首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Within the Caledonian complexes of northwestern Spitsbergen, high PT formations provide U---Pb zircon ages of 965±1 Ma of a metagranite and 955±1 Ma of a corona gabbro, indicating the influence of Grenvillian activity in the area. Various isotopic systems suggest that these rocks were partially derived by reworking of ancient crust (as old as Archaean). Eclogites and felsic agmatite indicate latest Proterozoic magmatic or metamorphic events (625−5+2 and 661±2 Ma, respectively) by U---Pb zircon dating. The eclogitic metamorphism age is not fully constrained and ranges between 540 and 620 Ma; this occurred prior to the superimposed Caledonian metamorphism, indicated by a part of the K---Ar and Rb---Sr mineral cooling ages. The new data and other evidence of Precambrian tectonothermal activity on Svalbard suggest that the Early Palaeozoic and Late Proterozoic successions exposed elsewhere on Svalbard may also be underlain by Grenvillian or older basement rocks. Relationships to other Grenvillian and older terrains in the Arctic are reviewed.  相似文献   

2.
A. Lidh  H. Schberg  K. Annertz 《Lithos》1994,31(3-4):65-79
Rb---Sr whole-rock and zircon U---Pb isotopic work is reported from the northern part of the region between the Mylonite and Protogine Zones in the southern Baltic Shield. Three age determinations on polymetamorphic gneissic granites were carried out. Two of these yielded U---Pb upper-intercept ages of 1650 and 1675 Ma, respectively, which is approximately one hundred Ma less than expected from the combined field evidence and earlier isotopic age determinations. Although the new discordias appear well defined, various criteria suggest that the U---Pb isotope system was disturbed. Thus, the Rb---Sr system had been opened, but nevertheless the Rb---Sr errorchrones are consistent with the U---Pb upper-intercept ages, and an abraded zircon fraction suggests an older age than the unabraded fractions. The third U---Pb age determination resulted in a poorly constrained discordia. Its upper intercept ranges between 1575 and 1605 Ma, depending on the number of fractions considered.

This paper tests a three-stage model, where the intrusion age is set identical to the 1780 Ma intrusion age of the undeformed assumed protolith. The first two analysed rocks are consistent with a model suggesting intrusion at 1780 Ma followed by partial opening of the isotopic systems early (1200 Ma) and late (950 Ma) during the Sveconorwegian orogeny. An abraded fraction together with the time of the suggested last opening of the system 950 Ma ago defines a two-point discordia with an upper-intercept age of 1745 Ma. This age is in close agreement with the assumed intrusion age. The isotope data from the third gneissic granite cannot be fitted to this simple model.

It is concluded that the analysed rocks could belong to the granitoids of the Transscandinavian Igneous Belt, but if they do, they were reworked during the Sveconorwegian orogeny. As a corollary, it follows that the regions separated by the northern part of the Protogine Zone largely had a common pre-Sveconorwegain geological history. Another important implication is that the intrusion ages in the area between the Mylonite and Protogine Zones are older than those of the Trans-Labrador Batholith in Canada.  相似文献   


3.
Supracrustal and meta-igneous rock units from the ruby mine area of the Harts Range, eastern Arunta Inlier, central Australia, have been dated by the zircon U---Pb and Rb---Sr total-rock (TR) and mica methods. A well-defined zircon discordia for a weakly deformed specimen of the Bruna granite gneiss yields an age of emplacement of 1748−4+5 Ma, thereby constraining the minimum age of the Irindina supracrustal assemblage. Metapelitic gneiss within the supracrustals and a meta-igneous ultramafic boudin from the associated Harts Range meta-igneous complex yield highly discordant zircon data, revealing a strong early Palaeozoic overprint. Rb---Sr TR data from anorthositic gneisses associated with the ultramafic boudin are highly disturbed, also apparently during the lower Palaeozoic. However, Rb---Sr model age calculations and the zircon U---Pb data suggest a maximum age of about 2000 Ma for the supracrustal and meta-igneous rocks, and argue for new Proterozoic crust formation.

