首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
邓丹莉 《地质与勘探》2016,52(5):865-873
云南大坪金矿床是产于闪长岩中的石英脉型金矿床,矿体形态呈脉状,明显受断裂构造控制。成矿阶段可分为:早期成矿阶段(白钨矿石英脉)、主成矿阶段(硫化物石英脉)和晚成矿阶段(碳酸盐石英脉)。石英脉中的流体包裹体分为H2O包裹体、CO2包裹体、CO2-H2O包裹体,以富含CO2-H2O包裹体为特征。CO2-H2O包裹体的完全均一温度为283.1~382.0℃,盐度为(4.44~11.33)wt%Na Cleqv,计算的均一压力为151.2~261.5MPa,相应的成矿深度为10.272~12.649km,显示出该矿的成矿流体是一种富含CO2的高压、中高温、中低盐度的H2O-Na Cl-CO2的流体。加热时,富H2O相的CO2-H2O包裹体完全均一到H2O相,富CO2相的CO2-H2O包裹体完全均一到CO2相,而且二者的完全均一温度和压力一致,说明流体发生了不混溶作用,CO2的溶离使成矿流体的p H值升高,氧逸度降低,从而导致Au溶解度降低,并造成金沉淀成矿。大坪金矿床属于深成中高温热液石英脉型金矿床。  相似文献   

2.
四川丹巴燕子沟金矿床成矿流体不混溶的流体包裹体证据   总被引:2,自引:0,他引:2  
四川丹巴燕子沟金矿床是产于泥盆系碳质板岩、千枚岩中的石英脉型金矿床,矿体形态呈脉状、似层状,明显受断裂构造和顺层韧性剪切带或层间破碎带控制。成矿过程可分为沉积期、热液期和表生期3个成矿期,其中热液成矿期为主要成矿期。该期石英脉中的流体包裹体分为H2O包裹体、CO2包裹体和CO2-H2O包裹体3大类,并以富含CO2-H2O包裹体为显著特征。加热时富H2O相CO2-H2O包裹体完全均一成H2O相,富CO2相CO2-H2O包裹体完全均一成CO2相,而且二者的完全均一温度和压力一致,说明它们是同期捕获的CO2-低盐水不混溶流体包裹体组合。当含CO2流体发生不混溶时,CO2的溶离使成矿流体中pH值升高、f(O2)降低,从而导致Au溶解度降低,这是形成本矿床的主要原因。成矿温度为393℃,成矿压力为148.5~179.0MPa,矿床属于高温高压的变质热液金矿床。  相似文献   

3.
四川平武钨锡铍矿床成矿流体特征   总被引:2,自引:0,他引:2       下载免费PDF全文
四川平武新近发现多处规模较大的产于晶洞中的绿柱石、锡石和白钨矿宝石矿。本文对矿石矿物绿柱石、锡石和白钨矿中的流体包裹体进行了分析,直接获取了成矿期的流体信息,由于绿柱石、锡石的结晶均较早,故更为接近原始成矿流体的性质。平武钨锡铍宝石矿中流体包裹体有气液两相包裹体、CO2三相包裹体和含子矿物包裹体三种类型。包裹体完全均一温度最佳取值区间为260~300℃,盐度范围为0.53%~8.73%NaCleq,压力估算小于10.5MPa,矿床类型属于浅成中低温热液型。绿柱石中含子矿物包裹体和CO2三相包裹体共存,二者均一温度平均值较为相近,显示了不混溶流体包裹体的特征。绿柱石包裹体的完全均一温度和盐度平均值均高于白钨矿和锡石,绿柱石和白钨矿包裹体液相成分中F^-、Cl^-离子含量高于锡石。绿柱石、白钨矿和锡石三种矿物沉淀的先后顺序为:绿柱石→锡石→白钨矿。  相似文献   

