首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
滑坡碎屑流冲击拦挡结构的离散元模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
拦挡结构可以有效减小滑坡致灾范围、减弱致灾强度。文章以滑坡碎屑流为研究对象,通过对比模型试验和数值模拟结果,校正三维离散元模拟参数,进而研究不同坡脚角度和挡板高度对冲击力、最大水平运动距离的影响。研究结果表明:三个坡脚角度碎屑流冲击力的变化过程存在明显区别,坡脚角度为35°和45°时,冲击力时程曲线经历了两个显著的变化阶段:线性增大、线性减小。而坡脚角度为55°时,碎屑流冲击力时程曲线出现三个变化阶段:线性增加、恒力阶段、线性减小。挡板高度越高,恒力阶段的持续时间越短,冲击力线性减小阶段时间越长。小颗粒(2.5~10 mm)对挡板的冲击效应显著;中等颗粒(10~25 mm)随着挡板高度的增加,对挡板的冲击效应逐渐增大;而大颗粒(25~60 mm)作用在挡板上的冲击效应出现突变,与其他两种颗粒对比,整个运动过程冲击效应不显著。碎屑流的运程随着挡板高度的增加逐渐减小。对比三个坡脚角度下挡板的拦挡效果,坡脚角度α≤45°时,拦挡效果显著。  相似文献   

2.
滑坡碎屑流的能量演化机制涉及复杂的碰撞、摩擦和能量转化,对滑坡灾害的防治具有重要意义。以四川省三溪村滑坡为例,采用离散元法建模,研究了不同土颗粒粒径下滑坡的运动堆积特征、能量演化过程及其对建筑物的影响。结果表明,在不同粒径条件下,滑坡的堆积特征变化不大,但它们对能量转换和建筑物的冲击力有显著的影响。粒径越大,滑坡启动速度越快,峰值动能速度越高,碰撞耗散能量越大,摩擦耗散能量越少。粗粒土中颗粒间距越大,颗粒间的碰撞效应越明显,有利于能量传递,因此,对房屋的冲击力越大。因此,在模拟过程中不能忽视颗粒粒径对滑坡碎屑流动力学特征的影响。这些研究结果揭示了不同粒径土粒在滑坡运动过程中的能量演化机制,为能量演化对建筑冲击的影响提供了初步的认识,可为滑坡碎屑流的防治提供指导依据。  相似文献   

3.
泥石流运动规律及其冲击性能对于泥石流灾害的影响范围及严重程度具有重要决定意义。出于泥石流这类多相介质的复杂性,本文采用离散元仿真软件EDEM 2018对碎屑流冲击流槽试验进行了数值模拟研究,考虑流槽坡度、底部拦挡结构角度以及颗粒级配的影响,在已有研究成果的基础上对固体颗粒运动过程及冲击性能展开了系统研究。本文将数值模拟结果与现存试验数据进行了对比分析,验证了数值模拟方法的可靠性,在此基础上得出了以下结论:(1)在拦挡结构角度与颗粒级配相同的情况下,流槽坡度越大,对应的碎屑流运动速度与冲击力的峰值也越大;(2)在流槽坡度与级配相同的情况下,拦挡结构越陡,与其相互作用的固体颗粒数量越多,碎屑流越快达到速度和冲击力峰值,且对应的速度与冲击力峰值也越大;(3)在运动过程中,各颗粒级配的碎屑流均出现反序现象,且细颗粒含量的提升可提高碎屑流运动速度,但同时冲击力降低,而粗颗粒含量的提升可增大碎屑流对拦挡结构的冲击力,对于运动速度的影响较小。  相似文献   

