首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
Analysis of three first-order leveling lines that traverse the White Wolf fault (site of the 1952 M = 7.7 earthquake), each resurveyed nine times between 1926 and 1974, reveals probable preseismic tilting, major coseismic movements, and a spatial association between these movements and the subsequently recognized southern California uplift. In examining the vertical control record, we have both searched for evidence of systematic errors and excluded from consideration portions of the lines contaminated by subsurface fluid and gas extraction. Movements have been referred to an invariant datum based on the 1926 position of tidal BM 8 in San Pedro, corrected for subsequent eustatic sea-level change.An 8 μrad up-to-the-north preseismic tilt (6 cm/7.5 km) was apparently recorded on two adjacent line segments within 10 km of the 1952 epicenter between 1942 and 1947. It is possible, however, that this tilt was in part caused by extraction-induced subsidence at one of the six releveled benchmarks. Data also show evidence of episodic tilts that are not earthquake related. At the junction of the Garlock and San Andreas faults, for example, an ≥5 μrad up-to-the-north tilt (7.2 cm/≤16 km) took place between Lebec and Grapevine within three months during 1964.Comparison of the 1947 and 1953 surveys, which includes the coseismic interval, shows that the SW-fault end (nearest the epicenter) and the central fault reach sustained four times the uplift recorded at the NE end of the fault (+72 cm SW, +53 cm Central, +16 cm NE). A regional postseismic uplift of 4 cm extended ≥25 km to either side of the fault after the main event, from 1953 to 1956. An interval of relative quiescence followed at least through 1959, in which the elevation change did not exceed ±3 cm.The detailed pattern of aseismic uplift demonstrates that movement proceeded in space—time pulses: one half of the uplift at the SW-fault end and extending southward occurred between 1959 and 1961, one half of the uplift at the NE-fault end and extending eastward occurred between 1961 and 1965, while the central fault reach sustained successive pulses of subsidence, uplift, and collapse (−4 cm, 1953–1960; +7 cm, 1960–1965; −2 cm, 1965–1970). In addition, the number of aftershocks concentrated near the fault ends increased in the NE relative to the SW from 1952 to 1974. These observations suggest that the aseismic uplift may have migrated northeastward from 1959 to 1965 at an approximate rate of 7–16 km/yr.Evidence for a mechanical coupling between the earthquake and the subsequent aseismic uplift is equivocal. At both fault ends, the major NWbounding flexure or tilted front of the southern California uplift is spatially coincident with the coseismic flexure that preceded it. In addition, the postulated migration of vertical deformation is similar to the 1952 seismic event in which the rupture initiated at the SW end of the fault and then propagated to the NE-fault end. However, the spatial distribution of aseismic uplift, nearly identical at both fault ends and to the south and east, and near zero in the central fault reach, is distinctly different from the nonuniform and localized coseismic deformation.  相似文献   

2.
This paper presents the main recent results obtained by the seismological and geophysical monitoring arrays in operation in the rift of Corinth, Greece. The Corinth Rift Laboratory (CRL) is set up near the western end of the rift, where instrumental seismicity and strain rate is highest. The seismicity is clustered between 5 and 10 km, defining an active layer, gently dipping north, on which the main normal faults, mostly dipping north, are rooting. It may be interpreted as a detachment zone, possibly related to the Phyllade thrust nappe. Young, active normal faults connecting the Aigion to the Psathopyrgos faults seem to control the spatial distribution of the microseismicity. This seismic activity is interpreted as a seismic creep from GPS measurements, which shows evidence for fast continuous slip on the deepest part on the detachment zone. Offshore, either the shallowest part of the faults is creeping, or the strain is relaxed in the shallow sediments, as inferred from the large NS strain gradient reported by GPS. The predicted subsidence of the central part of the rift is well fitted by the new continuous GPS measurements. The location of shallow earthquakes (between 5 and 3.5 km in depth) recorded on the on-shore Helike and Aigion faults are compatible with 50° and 60° mean dip angles, respectively. The offshore faults also show indirect evidence for high dip angles. This strongly differs from the low dip values reported for active faults more to the east of the rift, suggesting a significant structural or rheological change, possibly related to the hypothetical presence of the Phyllade nappe. Large seismic swarms, lasting weeks to months, seem to activate recent synrift as well as pre-rift faults. Most of the faults of the investigated area are in their latest part of cycle, so that the probability of at least one moderate to large earthquake (M = 6 to 6.7) is very high within a few decades. Furthermore, the region west to Aigion is likely to be in an accelerated state of extension, possibly 2 to 3 times its mean interseismic value. High resolution strain measurement, with a borehole dilatometer and long base hydrostatic tiltmeters, started end of 2002. A transient strain has been recorded by the dilatometer, lasting one hour, coincident with a local magnitude 3.7 earthquake. It is most probably associated with a slow slip event of magnitude around 5 ± 0.5. The pore pressure data from the 1 km deep AIG10 borehole, crossing the Aigion fault at depth, shows a 1 MPa overpressure and a large sensitivity to crustal strain changes.  相似文献   

