首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 906 毫秒
1.
我国一些地区海绿石的矿物学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张乃娴 《地质科学》1981,(4):376-383
本文对七个地区的海绿石矿物学特征进行了较详细地研究,并讨论了它们之间的变化关系。海绿石样品采集地点和层位见表1。  相似文献   

2.
陈瑞君 《地质科学》1980,15(1):65-75
海绿石矿物一般是在正常盐度的浅海环境中生成,可作为良好的指相矿物。在无化石的地层中海绿石可用来测定同位素年龄、进行地层对比和解释地层间断。此外,海绿石也可作为储油层沉积环境的综合指标之一。 本文通过各种方法对我国某些地区砂岩类型的自生海绿石的矿物学特征作了综合系统的研究。试图通过从已知到未知、从现代到古代作对比,对松辽盆地的某些储油层段相环境的确定,提出必要的实际资料,进而来讨论它们的沉积环境。  相似文献   

3.
关于东海现代沉积物中的海绿石,前人曾有过报道,但都限于一般性的描述。近年来我们对东海表层沉积物中的海绿石进行了较为系统的研究,工作范围为东经121°-129°,北纬26°30′-32°00′,样品233个。分别进行了镜下鉴定、透射电镜和扫描电镜观察,并以多晶X-射线衍射法,化学全分析、差热分析、红外吸收光谱和电子探针等方法进行较系统的矿物学研究。本文就东海表层沉积物中海绿石的矿物学特征,产状及分布进行阐述,并对其成因作了初步的探讨。  相似文献   

4.
对“指相矿物”海绿石的重新认识   总被引:3,自引:0,他引:3  
长期以来,海绿石一直被认为是在特定海洋条件下形成的自生矿物,被作为海相标志,随着陆相海绿石的不断发现,有必要对这一观点进行重新认识。本文通过对不同地区、不同环境中的海绿石的统计研究认为:海绿石既可以形成于海洋环境,也可以形成于陆相湖泊环境,海绿石不能作为海洋环境的指相矿物;一般来说,形成于陆相湖泊环境的海绿石与形成于海洋环境的海绿石相比,在化学成分上具有Al2O3、K2O含量高而FeO含量低的特点  相似文献   

5.
符俊辉 《地质科学》1983,(4):414-417
梁山位于陕西省汉中市附近,属西南地台的北部边缘。1979年,我系陈润业教授带领学生在梁山大南沟实习,于下寒武统郭家坝组底部,厚度不到1米的含海绿石土黄色灰质砂岩及灰白色砂质灰岩中,首次发现了小壳动物化石(图1),并提出了梁山地区有相当于梅树村期沉积的可能性。  相似文献   

6.
海绿石作为一种典型的海相形成物已为人们普遍承认。但是,关于海绿石的形成模式,特别是不同化学类型海绿石的形成模式,至今还很少有所报道。苏联学者卡扎科夫最近对高加索山前地区和大高加索北山坡亚普第一阿尔俾时期的早—中自垩世古盆地不同相带中的海绿石进行了系统的研究。根据研究结果,提出如下不同化学类型海绿石的形成模式: 铁以与有机物络  相似文献   

7.
海绿石相沉积物中的自生海绿石的形成与超覆于河流沉积体系之上的浅海环境(相)关系密切。不论下伏沉积物的性质如何,再造的海绿石沉积物普遍发育。长岸滨流可能是形成“近位成因的再造海绿石”球粒的动力。在埃及、约旦和科威特等国的石炭系中,经常有关于含自生海绿石沉积物河流沉积物覆盖的报导。埃及北缘的始新统—渐新统出露良好,使作者得以研究海绿石相组合的释化规律。  相似文献   

8.
海绿石是海洋环境中一类重要的自生矿物,在古环境研究方面具有广泛的应用。基于中国陕南地区埃迪卡拉纪陡山沱组下部海绿石的分布特征,对其开展了综合的岩相学、原位微区成分定量分析、X-射线衍射(XRD)分析等研究,旨在探讨海绿石的形成机制,剖析研究区埃迪卡拉纪早期的氧化还原环境。偏光显微镜和扫描电镜(SEM)观察结果表明,海绿石多以胶体沉淀物的形式充填于石英、长石等碎屑矿物颗粒之间的孔隙中,为早期成岩阶段自生沉淀成因。由于海绿石的形成需要Fe(Ⅱ)和Fe(Ⅲ)的同时存在,Fe氧化还原界面附近(次氧化)最有利于海绿石的发育,因此研究区陡山沱组下部海绿石的形成指示了次氧化的孔隙水条件。能谱(EDS)定量分析表明,研究区陡山沱组的海绿石具有高K2O和Al2O3、低Fe2O3含量,该化学组分是前寒武纪海绿石的典型特征。碎屑矿物溶解及海水与孔隙水之间的物质交换提供了海绿石演化过程所需的元素。与贵州瓮安地区同时期的含海绿石地层相比,研究区海绿石的分布层位相对局限,表明古海水氧化还原环境和古地理环境...  相似文献   