Zircon U---Pb data from a deformed pegmatite, emplaced in the meta-igneous complex, yield an emplacement age of 520−4+5 Ma, further pointing to Lower Palaeozoic magmatism and deformation. Correlations of U content and calculated 206Pb/238U age for the ultramafic boudin zircons suggest that new growth of low-U zircons occurred during retrogression associated with this event. The Sr-isotope systematics of the anorthositic gneisses can also be interpreted in terms of introduction of Palaeozoic Sr. Our data suggest lower Palaeozoic (possibly Delamerian) tectonothermal activity to be more important in the evolution of the Harts Range area than previously recognised.

On the other hand, Rb---Sr mica ages for deformed and undeformed pegmatites, and TR isochrons for the latter, show that pervasive tectonothernal activity had ceased by about 315 Ma and that regional cooling occurred between about 345 and 325 Ma. Local shear-zone biotite resetting may have persisted to about 300 Ma, consistent with the previously recognised Alice Springs Orogeny. Possible dilational Pb loss in the Bruna zircons occurred at about 103 Ma.  相似文献   


4.
A. Kühn  J. Glodny  K. Iden  H. Austrheim 《Lithos》2000,51(4):423-330
The Lindås Nappe, Caledonides W-Norway was affected by two major tectonometamorphic events. A Precambrian granulite facies event at T=800–900°C, P<10 kbar was followed by localized Caledonian eclogite facies (T=650–700°C and P>15 kbar) and localized amphibolite facies reworking. During the granulite–eclogite facies transition, anorthositic rocks were converted from garnet granulites to kyanite eclogites, while phlogopite-bearing spinel lherzolite reacted to garnet lherzolite. The eclogite and amphibolite facies reequilibration took place along shear zones and fluid pathways. In the unhydrated and undeformed parts, the minerals preserved their granulite facies composition with constant Fe/Mg ratios from core to rim, suggesting diffusional reequilibration. Rb/Sr age dating was carried out on relict granulite facies minerals from three lenses of ultramafites (Alvfjellet, Hundskjeften and Kvamsfjellet). Phlogopite from phlogopite lherzolite at Alvfjellet give 857±9 Ma, while clinopyroxene, amphibole, phlogopite and whole rock from a lherzolite at Hundskjeften yield an age of 842±12 Ma (MSWD=1.9). Clinopyroxene, feldspar, orthopyroxene phlogopite and whole rock from websterite, Kvamsfjellet, yield an age of 835±7 Ma (MSWD<1), while clinopyroxene, phlogopite and whole rock from a lherzolite from the same lens gives a result of 882±9 Ma. These results are interpreted as minimum ages for the granulite facies event and only slightly younger than, or overlap with previous U–Pb zircon ages (929±1 Ma) and Sm–Nd garnet–pyroxene ages (890–923 Ma) interpreted to date the end of the granulite facies event. By contrast, ages obtained for the eclogite and amphibolite facies range from 460 (U–Pb, sphene), 440 (Ar–Ar), 419 (U–Pb, zircon) to 410 Ma (Rb/Sr mineral ages).

These results demonstrate that the reopening temperature for the Rb/Sr system in phlogopite–biotite under dry and static high-pressure conditions is, in the given mineral assemblages, at least 650°C, considerably higher than the 300–400°C assumed as the closure temperature of this system. We ascribe this elevated reopening temperature to fluid absent conditions that prevented element transport and rehomogenization.  相似文献   


5.
Fernando Corfu 《Lithos》1980,13(4):305-323
U---Pb analyses of zircon, monazite and sphene as well as Rb---Sr analyses of whole rocks and minerals have been carried out in an attempt to elucidate the evolution of the Precambrian shield underlying the Caledonian Jotun-nappe in central southern Norway. The earliest event recognized in the area is a high grade metamorphism at 1518 ± 17 m.y. which followed intense magma formation, igneous activity, erosion and sedimentation over a period of maximum 300 m.y. The Sveconorwegian cycle is characterized by the intrusion of two anatectic magma generations at 1014 ± 35 m.y. and 930±10 m.y. that disturbed and partly reset the isotopic systems of the country rocks. A post-magmatic fracturing stage at 875 m.y. concludes this cycle. Rb---Sr mineral systems were not completely equilibrated in the undeformed shield during the Caledonian event in contrast to new grown minerals in strongly deformed overlying Lower Paleozoic sediments which record the main deformation at 384±18 m.y. Zircon lower intercept ages ranging between 330–370 m.y. show that lead loss of zircon in rocks subjected to low grade metamorphic conditions may be the result of such processes as annealing, alteration, dilation or a combination of them.  相似文献   