3.
The May 12, 2008, Mw 7.9 Wenchuan earthquake was induced by failure of two of the major faults of the Longmen Shan thrust fault zone along the eastern margin of Tibet Plateau. Our study focused on trenches across the Yingxiu–Bichuan fault, the central fault in the Longmen Shan belt that has a coseismic surface break of more than 200 km long. Trenching excavation across the 2008 earthquake rupture on three representative sites reveals the styles and amounts of the deformation and paleoseismicity along the Longmen Shan fault. Styles of coseismic deformation along the 2008 earthquake rupture at these three sites represent three models of deformation along a thrust fault. Two of the three trench exposures reveal one pre-2008 earthquake event, which is coincident with the pre-existing scarps. Based on the observation of exposed stratigraphy and structures in the trenches and the geomorphic expressions on ground surface, we interpret the 2008 earthquake as a characteristic earthquake along this fault. The interval of reoccurrence of large earthquake events on the Central Longmen Shan fault (the Yingxiu–Beichuan fault) can be inferred to be about 11,000 years according to 14C and OSL dating. The amounts of the vertical displacement and shortening across the surface rupture during the 2008 earthquake are determined to be 1.0–2.8 m and 0.15–1.32 m, respectively. The shortening rate and uplift rate are then estimated to be 0.09–0.12 mm/yr and 0.18–0.2 mm/yr, respectively. It is indicated that the deformation is absorbed mainly not by shortening, but by uplift along the rupture during the 2008 earthquake.  相似文献   

4.
基于正交各向异性理论表征断层的变形行为,将平行断层面的剪切模量和周围介质剪切模量的比值作为反演参数,以海原-六盘山断裂附近现今GPS观测地壳水平运动速度场作为约束,通过构建三维有限元模型,采用遗传算法,反演了海原-六盘山断裂平行断层面的剪切模量分布。结果显示:六盘山断裂中南段平行断层面剪切模量与周围介质接近,且沿断层面地震动活动较为稀疏,反映六盘山断裂两侧近场差异变形较小,和汶川地震前龙门山断裂的情况类似,可能断裂带处于强闭锁状态。整个狭义的海原断裂带平行断层面剪切模量比周围介质要小的多,在0.4以下,且0~5 km要比深部大,可能反映了1920年海原8.5级地震之后,该断裂仍然处于震后调整状态。西段金强河断裂、毛毛山断裂、老虎山断裂浅部0~5 km剪切模量较小,而在5~20 km剪切模量相对较高,结合沿断层面地震活动分布特征,认为金强河、毛毛山断裂浅部可能存在蠕滑,而深部5~20 km存在应变能积累特征,具有强震发生的背景,而老虎山断裂由地表至深部地震活动较为密集,可能存在贯通性蠕滑,强震发生的可能性较小。   相似文献   

5.
It is now admitted that the high strength of the subcontinental uppermost mantle controls the first order strength of the lithosphere. An incipient narrow continental rift therefore requires an important weakening in the subcontinental mantle to promote lithosphere-scale strain localisation and subsequent continental break-up. Based on the classical rheological layering of the continental lithosphere, the origin of a lithospheric mantle shear/fault zone has been attributed to the existence of a brittle uppermost mantle. However, the lack of mantle earthquakes and the absence of field occurrences in the mantle fault zone led to the idea of a ductile-related weakening mechanism, instead of brittle-related, for the incipient mantle strain localisation. In order to provide evidence for this mechanism, we investigated the microstructures and lattice preferred orientations of mantle rocks in a kilometre-scale ductile strain gradient in the Ronda Peridotites (Betics cordillera, Spain). Two main features were shown: 1) grain size reduction by dynamic recrystallisation is found to be the only relevant weakening mechanism responsible for strain localisation and 2), with increasing strain, grain size reduction is coeval with both the scattering of orthopyroxene neoblasts and the decrease of the olivine fabric strength (LPO). These features allow us to propose that grain boundary sliding (GBS) partly accommodates dynamic recrystallisation and subsequent grain size reduction.A new GBS-related experimental deformation mechanism, called dry-GBS creep, has been shown to accommodate grain size reduction during dynamic recrystallisation and to induce significant weakening at low temperatures (T < 800 °C). The present microstructural study demonstrates the occurrence of the grain size sensitive dry-GBS creep in natural continental peridotites and allows us to propose a new rheological model for the subcontinental mantle. During dynamic recrystallisation, the accommodation of grain size reduction by three competing deformation mechanisms, i.e., dislocation, diffusion and dry-GBS creeps, involves a grain size reduction controlled by the sole dislocation creep at high temperatures (> 800 °C), whereas dislocation creep and dry-GBS creep, are the accommodating mechanisms at low temperatures (< 800 °C). Consequently, weakening is very limited if the grain size reduction occurs at temperatures higher than 800 °C, whereas a large weakening is expected in lower temperatures. This large weakening related to GBS creep would occur at depths lower than 60 km and therefore provides an explanation for ductile strain localisation in the uppermost continental mantle, thus providing an alternative to the brittle mantle.  相似文献   