4.
岩石碎屑流运移堆积过程数值模拟   总被引:2,自引:0,他引:2  
岩石高速远程崩滑是一种特殊的、危害性很大的地质灾害,崩滑后期形成的高速岩石碎屑流具有很高的运移能力,破坏力极强。以岩石碎屑流为研究对象,重点模拟岩石碎屑流形成后,碎屑流的运移堆积过程和最大运移堆积距离。利用二维颗粒离散元数值模拟方法,建立碎屑流二维运动堆积模型,分析了岩石碎屑流初始高度、体积、加速斜面坡度、堆积底面摩擦系数以及堆积底面地表起伏程度对于岩石碎屑流最大运移堆积距离的影响。实验结果显示:岩石碎屑流运移堆积过程体现出了碎屑流物质的离散性和流动性; 碎屑流最大堆积距离随高度、体积、斜面坡度增大而增大; 随堆积底面摩擦系数、堆积底面地表起伏程度增大而减小。  相似文献   

5.
肖思友  苏立君  姜元俊  李丞  刘振宇 《岩土力学》2019,40(11):4341-4351
由坡度和挡墙倾角的改变造成碎屑流冲击力学模型的改变是目前被忽略的问题。在碎屑流冲击倾式拦挡墙物理试验的基础上,利用离散元数值计算方法研究了坡度对碎屑流冲击立式拦挡墙(墙面与地面的夹角为90°)力学特征的影响,依据死区颗粒堆积特征,流动层颗粒冲击特征以及二者的相互作用特征提出了两种新力学模型:由倾斜冲击挡墙向坡面堆积转变的力学模型和考虑流动层对死区冲切摩擦作用的水平直接冲击力学模型。对不同冲击力学模型进行了验证分析,结果表明:坡度和挡墙倾角改变了死区的堆积特征从而改变了流动层的冲击方向和冲击力大小。当坡度小于40°时,碎屑流流动层首先沿死区上覆面倾斜冲击挡墙,在最大冲击力作用时刻,流动在坡面层状堆积,最大法向冲击合力可按静土压力公式估算。随着坡度的增大,在最大冲击力时刻,流动层颗粒直接冲击挡墙,但由于死区颗粒对流动层颗粒具有摩擦缓冲减速作用,大幅降低了流动层对挡墙的直接冲击力。此时死区对挡墙的作用力主要包括3个部分:流动层沿坡面冲击死区,由死区传递至挡墙的冲击力、流动层对死区的冲切摩擦力以及死区自重的静土压力。死区对挡墙作用力占最大法向冲击合力的比例增大至90%左右。当坡度由40°增大到50°时,在最大法向冲击合力作用时刻,流动层对死区的冲切摩擦力占最大冲击力的比例由15%增大到49%,流动层与死区之间的摩擦系数由滚动摩擦系数转变为静摩擦系数。提出的流动层对死区的冲切摩擦力为碎屑流冲击刚性挡墙力学计算模型提供了新的研究思路。  相似文献   

6.
滑体的运动速度、堆积形态、冲击力等因素决定了碎屑流的致灾程度。滑源区不同岩性特征和结构分布的差异导致了滑体粒序分布和颗粒粒径的差异。在运动过程中产生的碰撞、摩擦、跳跃,影响着滑坡碎屑流的致灾程度。在物理模型试验的基础上,运用三维离散元软件PFC3D,探究滑源区粒序分布及颗粒粒径对滑体运动速度、堆积形态、冲击力的影响。研究结果表明:碎屑流中各粒径颗粒的平均速度受颗粒粒径及滑源区初始粒序的共同影响,且初始粒序对各颗粒平均速度影响更大;在堆积形态方面,粒径大小对厚度方向上的粒序排布影响较大,而滑源区粒序分布对单种颗粒的堆积形态影响较大;在颗粒分选作用下,颗粒粒径成为控制峰值冲击力的主要因素,而滑源区粒序分布则通过决定滑体堆积形态控制了准静态堆积阶段碎屑流的冲击力。  相似文献   