6.
The Labrieville anorthosite massif (LBV) is found in the Central Granulite Terrain of the Grenville Structural Province, but it displays no evidence of post-emplacement deformation or metamorphism, implying intrusion following peak Grenvillian metamorphic conditions. We report U---Pb zircon dates of 1008±3.4 Ma for border leucogabbro and 1010±5.6 Ma for a cogenetic jotunite dike intruding anorthosite. We interpret these dates as igneous crystallization ages, and regard 1010 Ma as a reasonable estimate of the emplacement age for LBV. LBV is thus the youngest massif anorthosite yet recognized in North America, and its age is consistent with late-tectonic emplacement relative to the 1.1-1.0 Ga Grenville Orogeny. We also report a U---Pb date of 1015±1.8 Ma for metamorphic zircon in a country rock amphibolite. This could reflect the age of Grenvillian regional metamorphism, or perhaps a later heating episode resulting from the intrusion of numerous “late” felsic plutons in this area.

Rb---Sr, Sm---Nd and U---Th---Pb isotopic compositions for four rock types (anorthosite, jotunite, leucogabbro and a plagioclase megacryst) span narrow ranges in each case, consistent with comagmatism among these units. ISr (T=1010 Ma) range from 0.7032–0.7034 and are among the lowest yet reported for anorthosite in the Grenville Province. Initial εNd-values are positive (+0.8 to +2.5), like other Grenville anorthosites. Pb-isotopic compositions lie near the model mantle evolution curve of Zartman and Doe (1981), implying no involvement of significantly older crust in the petrogenesis of these rocks. Collectively, these data suggest a source for LBV in the mantle or mafic lower crust. LBV is a compositionally extreme anorthosite characterized by alkalic plagioclase (An32Or12) and high levels of Sr (2000 ppm) and Ba (1000 ppm). These properties cannot be attributed to simple crustal contamination of mantle-derived basalt. We suggest, alternatively, that LBV's compositional features may be linked with its late-tectonic character, perhaps reflecting partial melting of mafic lower crust brought about by crustal thickening during the Grenville Orogeny.  相似文献   


7.
A high-pressure, relatively low-temperature metamorphic complex is exposed at Motalafjella, Spitsbergen. White mica concentrates from the complex record variably discordant 40Ar/39Ar age spectra in which apparent ages systematically increase throughout low-temperature portions of the analyses and define intermediate- and high-temperature plateaux. Phengitic concentrates record plateau ages of c. 470 Ma whereas paragonitic concentrates yield c. 460 Ma plateaux. These ages are interpreted to date diachronous cooling through different argon closure temperatures following the high-pressure metamorphism. The slight discordance displayed in low-temperature portions of the experiments is interpreted to reflect a partial rejuvenation of intracrystalline argon systems during an c. 400–425 Ma thermal overprint associated with late Caledonian tectonothermal activity. White mica concentrates and associated whole-rocks yield Rb---Sr mineral + whole-rock ages from 457 ± 11 Ma to 474 ± 11 Ma. These are interpreted to date post-metamorphic cooling through Sr blocking temperatures. Because similar ages are recorded by both K---Ar and Rb---Sr isotopic systems, relatively rapid post-metamorphic cooling is implied. This and relatively rapid depressurization during uplift indicate that the 40Ar/39Ar and Rb---Sr mineral ages likely closely date the peak metamorphism.

The high pressure complex is unconformably overlain by variably cleaved, Upper Ordovician-Lower Silurian flysch which was deformed into regional recumbent folds prior to deposition of unconformably overlying Early Devonian molasse. Two penetratively cleaved slate samples display internally discordant 40Ar/39Ar whole-rock age spectra with ages increasing from c. 100 Ma to c. 470 Ma. The spectral discordance is interpreted to reflect the combined effects of: (1) a polymineralic character: (2) a detrital source similar in age to the Motalafjella complex; and (3) a partial, post-Paleozoic thermal rejuvenation of the detrital mica argon systems. No thermal overprint associated with Late Silurian cleavage formation appears to be recorded. This agrees with textural characteristics which suggest that the cleavage largely developed through pressure-solution assisted, grain-boundary sliding.  相似文献   


