3a和富Au、Ag、Pb、Bi型黄铁矿Py3b,第Ⅳ成矿阶段形成贫微量元素黄铁矿Py4。其中,Py1和Py2a发生强烈破碎,裂隙表面对热液中的Au络合物产生吸附作用,对金沉淀富集起重要作用。黄铁矿中Co、Ni、As等微量元素主要以类质同象形式赋存,而Au、Ag、Cu、Pb、Zn、Bi等主要以纳米级、微米级矿物包体形式赋存。Pb+Bi、Cu+Pb+Zn、Te+Bi与Au+Ag呈明显正相关,而Au与As相关性较差。黄铁矿中Co、Ni含量较低,而Au+Ag+As或Au+Ag+Pb+Bi+Cu含量较高指示成矿有利。另外,黄铁矿中Co、Ni含量较高,并且破碎强烈,成矿相关元素含量较高也指示成矿有利。  相似文献   

17.
New data on the mineral composition and the first data on the geochemical composition of ores of the Rogovik gold-silver deposit (Omsukchan ore district, northeastern Russia) have been obtained. Study of the regularities of the spatial distribution of ore mineralization shows that the deposit ores formed in two stages. Epithermal Au-Ag ores of typical poor mineral and elemental compositions were generated at the early volcanic stage. The major minerals are low-fineness native gold, electrum, acanthite, silver sulfosalts, kustelite, and pyrite. The typomorphic elemental composition of ores is as follows: Au, Ag, Sb, As, Se, and Hg. The content of S is low, mostly < 1%. Silver ores of more complex mineral and elemental compositions were produced under the impact of granitoid intrusion at the late volcanoplutonic stage. The major minerals are high-Hg kustelite and native silver, silver sulfosalts and selenides, fahlore, pyrite, chalcopyrite, galena, and sphalerite. The typomorphic elemental composition of ores is as follows: Ag, As, Sb, Se, Hg, Pb, Zn, Cu, and B. The content of S is much higher than 1%. The ores also have elevated contents of Mo, Ge, F, and LREE (La, Ce, and Nd). At the volcanoplutonic stage, polychronous Au-Ag ores formed at the sites of the coexistence of silver and epithermal gold-silver mineralization. Their specific feature is a multicomponent composition and a strong variability in chemical composition (both qualitative and quantitative). Along with the above minerals, the ores contain high-Hg gold, hessite, argyrodite, canfieldite, orthite, fluorapatite, and arsenopyrite. At the sites with strongly rejuvenated rocks, the ores are strongly enriched in Au, Ag, Hg, Cu, Pb, Zn, Ge, Se, La, Ce, Nd, S, and F and also contain Te and Bi. The hypothesis is put forward that the late silver ores belong to the Ag-complex-metal association widespread in the Omsukchan ore district. A close relationship between the ores of different types and their zonal spatial distribution have been established. In the central part of the Rogovik deposit, epithermal Au-Ag ores are widespread in the upper horizons, Ag ores are localized in the middle horizons, and rejuvenated polyassociation Au-Ag ores occur at the sites (mostly deep-seated) with ore-bearing structures of different ages.  相似文献   

18.
鸡笼山矽卡岩型金铜矿床是长江中下游成矿带典型的矽卡岩矿床,矿体主要赋存于下三叠统大冶组碳酸盐岩与花岗闪长斑岩接触带内。根据野外观察和镜下鉴定,将成矿过程划分为进矽卡岩阶段、退化蚀变阶段、石英-硫化物阶段和碳酸盐阶段,其中石英-硫化物阶段为金和铜的主要成矿阶段。鸡笼山金铜矿床中不同类型矿石的矿相学观察和电子探针微区成分分析(EPMA)表明,金、银主要以自然金、银金矿、碲银矿、硫银铋矿等形式产出,主要载金矿物为黄铜矿和黄铁矿;同时发现鸡笼山金铜矿床中发育大量碲-铋矿物(如辉碲铋矿、针硫铋铅矿等)。成矿流体物理化学性质研究表明,鸡笼山金铜矿床中金银元素在高温热液中主要以氯络合物的形式运移,随着温度降低和流体进一步的演化,金银元素转变为以硫络合物、碲铋化物熔体等形式运移。在石英-硫化物阶段,由于硫化作用与流体的沸腾作用,流体中硫逸度降低,碲逸度升高;当流体处于黄铁矿-磁黄铁矿氧逸度范围、酸碱性呈中性-弱碱性、碲逸度(logf_(Te2))为-10.7~-8.4、硫逸度(logf_(S_2))为-11.4~-10.6时,金、银、铜元素近于同时沉淀,碲、铋和砷元素对金和银元素运移和富集起到了重要作用,最终形成了鸡笼山矽卡岩型金铜矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号