7.
青藏高原高山峡谷区常发育崩滑碎屑流,这种灾害具有发育边坡高陡、碎屑流高能且坡脚撞击剧烈等特点。为了解这种碎屑流的运动规律及其堆积特征,设计并建立了自由下落的碎屑集合体撞击与停积过程的模型实验装置。考虑撞击过程对碎屑流运动和堆积的影响,获取不同粒径大小、体积、下落高度条件下,碎屑集合体的运动与堆积图像和定量化数据,并据此观察分析碎屑流的运动规律和堆积特征。主要结论如下:(1)碎屑集合体底部首先撞击地面,随后颗粒挤压形成剪切面,颗粒在剪切面上进行扩散运动并最终堆积。(2)撞击阶段,颗粒之间显著的动量传递作用致使碎屑集合体前缘颗粒运动速度较快、距离更远,并产生离散堆积现象。(3)自堆积重心至边缘,碎屑集合体的堆积厚度逐渐减小;堆积形态在运动初期呈近圆形,最终形态呈近菱形;运动中的力学过程导致出现横向脊和X型共轭脊现象。(4)碎屑集合体的粒径越小,体积越大,其主体运动距离、主体覆盖面积越大以及运动速度越快;体积与最大堆积厚度呈正相关关系;下落高度越小,其最大堆积厚度越大,运动速度越慢,与主体覆盖面积大体上呈负相关关系。(5)体积条件对碎屑集合体的堆积特征影响最大,粒径大小其次,下落高度影响最小。该研究可为川藏铁路沿线的工程结构设计及碎屑流的防治工作提供理论基础。  相似文献   

8.
基底刮铲效应对岩石碎屑流停积过程的影响   总被引:2,自引:0,他引:2  
岩石碎屑流在运移停积过程中,对运移路径存在强烈的刮铲效应。首先分析总结了碎屑流基底刮铲效应的特征,然后采用二维颗粒离散元模拟方法模拟岩石碎屑流水平基底上刮铲。模拟试验证明了基底刮铲效应可以增强岩石碎屑流在水平面上的运移停积能力。通过进一步研究水平基底物理力学性质和分层情况对刮铲效应和岩石碎屑流运移过程的影响,证明了减小基底物质的强度会增强刮铲效应,但基底表层松散堆积物质低密度、低强度的特点才是影响岩石碎屑流最大运移堆积距离的关键因素,并具有类似润滑剂的特性;相对地,基底底层高强度、高密度物质的强度变化对最大运移距离影响很小。  相似文献   

9.
以高位泥石流、碎屑流区桩梁组合新型拦挡结构为研究对象, 在总结已有桩梁组合结构的基础上, 运用颗粒流分析仿真程序、通用显示动力分析程序分别对碎屑流冲击下单排、多排桩林及桩梁组合结构拦挡效果、不同位置桩梁组合结构拦挡效果对比模拟以及桩梁组合结构受力特征模拟研究, 探讨了拦挡结构阻挡后碎屑流堆积特征和结构应力传递特征。计算结果表明: 碎屑流中较大粒径颗粒与拦挡结构、两侧沟道边界接触形成的桩-巨石力链拦挡效应可有效阻挡、迟滞后续碎屑流运动, 桩梁组合结构桩-巨石力链拦挡效应最佳; 第一排桩和第二排桩之间改流区进一步抑制了碎屑流速度; 桩梁组合结构在设计布置位置时, 一方面要考虑在碎屑流启动、势动转换过程中尽早抑制碎屑流速度, 另一方面仍需重视库容的设计, 谨防跃顶造成部分碎屑流逃逸, 在上述二者之间选择最优解进行位置布置; 碎屑流巨石冲击桩梁组合结构时, 冲击应力将通过连梁分散传递到后排桩, 连系梁两端连接部分的应力几乎达到屈服强度, 需加强配筋。   相似文献   

10.
以2019年贵州水城“7.23”滑坡为例,采用现场调查、无人机航测和数值模拟技术,分析了滑坡的运动过程和冲击铲刮特征,结果表明:(1)水城“7.23”滑坡属典型的高位远程滑坡,滑体高位启动后冲击下方凸起山脊,铲刮地表残坡积土层,并解体形成碎屑流,最大铲刮深度可达11 m;(2)模拟结果显示,滑坡运动最大速度为30 m?s-1,最大动能达8 900 kJ,铲刮体积达46×104 m3,最终体积为116×104 m3,灾害放大效应明显;(3)水城滑坡的冲击铲刮过程可分为冲击嵌入→剪切推覆→裹挟混合三个阶段。   相似文献   