8.
对国内外32个花岗岩体的锆石U-Pb年龄与全岩Rb-Sr等时线年龄之间差值(Δt)进行的频数统计分析表明:Δt呈对称正态分布(偏度系数CSK=0.36;峰度系数CKU=2.99);年龄差(Δt)既呈正值又有负值,其均值为2.08Ma;相对年龄差(Rt)小于5%。采用最小二乘法计算,花岗岩体锆石U-Pb年龄(tZr)对全岩Rb-Sr等时线年龄(tRb)拟合出相关系数很高(r=0.998),回归系数接近l(α=1.003)的线性回归方程(tRb =1.003tZr +1.258)。这些统计特征表明,从总体来看,花岗岩体的Rb-Sr等时线定年测定结果与锆石U-Pb定年测定结果是一致的,花岗岩全岩Rb-Sr等时线定年方法是成熟、可信的,同时也为花岗岩锆石U-Pb年龄代表结晶年龄而不代表花岗岩侵位年龄提供了依据。  相似文献   

9.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

10.
In the Central Iberian Zone (CIZ) of the Iberian Massif large volumes of granitoids were emplaced during the post-collisional stage of the Hercynian orogeny (syn- to post-D3, the last ductile deformation phase). Twelve granitic units and a quartz monzodiorite were selected for a U–Pb zircon and monazite geochronological study. They represent successive stages of the D3 event. The Ucanha-Vilar, Lamego, Sameiro and Refoios do Lima plutons are coeval (313±2 Ma, 319±4 Ma, 316±2 Ma and 314±2 Ma, respectively) and belong to the earliest stage. Later on the Braga massif was emplaced, its different units yielding the same age: 309±3 Ma for the Braga granite, 309±1 Ma for the Gonça granite and 311±5 Ma for a related quartz monzodiorite. The Braga massif is subcontemporaneous with the Agrela and Celeirós plutons (307±3.5 Ma and 306±2 Ma, respectively), in agreement with field data. The Briteiros granite is younger (300±1 Ma), followed by the emplacement of the Peneda–Gerês massif (Gerês, Paufito, Illa and Carris granites). The Gerês granite, emplaced at 296±2 Ma, seems to represent a first magmatic pulse immediately followed by the intrusion of the Paufito granite at 290±2.5 Ma. For the Carris granite a minimum emplacement age of 280±5 Ma was obtained. Based on these results the following chronology is proposed: (1) syn-D3 biotite granitoids, 313–319 Ma; (2) late-D3 biotite-dominant granitoids, 306–311 Ma; (3) late- to post-D3 granitoids, ca. 300 Ma; (4) post-D3 granitoids, 290–296 Ma. These chronological data indicate that successive granitic intrusions were emplaced in the CIZ during a short time span of about 30 Ma that corresponds to the latest stages of the Hercynian orogeny. A rapid and drastic change occurred at about 300 Ma, between a compressive ductile tectonic regime (D3, ca. 300–320 Ma) associated to calc-alkaline, monzonitic and aluminopotassic plutonism and a fragile phase of deformation (D4) which controlled the emplacement of the subalkaline ferro-potassic plutonism at 290–296 Ma.  相似文献   

11.
The recently developed method of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) allows the determination of 207Pb/206Pb ages of single zircon grains. The main advantages of the method are minimal sample preparation, low cost, and high throughput. In this work we present an analytical routine for geochronological analyses of zircon and monazite by LA-ICPMS and its application to the Ribeira Belt of the Brazilian Orogen in southeastern Brazil. The 207Pb/206Pb ages of one hundred and thirty-seven detrital zircons from amphibolite facies quartzites from three lithotectonic domains in the central Ribeira Belt indicate that they are derived mainly from Paleoproterozoic crust of Transamazonian age (2.0−2.3 Ga). A small number of zircons originated in 2.6−2.9 Ga Archean crust. These results are coherent with 2.1−2.2 Ga and 2.6−3.0 Ga U---Pb ages previously obtained for basement gneisses. The viability of the method to date monazite is also assessed. Monazites from the same quartzite samples yield ages between 2.1 Ga and 0.57 Ga. indicating variable resetting of the U---Pb system during amphibolite facies metamorphism. In contrast, monazite from a basement migmatite and syn-metamorphic granitoids yields ages in the 500–700 Ma range, in general agreement with U-Pb ages of 590-565 Ma for the main metamorphic event.