9.
海绿石是海相沉积的指相矿物,通常形成于海进系列,与低的沉积物供应速率有关。本文利用岩相和扫描电子显微镜(SEM)对样品进行了详细的观察,并运用X射线粉晶衍射(XRD)、傅立叶变换红外吸收光谱(FTIR)、电子探针微分析(EPMA)等技术,对藏西南札达县波林地区夏拉剖面中的海绿石砂岩和含海绿石灰岩样品进行了系统的分析与研究。上述分析表明砂岩和灰岩中的海绿石均为高演化的海绿石,砂岩中的海绿石为原地海绿石,而灰岩中的海绿石则源于下伏砂岩。通过沉积环境分析和区域地层对比,笔者等认为札达地区砂岩中海绿石的出现可能与Albian晚期印度大陆从澳大利亚—南极大陆的彻底裂解而造成的该地区的海进有关。持续的海进过程导致了该地区高演化的海绿石的形成。  相似文献   

10.
天津蓟县剖面中元古界铁岭组二段叠层石灰岩中普遍发育海绿石。野外观察表明,海绿石主要分布在叠层石柱体间的泥晶灰岩中,呈薄膜状富集在叠层石鞘外缘;微观特征分析表明,海绿石呈不规则状的胶体形式,显示了原地海绿石的基本特点。电子探针的组分分析表明,铁岭组中的海绿石为中成熟度的海绿石。由于产在潮下高能柱状叠层石灰岩中,铁岭组中的海绿石并不反映低沉积速率或沉积间断的沉积条件,与现代海绿石的形成环境具有明显的差异。因此,中元古界铁岭组叠层石灰岩中的中成熟度原地海绿石是特殊沉积背景下的独特产物,为研究海绿石在地质历史时期产出的多样性提供了一个重要实例。  相似文献   

11.
海绿石是一种富钾、富铁的含水层状铝硅酸盐矿物,在沉积学领域常被作为一种普遍的指相矿物。多年研究的结果表明,现代海绿石主要形成在慢速、弱还原的较深水环境中,而且还可以作为"凝缩段"的识别标志之一。天津蓟县剖面中元古界铁岭组第二段灰岩中的海绿石,产在高能叠层石岩礁之中,主要以胶体形式富集在叠层石和均一石的边界上,代表较为典型的原地海绿石;较高的氧化钾含量(大于8%)而显示出高成熟海绿石的特点。很明显,铁岭组二段灰岩中的原地高成熟海绿石,不但不能作为"凝缩段"的识别标志,而且也不是长时间地层间断的产物。由于形成在正常高能浅海环境,而且处于中元古代末期,与现代沉积中的海绿石存在较大的差异,可能代表了中元古代末期的正常浅海还处于含氧量不够充分的弱还原状态,最终使铁岭组灰岩中的海绿石成为前寒武纪海绿石产出的一个典型代表,也间接的表明了在漫长的地质历史演变过程中海绿石产出的多样性特点。  相似文献   

12.
海绿石以独特的绿色自生色和球粒形状与围岩形成明显反差,关于其成因、演化、沉积和地层学意义目前存在3种普遍被认可并被采用的观点:海绿石是典型的海相沉积自生矿物,原地海绿石是“慢速、弱还原、较深水环境”的典型指相矿物之一;通常是海侵相的产物,含海绿石的地层在浅海沉积中常被作为海侵时期“凝缩段”及其相关沉积的识别标志之一;是沉积年代学中K-Ar、40Ar/39Ar年龄理想的测定对象。在采用海绿石作为典型指相矿物的过程中,应注意海绿石可以形成于多种沉积环境中,只有原地海绿石才能作为海侵时期“凝缩段”及其相关沉积的识别标志;海绿石年龄往往呈“年轻化”或“老化”,没有火成岩定年准确,只有成熟、富钾的海绿石才是最好的定年对象。  相似文献   