11.
曾超  苏志满  雷雨  余健 《岩土力学》2015,36(7):1923-1930
开展了密度为1 400~2 200 kg/m3的泥石流浆体、浆体与大颗粒混合流体的冲击力试验,获取了流速为2.8~4.9 m/s条件下31组冲击力试验数据。采用小波分析方法有效地去除了冲击力数据中的噪声信号,依据离散傅里叶变换(FFT)为基础的频谱分析结果,将低频泥石流浆体冲击和高频大颗粒冲击的临界频率值界定为2 Hz,实现了浆体和大颗粒冲击信号的分离。目前水动力学公式中待定系数α缺乏统一的确定方法,以不同地区157组泥石流观测和试验数据为基础,建立了待定系数?与流体Fr数的幂函数关系,形成可表征不同流态,且弱化尺度效应的浆体动压力计算公式。与泥石流浆体平滑信号相比,大颗粒冲击压力具有一定随机性。泥石流大颗粒冲击次数与频率随大颗粒的质量比增加而增大,其质量比从0.05增至0.21时,冲击总次数从1 305次增至2 838次,冲击频率从82次/s增至195次/s,且龙头段大颗粒的冲击频率高于后续泥石流体。测得大颗粒的压力约为60 kPa,是相同密度和流速下浆体动压力的3倍。随着大颗粒比例的增加,上部1#和2#传感器测得大颗粒冲击频率增加量明显高于下部3#~6#。说明随着流体中大颗粒比例上升,颗粒物质多集中于泥石流上部或表层运动,也佐证了泥石流运动中大颗粒多集中在龙头顶部的认识。对大颗粒和浆体冲击规律的分析可为固液两相流运动机制研究和防治工程设计以及承灾体易损性定量评估提供合理参数。  相似文献   

12.
This paper presents a unified modeling framework to investigate the impacts of debris flow on flexible barriers, based on coupled computational fluid dynamics and discrete element method (CFD‐DEM). We consider a debris flow as a mixture of fluid and particles where the fluid and particle phases are modeled by the CFD and the DEM, respectively. The fluid‐particle coupling is considered by the exchange of interaction forces between CFD and DEM calculations. The flexible barrier is simulated by the DEM as a network of bonded particles with remote interactions. The proposed coupled CFD‐DEM approach enables us to conveniently handle the complicated three‐way interactions among the fluid, the particles, and the flexible barrier structure for debris flow impact simulations. The proposed approach is first used to investigate the influences of channel inclination and the volumetric solid fraction in a debris mixture on the impact force, the resultant deformation, and the retained mass in a flexible barrier. The predictions agree well with existing experimental and numerical studies. We further examine the possible failure modes of a flexible barrier under debris flow impact and their underlying mechanisms. The performance of different components in a flexible barrier system, including single wires, double twists and cables, and their load sharing mechanisms, are carefully evaluated. The proposed unified framework offers a novel, promising pathway towards physically based, quantitative analysis and design of flexible barriers for debris flow mitigation.  相似文献   

13.
王东坡  张小梅 《岩土力学》2020,41(12):3851-3861
Dam foundation is subjected to a larger impact force when debris flow runs up, causing stress concentration and local impact failure. To address this problem, in this study the vertical structures are optimized into arc-shaped dams. Based on the principle of momentum and energy conservation, the theoretical calculations of the impact process of debris flow and arc-shaped dam are carried out, and the formulas of impact force and maximum run-up height of debris flow are deduced. The theoretical formulas are verified through a series of physical model tests of debris flow impact arc-shaped dam. The results show that the results of the physical model are highly consistent with those of the theoretical calculations, indicating that the proposed theoretical formulas are applicable in the calculation of the impact of debris flow on arc-shaped dam. The debris velocity, impact force and the maximum run-up height are proportional to the flume slope of debris flow. The impact force and the maximum run-up height are mainly controlled by Froude number(Fr), flume slope(?), and arc-shaped radius(R). Both the impact force and the maximum run-up height have quadratic relationships with the Froude number, and are inversely proportional to the cosine of the flume slope. Compared with the rigid vertical structures, the arc-shaped dams have no signicicant influence on the maximum run-up height, but it can reduce the normal impact force on the dam considerably, and the structure strength can also be enhanced by the strengthening of local structure. This study provides a theoretical and technical support for the dam structure design.  相似文献   