The LA-ICPMS 207Pb/206Pb ages are coherent and agree with expected results based on previous U---Pb geochronology, and show that the method has immediate applicability. At present, the most significant limitations of the method are the inability to yield reliable U/Pb values, analytical precision in the 1–10% range, and the requirement of grains larger than 80 gmm The method may be advantageous for provenance studies of Precambrian detrital sequences.  相似文献   


12.
Granulite- and amphibolite-facies metabasites occur within the Archaean Marydale Group (3.0 Ga) along the western edge of the mid-Proterozoic Kheis Tectonic Subprovince (1.8–1.3 Ga) of South Africa. At the northern end of the exposed Marydale Group, the metabasites are infolded with overlying quartzites from which they are separated by a low-angle fault contact. They contain two pyroxenes, hornblende and bytownite, but show widespread retrogression to coronas of almandine and hornblende. Geothermometric data for these assemblages indicate peak equilibration of the two-pyroxene assemblage at 690–760°C, and retrograde equilibration of garnet-hornblende pairs at 600–650°C. Barometric data are more uncertain though an estimate of 3–5 kbar is made from a consideration of hornblende chemistry. Using previously published data, a near-isobaric retrograde P-T path is inferred.

Rb---Sr ages of whole-rock hypersthene tonalites and mylonitized granites yield ages of 1353 ± 33 and 1355 ± 20 Ma, respectively, interpreted as the age of isotopic resetting during granulite-facies metamorphism. K---Ar hornblende ages of 1228 ± 61 and 1070 ± 48 Ma are recorded from fresh and sheared granulite-facies metabasites, respectively. These ages data the P-T path and show that the granulite-facies metamorphism predates the adjacent Namaqua orogeny that reset Rb---Sr systematics at ±1210 Ma.  相似文献   


13.
In the Gangdise magmatic arc develops an important ductile shear zone. In order to peer deeper into the genesis of the deformed granite and its deformation and properties, the authors studied the whole rock geochemistry, deformation structure and zircon U-Pb geochronology of the deformed granite in Lalong area in the southern margin of Gangdise. It is found that the deformed granite is distributed in nearly EW direction, the north side contacts with Mesozoic Mamuxia Formation along a fault,and the rest is covered by Quaternary system,after the geological profile measurement and field geological mapping of the deformed granite exposed in Lalong area in the southern margin of Gangdise.The main rock type is tonalite, belonging to high silica calc alkaline series. SiO2 content ranges from 66.2% to 71.0%, with an average of 68.3%. The content of total alkali (Na2O + K2O) is higher,so is the content of Al2O3 and MgO.The content of light rare earth elements (∑LREE) is higher than that of heavy rare earth elements (∑HREE). Rb, Th and other large ion lithophile elements are enriched, while Ta, Zr, Nb and other high field-strength elements are depleted. Sr content is high, Y content is low, and Sr/Y value is 73.02~99.05. All shows that the rock has the adakitic rock characteristics. The LA-ICP-MS zircon U-Pb age of the deformed granite is (83.56±0.83) Ma, which is the late Cretaceous and represents the magmatic crystallization age.The deformed granite was mainly formed by partial melting of the thickened lower crust under the background of northward subduction and reduction of Neo-Tethys Ocean. During Miocene 28~13 Ma, the deformed granite underwent nearly EW trending left-lateral shear and northward slip ductile shear deformation.  相似文献   