4.
胶东三甲金矿床流体包裹体特征   总被引:14,自引:6,他引:8  
三甲金矿是胶东牟平-乳山金成矿带内重要的石英脉型金矿,金主要产于黄铁矿和多金属硫化物石英脉中。流体包裹体研究表明,三甲金矿蚀变岩石和各成矿阶段金矿石中的流体包裹体主要有三种类型:H2O-CO2包裹体、富CO2包裹体和H2O溶液包裹体。早期乳白色石英中主要赋存原生的H2O-CO2包裹体;成矿期黄铁矿石英脉和多金属硫化物石英脉中的富CO2包裹体主要为原生,随机分布,气液比变化较大,常与早期H2O溶液包裹体共生且均一温度接近,显示不混溶流体包裹体组合特征;在成矿晚期的石英和方解石中主要发育原生H2O溶液包裹体。显微测温结果显示,成矿前(第1阶段)H2O-CO2包裹体的完全均一温度(Tb.TOT,至液相)为280℃至416℃,成矿期(第Ⅱ和Ⅲ阶段)富CO2包裹体的完全均一温度为210—330℃,同期的H2O溶液包裹体均一温度为253~377℃,成矿后(第Ⅳ阶段)H2O溶液包裹体的均一温度为176—207℃。成矿流体为低盐度的CO2-H2O-NaCl型热液,成矿应力场转变导致的流体减压沸腾作用可能是三甲金矿金沉淀成矿的主要原因。  相似文献   

5.
为探讨丫他金矿床成矿流体的特征和矿床成因,对热液成矿阶段中石英中的流体包裹体进行了岩相学、显微测温、激光拉曼分析以及H、O同位素研究。结果表明,丫他金矿床中存在H_2O包裹体、CO_2-H_2O包裹体和CO_2包裹体三类流体包裹体;其中同一阶段同一视域中富H_2O相CO_2-H_2O包裹体在加热中完全均一到H_2O相,以及富CO_2相CO_2-H_2O包裹体完全均一到CO_2相,它们的均一温度和形成压力基本一致,说明同时捕获了富CO_2和富H_2O两种流体;流体包裹体的H、O同位素组成特征显示,成矿流体主要来源为大气降水或与大气降水有关的盆地流体;热液成矿阶段流体发生相分离,CO_2-H_2O不混溶作用导致热液中Au的溶解度迅速降低并沉淀形成矿床。  相似文献   

6.
贵州丫他卡林型金矿床流体包裹体特征及其成矿意义   总被引:1,自引:0,他引:1  
黔西南丫他金矿床是典型的沉积岩容矿的微细浸染型金矿床。从流体包裹体的角度,探讨了丫他金矿床成矿的温度压力条件和流体演化。各阶段石英、雄黄的流体包裹体岩相学和显微测温研究结果表明:主成矿阶段包裹体主要类型有H2O、CO2和CO2-H2O包裹体,流体包裹体组合呈现CO2-H2O不混溶的特征,晚成矿阶段包裹体类型主要为H2O包裹体;从主成矿阶段到晚成矿阶段,流体包裹体均一温度由139~268℃变化至121~194℃,盐度由2.9%~7.4%变化至2.7%~6.6%。根据共存CO2包裹体和H2O包裹体的等容线计算法,还原主成矿期包裹体捕获温度为260~294℃,捕获压力为59~98 MPa。对比不同类型金矿床中的富CO2流体特征,指出黔西南卡林型金矿床中存在的富CO2流体可能在金的搬运过程中起到一定的作用,CO2-H2O相分离可能是导致矿质沉淀的主要原因。  相似文献   

7.
新田岭大型钨矿床位于湘南骑田岭复式花岗岩体东北侧,与芙蓉超大型锡多金属矿床南北相对。本文对新田岭大型钨矿床进行了系统的流体包裹体地球化学和H-O同位素研究。研究结果表明,该矿床中白钨矿阶段流体包裹体类型主要为含CO_2两相包裹体、富含CO_2三相包裹体和气液包裹体,CO_2包裹体均一温度为264~479℃,盐度为0.22%~6.13%,CO_2的摩尔分数为0.09~0.62,气相组分为CO_2、CH4和H2O。气液包裹体盐度为1.39%~11.37%,均一温度为398~479℃,为Na Cl-Ca Cl2-H2O水溶液体系。硫化物阶段包裹体的盐度为13.55%~17.74%,完全均一温度范围为139~346℃。成矿流体压力为30~120 MPa。成矿流体由富含CO_2的低盐度热液体系向不含CO_2、中高盐度的热液流体演化,H、O同位素组成显示成矿热液流体具有岩浆来源的特征。钨在溶液中以钨酸的形式稳定迁移度,岩浆热液与含碳围岩发生水岩反应可能是新田岭白钨矿形成的主要机制。  相似文献   