6.
Aseismic slip or fault creep is occurring on many faults in California. Although the creep rates are generally less than 10 mm/yr in most regions, the maximum observed rate along the San Andreas fault between San Juan Bautista and Gold Hill in central California exceeds 30 mm/yr. Changes in slip rates along a 162 km segment of the San Andreas fault in this region have occurred at approximately the same time at up to nine alinement array sites. Rates of creep on the fault near the epicenters of moderate earthquakes (ML 4–6) vary for periods of several years, decreasing before the main shocks and increasing thereafter, in agreement with prior observations based on creepmeter results. The change of surface slip rate is most pronounced within the epicentral region defined by aftershocks, but records from sites at distances up to 100 km show similar variations. Additionally, some variations in rate, also apparently consistent among many sites, have a less obvious relation with seismic activity and have usually taken place over shorter periods. Not all sites exhibit a significant variation in rate at the time of a regional change, and the amplitudes of the change at nearby sites are not consistently related. The time intervals between measurements at the nine array sites during a given period have not always been short with respect to the intervals between surveys at one site; hence, uneven sampling intervals may bias the results slightly. Anomalies in creep rates thus far observed, therefore, have not been demonstrably consistent precursors to moderate earthquakes; and in the cases when an earthquake has followed a long period change of rate, the anomaly has not specified time, place, or magnitude with a high degree of certainty. The consistency of rate changes may represent a large scale phenomenon that occurs along much of the San Andreas transform plate boundary.  相似文献   

7.
Focal mechanisms for three recent earthquakes in Finland are determined using P-wave polarities together with SV/P and SH/P phase amplitude ratios. The events occurred on May 11, 2000 in Toivakka, Central Finland (ML=2.4), on September 15, 2000 in Kuusamo, northeastern Finland (ML=3.5), and on May 2, 2001 in Kolari, western Finnish Lapland (ML=2.9).In order to obtain reliable estimates of the source parameters, one-dimensional crust and upper mantle velocity models are derived for the epicenter areas from deep-seismic sounding results. The starting models are modified by one-dimensional ray tracing using the earthquake observations. The events are relocated by employing P- and S-phase arrival times from the nearest seismic stations and the final velocity models. Synthetic waveforms, calculated with the reflectivity method, are used to further constrain and verify the source and structural parameters.The Toivakka earthquake indicates thrust- or reverse-faulting mechanism at a depth of 5 km. After comparison with aeromagnetic and topographic data we suggest the eastward dipping nodal plane (358°/42°) was the fault plane. The best-fitting fault plane solution of the Kolari earthquake suggests pure thrust-faulting at a depth of 5 km. The nodal plane striking 035°/30° correlates well with surface observations of the postglacial, possibly listric fault systems in the source area. The Kuusamo earthquake (focal depth 14 km) has a normal-faulting mechanism with the nodal planes trending 133°/47° or 284°/47°. Preference is given to the SW-dipping nodal plane, as it seems to coincide with topographic and magnetic lineament directions that have been active after the last ice age.The three earthquakes have occurred in old Precambrian faults and shear zones, which have been reactivated. The reactivated faults are favourably oriented in the local stress field.  相似文献   