14.
冈底斯岩浆弧中发育了1条重要的韧性剪切带,为深入了解该韧性剪切带上变形花岗岩的成因、变形作用及其性质,对冈底斯南缘拉隆地区变形花岗岩开展了地球化学、变形构造和锆石U-Pb同位素年代学研究。通过对冈底斯南缘拉隆地区出露的变形花岗岩进行实测地质剖面测制及野外地质填图,发现变形花岗岩呈近EW向展布,北侧与中生代麻木下组呈断层接触,其余被第四系覆盖。岩石类型主要为英云闪长岩,属于高硅钙碱性系列岩石。SiO2含量为66.2%~71.0%,平均值为68.3%,全碱(Na2O+K2O)含量、Al2O3含量和MgO含量均较高,轻稀土元素总量(∑LREE)大于重稀土元素总量(∑HREE),Rb、Th等大离子亲石元素富集,Ta、Zr、Nb等高场强元素亏损,Sr含量高,Y含量低,Sr/Y为73.02~99.05,整体显示具有埃达克质岩石的特征属性。变形花岗岩LA-ICP-MS锆石U-Pb年龄为(83.56±0.83) Ma,为晚白垩世,代表了其岩浆结晶形成的年龄。变形花岗岩主要为新特提斯洋壳向北俯冲削减背景下,增厚的下地壳部分熔融形成的产物,在中新世28~13 Ma遭受了近EW向左旋剪切、向北滑覆的韧性剪切变形作用。  相似文献   

15.
Previous models for the temporal evolution of greenstone belts and surrounding granitoid gneisses in the northern Kaapvaal Craton can be revised on the basis of new single zircon ages, obtained by conventional U---Pb dating and Pb---Pb evaporation. In the Pietersburg greenstone belt, zircons from a metaquartz porphyry of the Ysterberg Formation yielded an age of 2949.7±0.2 Ma, while a granite intruding the greenstones, and deformed together with them, has an age of 2853 + 19/−18 Ma. These data show felsic volcanism in this belt to have been coeval with felsic volcanism in the Murchison belt farther east, and the date of 2853 Ma provides an older age limit for deformation in the region. In contrast, a meta-andesite of the Giyani greenstone belt has a zircon age of 3203.3±0.2 Ma, while a younger and cross-cutting feldspar porphyry has an emplacement age of 2874.1±0.2 Ma. The meta-andesite is intercalated with various mafic and ultramafic rocks and, therefore, the age of 3.2 Ga appears plausible for the bulk of the Giyani greenstones.Granitoid gneisses surrounding the Pietersburg and Giyani belts vary in composition from tonalite to granite and texturally from well-layered to homogeneous but strongly foliated. These rocks yielded zircon ages between 2811 and 3283 Ma. The pre-3.2 Ga gneisses are polydeformed and may have constituted a basement to the Giyani greenstone sequence, while the younger gneisses are intrusive into the older gneiss assemblage and/or into the greenstones. The Giyani and Pietersburg belts probably define two separate crustal entities that were originally close together but were later displaced by strike-slip movement.  相似文献   

16.
吉林通化地区光华岩群出露于太古宙TTG片麻岩之中,其形成时代一直存在争议.利用SHRIMP与LA-ICPMS技术,对其代表性岩石样品开展了锆石U-Pb定年分析,包括石榴黑云片岩、黑云二长片麻岩、石榴角闪片岩和侵入光华岩群底部的钾长花岗岩.结果显示,光华岩群4件变质岩石样品尽管位置不同,但碎屑锆石年龄非常接近,207Pb/206Pb谐和年龄集中在2.6~2.5 Ga之间,加权平均值分别为2 529±7 Ma、2 568±4 Ma、2 526±11 Ma和2 530±6 Ma,表明其成岩物质来源于新太古代地体.部分变质岩石记录了2 525±10 Ma、1 926±40 Ma和1 878±16 Ma的变质锆石年龄,表明其既经历了太古代末期的构造热事件改造,又遭受了古元古代晚期碰撞造山事件的扰动.确定侵入光华岩群底部的钾长花岗岩的侵位年龄为2 154±7 Ma,岩石未遭受变形改造,其成因可能与陆内裂谷发育过程有关.   相似文献   