14.
中国公路泥石流研究   总被引:4,自引:0,他引:4  
公路泥石流是指发育于公路沿线并对公路桥涵、路基路面及相应防护结构具有冲击毁损和淤埋破坏的病害类型。丰富的物源、具有焚风效应的气象条件以及泥石流沟轴线与区域新构造应力场主压应力方向一致等是形成大型泥石流的宏观背景。将泥石流概化为固、液两相流体,运用两相流理论、泥沙运动力学、Bingham流变方程和Bagnold颗粒相互作用试验结果等,初步建立了泥石流固-液分相流速计算方法、基于泥石流在防治结构表面及泥石流沟岸产生的冲击形迹建立的反求泥石流冲击力计算方法以及泥石流磨蚀力计算方法。开发了速流结构、泥石流隧道及翼型墩汇流结构等10余种防治技术,集成了拦-汇-排等多种综合治理模式。据此撰写了《公路泥石流防治工程设计、施工指南》。实施了60余个防治工程。效果显著。研究成果初步构建了公路泥石流理论及技术体系。  相似文献   

15.
国内外泥石流活动关键指标估算方法之比较   总被引:1,自引:0,他引:1       下载免费PDF全文
泥石流流体容重、流速、冲击力是表征泥石流活动特征众多指标中的三个关键指标.本文在分析国内外对这些指标评估现状的基础上,总结了应用较普遍的估算公式,对比了不同公式的特点及其适用性.比较结果认为:由于泥石流组成和运动状态的复杂性以及影响因素的多样性,对于这三个指标,目前的估算公式都不具有普适性.在当前的认知水平下,建立基于各个地区泥石流特点的指标估算经验公式是最为实用的途径.在各个指标经验公式的建立方法上,考虑各个粒组的多变量容重统计分析方法相对较为合理;泥石流流速估算公式的建立途径在我国、前苏联和欧美国家之间有显著差异,前二者基于曼宁公式,后者基于强迫涡流公式、以弯道超高为主要参数;泥石流冲击力的估算方法国内外都以动量理论为基础,区别主要体现在经验系数取值上,巨石冲击力的计算则都考虑了拦挡建筑物的特点.  相似文献   

16.
文中通过模型试验,对试验现象中泥石流启动模式和堆积特征进行观测,研究了贺兰山苏峪口泥石流的形成受沟床坡度、土体含水率、粗颗粒含量三个因素影响的状况,初步探讨了贺兰山东麓泥石流在三个因素影响下的变化情况,试验结果表明:三个因素对泥石流影响由大到小分别是粗颗粒含量,沟床坡度、土体含水率;且粗颗粒含量越低、沟床坡度越大、含水率越高越容易发育泥石流。细颗粒含量较高时,泥石流的类型为沟道侵蚀型,粗颗粒含量较高时,泥石流类型为堵溃型。  相似文献   

17.
On 13 August 2010, significant debris flows were triggered by intense rainfall events in Wenchuan earthquake-affected areas, destroying numerous houses, bridges, and traffic facilities. To investigate the impact force of debris flows, a fluid–structure coupled numerical model based on smoothed particle hydrodynamics is established in this work. The debris flow material is modeled as a viscous fluid, and the check dams are simulated as elastic solid (note that only the maximum impact forces are evaluated in this work). The governing equations of both phases are solved respectively, and their interaction is calculated. We validate the model with the simulation of a sand flow model test and confirm its ability to calculate the impact force. The Wenjia gully and Hongchun gully debris flows are simulated as the application of the coupled smoothed particle hydrodynamic model. The propagation of the debris flows is then predicted, and we obtain the evolution of the impact forces on the check dams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号