8.
Katsuyuki Abe   《Tectonophysics》1975,27(3):223-238
The source mechanism of the Saitama earthquake (36.07°N,139.40°E, Ms = 5.4) of July 1, 1968, is studied on the basis of P-wave first motion, aftershock, long-period surface-wave data and low-magnification long-period seismograms recorded in the nearfield. A precise location of the aftershocks is made using P and S—P time data obtained by a micro-earthquake observatory network. The synthetic near-field seismograms based on the Haskell model are directly compared with the observed near-field seismograms for wave form and amplitude to determine the dynamic fault parameters. The results obtained are as follows: source geometry, reverse dip slip with considerable right-lateral strike-slip component; dip direction, N6°E; dip angle 30°; fault dimension, 10 × 6 km2; rupture velocity, 3.4 km/sec in the direction S30°E; average dislocation, 92 cm; average dislocation velocity, 92 cm/sec; seismic moment, 1.9 · 1025 dyn-cm; stress drop, 100 bar. The effective stress is about the same as the stress drop. For major earthquakes in the Japanese Islands, the dislocation velocity, .D, is found to be proportional to the stress drop, σ. This relation can be expressed by .D - (β/μ)σ, where β is the shear velocity and μ is the rigidity. This result has an importance in engineering seismology because the stress drop scales the seismic motion in the vicinity of an earthquake fault.  相似文献   

9.
The Patras, Corinth, and northern Saronic gulfs occupy a 200-km-long, N120° trending Pleistocene rift zone, where Peloponnese drifts away from mainland Greece. The axes of Patras and Corinth basins are 25 km apart and linked by two transfer-fault zones trending N040°. The older one defines the western slope of Panachaïkon mountain, and the younger one limits the narrow Rion–Patras littoral plain. Between these two faults, the ca. 4-km-thick Rion–Patras series dips 20–30° SSW. It is part of the Patras gulf synrift deposits, which pile in an asymmetric basin governed by a fault dipping ca. 25–35° NNE, located in the southern Gulf of Patras. Mapping of this fault to the east in northern Peloponnese shows that it is an inactive north-dipping low-angle normal fault (0° to 30°N), called the northern Peloponnese major fault (NPMF). The structural evolution of the NPMF was different in the gulfs of Patras and Corinth. In the Gulf of Patras, it is still active. In northern Peloponnese, footwall uplift and coeval southward tilting flattened the fault and locked its southern part. Steeper normal faults formed north of the locked area, connecting the still active northern part of the NPMF to the surface. After several locks, the presently active normal faults (Psathopyrgos, Aigion, Helike) trend along the southern shore of the Gulf of Corinth. This migration of faults caused the relative 25 km northward shift of the Corinth basin, and the formation of NE–SW trending transfer-faults between the Corinth and Patras gulfs.  相似文献   

10.
A quantitative analysis is presented of the scaling properties of faults within the exceptionally well-exposed Kino Sogo Fault Belt (KSFB) from the eastern part of the 200-km-wide Turkana rift, Northern Kenya. The KSFB comprises a series of horsts and grabens within an arcuate 40-km-wide zone that dissects Miocene–Pliocene lavas overlying an earlier asymmetric fault block. The fault belt is 150 km long and is bounded to the north and south by transverse (N50°E and N140°E) fault zones. An unusual feature of the fault system is that it accommodates very low strains (<1%) and since it is no older than 3 Ma, it could be characterised by extension rates and strain rates that are as low as 0.1 mm/yr and 10−16 s−1, respectively. Despite its immaturity, the fault system comprises segmented fault arrays with lengths of up to 40 km, with individual fault segments ranging up to 9 km in length. Fault length distributions subscribe to a negative exponential scaling law, as opposed to the power law scaling typical of other fault systems. The relatively long faults and segments are, however, characterised by maximum throws of no more than 100 m, providing displacement/length ratios that are significantly below those of other fault systems. The under-displaced nature of the fault system is attributed to early stage rapid fault propagation possibly arising from reactivation of earlier underlying basement fabrics/faults or magmatic-related fractures. Combined with the structural control exercised by pre-existing transverse structures, the KSFB demonstrates the strong influence of older structures on rift fault system growth and the relatively rapid development of under-displaced fault geometries at low strains.  相似文献   

11.
Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north–northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east–northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85°W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (<M2.0) are located within 10 km of the structural suite. One epicenter is coincident with the northwest boundary of the uplift. This structural suite, a contractional stepover between echelon northeast-trending right-lateral faults, is similar to that mapped in the New Madrid Seismic Zone, and both areas currently feature roughly east–west maximum compressive stress trajectory. Based on these similarities, the faults in Pottawatomie County have the potential for seismicity. The results demonstrate that mechanical analysis of minor structural features can improve our knowledge of local earthquake hazards.  相似文献   