17.
In this work we report 207Pb/206Pb LA-ICPMS ages of 152 detrital zircons from lower greenschist facies quartzites from Proterozoic basin successions of the southern border of the São Francisco Craton, southern Minas Gerais State, Brazil. These are the intracratonic São João del Rei basin, the intraplate continental margin Andrelândia basin, and the Serra do Ouro Grosso sequence, developed on a crystalline basement older than 1.8 Ga, and deformed and metamorphosed during the Brasiliano Orogeny, ca. 0.59–0.50 Ga. The data constrain both the ages of the sources and the interval of sedimentation. The detrital zircons of the Serra do Ouro Grosso sequence were derived predominantly from the erosion of a Neoarchean crust, 2.5–2.8 Ga old, with only one grain showing a Paleoproterozoic age (2, 245±83 Ma) older than the Transamazonian event. Zircons extracted from a shelf quartzite of the lowermost sequence of the São João del Rei basin indicate derivation from the 1.8–2.2 Ga Transamazonian crust, with subordinate contribution from the 2.5–2.9 Ga Archean crust. The 1, 809±41 Ma age is interpreted as the maximum limit for sedimentation in this basin. The results confirm the regional correlation with the Espinhaço Rift successions. The zircons extracted from an autochthonous quartzite of the Andrelândia sequence yielded ages in the 1.0–2.2 Ga range, with a modal class at 1.2–1.3 Ga. Only two of the forty analyzed zircons yield Archean ages. The youngest zircon yields 1, 086±85 Ma. The zircons from the allochthonous quartzite yield ages between 1.0–2.7 Ga, with a modal class at 2.1–2.2 Ga. Only five of 45 analyzed grains yield Archean ages. The youngest zircon has an age of 1, 047±77 Ma. The results indicate that the detrital sediments deposited during the second marine flooding event of the Andrelândia sedimentation were mainly derived from the erosion of Mesoproterozoic and Paleoproterozic rocks. The 1, 047±77 Ma age is interpreted as the maximum depositional age for the described association.  相似文献   

18.
The study in this paper determined whole rock major and trace elements, zircon U-Pb age and Hf, O isotopes of 5 mafic dikes in the southwestern Fujian province. The 5 dikes are mainly diabase and the whole rock SiO2 content are between 45%~53%. Most zircons of the mafic dikes display obvious oscillatory zoning and fan-shaped zoning, and have the typical magmatic zircon crystallization characteristics. Zircon U-Pb age is dispersed with 96~2 400 Ma range. In addition to the minimum age (96~142 Ma) which might be the age of the formation of dikes, the remaining are captured zircon. The captured zircon age was mainly distributed in 4 groups: Early Proterozoic (2 467~1 796 Ma); Middle and late Proterozoic (1 343~647 Ma); Silurian to late Triassic Epoch (427~225 Ma); and Late Jurassic (159~140 Ma). Hf-O isotope shows that the early Proterozoic zircon was derived from the mantle of the homogeneous chondrite reservoir, and the others show magmatic mixing characteristics between depleted mantle and crust. Zircon’s εHf(t) and δ18O of the early Late Cretaceous clearly show the mixing trend of depleted mantle and crustal magma. The peak of zircon Hf two-stage depleted mantle model age TDM2 was mainly distributed in the 1.6~1.9 Ga. The Early Proterozoic mafic crust might be the main source for latter granite.  相似文献   

19.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


20.
Ar/Ar analyses of phengites and paragonites from the ultrahigh-pressure metamorphic rocks (zoisite–clinozoisite schist, garnet–phengite schist and piemontite schist) in the Lago di Cignana area, Western Alps were carried out with a laser probe step-heating method using single crystals and a spot dating method on thin sections. Eight phengite and two paragonite crystals give the plateau ages of 37–42 Ma with 96–100% of 39Ar released. Each rock type also contains mica crystals showing discordant age spectra with age fractions (20–35 Ma) significantly younger than the plateau ages. Phengite inclusions in garnet give ages of 43.2 ± 1.1 Ma and 44.4 ± 1.5 Ma, which are significantly older than the spot age (36.4 ± 1.4 Ma) from the matrix phengites, and the plateau ages from the step-heating analyses. Inclusion ages (43 and 44 Ma) are consistent with a zircon SHRIMP age (44 ± 1 Ma) in this area. These results suggest that the oceanic materials that underwent a simple subduction related UHPM, form excess 40Ar-free phengite and that the peak metamorphism is ca. 44 Ma or little older. We suggest that matrix phengites experienced a retrogression reaction changing their chemistry contemporaneously with deformation related to the exhumation of rocks releasing significant radiogenic 40Ar from the crystals. This has lead to the apparent ages of the matrix phengites that are significantly younger than the inclusion age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号