13.
徐勇航  赵太平  陈伟 《沉积学报》2010,28(4):671-675
海绿石是一种富钾、富铁的含水层状铝硅酸盐矿物,一般形成于慢速、弱还原、较深水的环境中,在沉积学领域常被作为指示海相的矿物。华北克拉通南部熊耳—中条拗拉谷中广泛发育的古元古界熊耳群,是华北克拉通结晶基底形成后规模最大、涉及范围最广的火山活动产物。该群以火山熔岩占绝对优势,沉积岩和火山碎屑岩主要分布在大古石组及马家河组,仅占地层总厚度的4.3%。晋南垣曲地区的马家河组砂岩中发现原生的海绿石,为探讨熊耳群火山岩的形成环境提供依据。分析显示,熊耳群中的海绿石大部分K2O含量大于8%,具有高成熟度海绿石的特点。发育海绿石砂岩的元古宙地层和岩相学特征,反映其形成于高能的浅海环境,明显不同于现代海绿石的形成环境。华北克拉通南部在熊耳群早期就开始有海侵事件,随着熊耳—中条拗拉谷的发育,海侵作用增强。马家河组中原生海绿石的存在直接地指示了晋南地区在熊耳群晚期为海相环境。  相似文献   

14.
Iron and phosphorite ores are very common in the geological record of Egypt and exploitable for economic purposes. In some cases these deposits belong together to the same geographic and geologic setting. The most common deposits include phosphorites, glauconites, and iron ores. Phosphorites are widely distributed as a belt in the central and southern part of Egypt. Sedimentary iron ores include oolitic ironstone of Aswan area and karstified iron ore of Bahria Oasis. Glauconites occur in the Western Desert associated with phosphorites and iron ores. As these ores are exploitable and phosphorus in iron ores and iron in phosphorites are considered as gangue elements, the iron–phosphorus relationship is examined in these deposits to clarify their modes of occurrences and genetic relationship based on previously published results.Phosphorus occurs mainly as carbonate fluorapatite (francolite). Iron, on the other hand, occurs in different mineralogical forms such as glauconites, hematite, limonite and goethite.In P-rich rocks (phosphorites) no relationship is observed between iron and phosphorus, which in turn indicates that the FeP model is unlikely to interpret the origin of the late Cretaceous phosphorites and the association of phosphorites and glauconites in Egypt. In Fe-rich rocks (iron ores and glauconites) also no relationship between iron and phosphorus is observed. The present work, therefore, does not support the hypothesis that there is a genetic relationship between phosphorus and iron in sedimentary rocks.  相似文献   

15.
莱河矿于1976年在中国辽宁省的磁铁矿床中首次被发现,许多人对它进行过研究。该矿物为黑色、不透明,化学式为Fe0.582+Fe1.03+Mg0.03Si0.96O4,虽然它的晶体结构近似于橄榄石,但已确定为单斜晶系,空间群为P21/b。本文作者利用X射线、电子探针、高分解能透过电子显微镜对该矿物进行了系统的研究,发现它具有假双晶、超结构和显微条纹结构。  相似文献   

16.
Textural, mineralogical and chemical data are presented for glauconites and illites from the Lower Cretaceous Glauconitic Sand Formation, Alberta, Canada. Single crystal analyses by scanning transmission electron microscopy (STEM) indicate that both glauconite (29 analyses) and illite (44 analyses) correspond very closely to ideal dioctahedral structures. Al dominates the octahedral sheet in illite. Very extensive A1 for FeIII substitution was also found in some of the glauconites, much more than previously recorded. The dioctahedral mica structure is clearly very stable and flexible with respect to A1 for FeIII substitution. Iron-poor glauconites were found associated with pyrite. We believe that glauconites tend to lose iron progressively during burial diagenesis, especially where pore water iron activities are low (high HS? activity and low Eh). It seems probable that A1 for Si tetrahedral substitution also takes place during diagenesis with consequent loss of swelling properties. This is the same trend which is responsible for conversion of smectite to illite. Glauconite forms only where sediments reside for lengthy periods at the interface between oxidizing and reducing environments, where Fe3+ is transiently available in solution. Related marine and terrestrial nontronites also form only in similar ‘interface’ environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号