12.
We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4–5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3–0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano – Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW–SE and progressively bending to the E–W in its southern part, and a 7 km-long segment striking E–W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over).An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese – Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2–3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic interpretation of poorly-known earthquakes (e.g., 346/355 AD earthquake on the Ailano – Piedimonte Matese – Gioia Sannitica fault system), and stimulates and further orients seismotectonic investigations aimed at constraining the segmentation pattern and seismogenic potential of the area.  相似文献   

13.
Gravity and magnetic data of the Kachchh basin and surrounding regions have delineated major E–W and NW–SE oriented lineaments and faults, which are even extending up to plate boundaries in the north Arabian Sea and western boundary of the Indian plate, respectively. The epicentral zone of Bhuj earthquake and its aftershocks is located over the junction of Rann of Kachchh and median uplifts viz. Kachchh mainland and Wagad uplifts, which are separated by thrust faults. Gravity data with constraints from the results of the seismic studies along a profile suggest that the basement is uplifted towards the north along thrust faults dipping 40–60° south. Similarly gravity and magnetic modeling along a profile across Wagad uplift suggest south dipping (50–60°) basement contacts separating rocks of high susceptibility and density towards the north. One of these contacts coincides with the fault plane of the Bhuj earthquake as inferred from seismological studies and its projection on the surface coincides with the E–W oriented north Wagad thrust fault. A circular gravity high in contact with the fault in northern part of the Wagad uplift along with high amplitude magnetic anomaly suggests plug type mafic intrusive in this region. Several such gravity anomalies are observed over the island belt in the Rann of Kachchh indicating their association with mafic intrusions. The contact of these intrusives with the country rock demarcates shallow crustal inhomogeneities, which provides excellent sites for the accumulation of regional stress. A regional gravity anomaly map based on the concept of isostasy presents two centers of gravity lows of −11 to −13 mGal (10−5 m/s2) representing mass deficiency in the epicentral region. Their best-fit model constrained from the receiver function analysis and seismic refraction studies suggest crustal root of 7–8 km (deep crustal inhomogeneity) under them for a standard density contrast of −400 kg/m3. It is, therefore, suggested that significant amount of stress get concentrated in this region due to (a) buoyant crustal root, (b) regional stress due to plate tectonic forces, and (c) mafic intrusives as stress concentrators and the same might be responsible for the frequent and large magnitude earthquakes in this region including the Bhuj earthquake of January 26, 2001.  相似文献   

14.
1976-07-28唐山地区发生了震惊中外的7.8级大地震。为什么在华北古老克拉通内部的唐山地区能够发生如此的大地震一直是一个令人费解的问题。是否会在唐山地区再次出现同样的破坏性地震值得认真研究。利用流动地震观测台阵数据和接收函数反演方法,我们研究了唐山地区60 km深度范围内的三维地壳上地幔速度结构。结果表明:(1)由活动断裂切割的唐山断块与周围介质存在明显差异,围限唐山断块的断裂均为超壳的活动断裂;(2)唐山大震区中上地壳具有明显的非均匀壳内低速体;(3)该地区壳幔界面表现为明显的断块式隆升,与两侧相比,唐山菱形地块下方的上地幔顶部异常隆起的高度达到10 km左右,下伏的上地幔具有异常的非均匀结构;(4)唐山大震区可能有幔源物质较大规模的侵入,形成了中、上地壳内的低速体。由于较已往的研究结果有更高的空间分辨率,我们得到了一些以往尚未发现的有关唐山地区深部结构的异常特征;(5)首都圈地区内破坏性地震发生的地点绝非偶然,它们均与其相应的深部构造背景密切有关,这为强震发生地点的预测提供了可能。根据本文结果,我们认为,1976年唐山大地震的主因源于上地幔的垂向运动变形及壳幔之间物质及能量的交换,区域水平向应力场为次要作用。这有助于解释为什么能够在我国华北古老克拉通地区发生7级以上强震,在唐山地区再次发生7级以上大地震的可能性值得给予进一步的研究和关注。  相似文献   

15.
Analysis of vertical crustal deformation data in the southwestern part of Shikoku, southwest Japan, suggests that the Nankaido earthquake of 1946 (Mw = 8.1), which is a principal interplate thrust earthquake, was accompanied by subsidiary faulting on a splay fault adjacent to the coast of Shikoku. Discarding crustal movement resulting from the main thrusting of the Nankaido earthquake, local leveling data are explained by slip on a simple rectangular thrust fault located just offshore of Shikoku. Although it is difficult to constrain the fault location, a possible result is a high-angle thrust dipping landward at an angle of about 70°, with a dislocation of about 1.5 m, and source dimensions of 30 × 13 km along strike and dip. respectively. This result indicates that the fault may be one of the steeply dipping subsidiary faults branching from the main low-angle thrust, as was the case in the Alaska earthquake of 1964. Although several lines of evidence suggest that this faulting occurred as slow aseismic slip, its discrimination from the main seismic event is extremely difficult. This kind of high-angle thrusting just offshore of the coast would play an important role for the formation of the marine terraces during the late Quaternary period.  相似文献   

16.
M Persaud  O.A Pfiffner   《Tectonophysics》2004,385(1-4):59-84
Post-glacial tectonic faults in the eastern Swiss Alps occur as single lineaments, clusters of faults or extensive fault zones consisting of several individual faults aligned along the same trend. The orientation of the faults reflects the underlying lithology and the pre-existing structures (joints, pervasive foliations) within these lithologies. Most post-glacially formed faults in the area around Chur, which undergoes active surface uplift of 1.6 mm/year, trend E–W and cut across Alpine and glacial features such as active screes and moraines. Additionally, there are NNW and ENE striking faults reactivating pervasive Alpine foliations and shear zones. Based on a comparison with the nodal planes of recent earthquakes, E–W striking faults are interpreted as active faults. Because of very short rupture lengths and mismatches of fault location with earthquake distribution, magnitude and abundance, the faults are considered to be secondary faults due to earthquake shaking, cumulative deformation in post- or interseismic periods or creep, and not primary earthquake-related faults. The maximum of recent surface uplift rates coincides with the youngest cooling of the rocks according to apatite fission-track data and is therefore a long-lived feature that extends well into pre-glacial times. Isostatic rebound owing to overthickened crust or to melting of glacial overburden cannot explain the observed surface uplift pattern. Rather, the faults, earthquakes and surface uplift patterns suggest that the Alps are deforming under active compression and that the Aar massif basement uplift is still active in response to ongoing collision.  相似文献   

17.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   

18.
Seismotectonics of the Nepal Himalaya from a local seismic network   总被引:3,自引:0,他引:3  
The National Seismological Network of Nepal consists of 17 short period seismic stations operated since 1994. It provides an exceptional view of the microseismic activity over nearly one third of the Himalayan arc, including the only segment, between longitudes 78°E and 85°E, that has not produced any M>8 earthquakes over the last century. It shows a belt of seismicity that follows approximately the front of the Higher Himalaya with most of the seismic moment being released at depths between 10 and 20 km. This belt of seismicity is interpreted to reflect interseismic stress accumulation in the upper crust associated with creep in the lower crust beneath the Higher Himalaya. The seismic activity is more intense around 82°E in Far-Western Nepal and around 87°E in Eastern Nepal. Western Nepal, between 82.5 and 85°E, is characterized by a particularly low level of seismic activity. We propose that these lateral variations are related to segmentation of the Main Himalayan Thrust Fault. The major junctions between the different segments would thus lie at about 87°E and 82°E with possibly an intermediate one at about 85°E. These junctions seem to coincide with some of the active normal faults in Southern Tibet. Lateral variation of seismic activity is also found to correlate with lateral variations of geological structures suggesting that segmentation is a long-lived feature. We infer four 250–400 km long segments that could produce earthquakes comparable to the M=8.4 Bihar–Nepal earthquake that struck eastern Nepal in 1934. Assuming the model of the characteristic earthquake, the recurrence interval between two such earthquakes on a given segment is between 130 and 260 years.  相似文献   

19.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

20.
This paper discusses the fault parameters of the Mikawa earthquake of January 12, 1945 on the basis of a simple dislocation model. Basically, the model assumes a rectangular shape of the fault plane striking N-S, so that it may fit the observed surface fault trace. Several sets of the fault parameters are tested to interpret the vertical and horizontal ground movements as observed geodetically. The fault model which is finally accepted is as follows: total length: 12 km; width: 11 km; dip angle: 30°; reverse dip-slip: 2 m; right-lateral strike-slip: 1 m. Geometry and slip in the present model seem to harmonize with the other sorts of evidence such as the seismological, tsunami genetic and reconnaissance data. From the tectonic point of view, this earthquake may be attributed to the secondary fault activity associated with the right lateral movement of the Median Tectonic Line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号