8.
滇西北衙金矿蚀变斑岩中的流体包裹体研究   总被引:6,自引:0,他引:6  
位于爆破角砾岩筒边缘的接触带矿化斑岩中早期流体包裹体以CO2-H2O包裹体为主,而岩体内无或弱矿化斑岩中对应的流体包裹体以高盐度H2O-NaCl包裹体为主,反映来源于富碱岩浆的流体在它的早期阶段即分异出富碳相和盐水相,富碳相位于流体的外层,成矿元素主要在富碳相中迁移。因此,外接触带及其附近的围岩是成矿的有利部位。岩体内部蚀变岩石样品石英斑晶中的次生流体包裹体可大致划分为4个阶段。根据显微测温结果、形成温度和压力的估算及均一温度-盐度关系,结合H2O-NaCl体系P-T投影图,包裹体的4个阶段反映了环境条件的变化过程及相关的地质过程。  相似文献   

9.
大坪金矿成矿可分为三个成矿阶段:早期成矿阶段(白钨矿石英脉)、主成矿阶段(团块状多金属硫化物含金石英脉)和晚成矿阶段(碳酸盐石英脉)。本文利用显微测温和拉曼光谱分析了大坪矿脉的流体包裹体特征,结果表明:流体包裹体基本由富液相CO2包裹体和不同CO2/H2O比例的CO2-H2O型包裹体组成,早阶段白钨矿石英脉中同时富含富气相CO2包裹体,主成矿阶段团块状多金属硫化物金矿石中富液相CO2包裹体占明显优势,只有晚成矿阶段碳酸盐石英脉中含有居次要地位的H2O溶液包裹体。流体包裹体中气相组成基本为纯CO2,早阶段者还含少量N2。早阶段CO2-H2O型包裹体的盐度为6.37%-14.64%NaCl,峰值9%-10.5%NaCl,均一温度为299.4-423.7℃,峰值320-380℃,CO2包裹体密度为0.352-0.798g/cm^3,多数在0.64-0.71g/cm^3;主成矿阶段的CO2-H2O型包裹体的盐度在3.70%-14.64%NaCl之间,峰值7.2%-9.0%NaCl,均一温度279.0-406.5℃之间,峰值320-360℃,CO2包裹体密度为0.591-0.843g/cm^3,多数大于0.8g/cm^3;晚成矿阶段CO2-H2O型包裹体的盐度为4.80%-6.54%NaCl,均一温度为287.6-337.1℃。计算表明早阶段成矿压力约为190-440MPa,主阶段成矿压力约为133.5-340.0MPa,相当的成矿深度为5.1-12.9km。这些特征揭示了该矿成矿流体为近临界的高CO2(CO2≥H2O)的中低盐度的CO2-H2O-NaCl体系流体,在成矿过程中基本不存在流体混合,但发生了明显的沸腾和相分离作用。该矿是剪切带控制下的中深中温热液金矿,成矿作用主要是减压沸腾环境下的快速沉淀。结合其它证据,作者认为该矿的成矿流体主体为深源的壳幔混合流体,而不是地壳浅部的大气降水、岩浆水或其混合流体。金在高CO2的成矿流体中可能主要以硫氢络合物形式迁移,矿质沉淀主要与压力速降条件下发生流体的相分离作用相关。  相似文献   

10.
董京娱  黄凡  魏娜 《地球学报》2023,44(4):635-648
采用偏光显微镜薄片观察、激光拉曼成分分析等方法, 对伟晶岩型和岩浆热液型铍矿床中绿柱石的流体包裹体进行了岩相学观察和成分分析。结果表明, 绿柱石中原生流体包裹体形态多样, 常孤立或成群沿晶体生长带定向分布, 大小从5~80 μm不等。流体包裹体类型以富液相型气液两相包裹体最常见, 其次为含液相CO2的三相包裹体和含子矿物多相包裹体, 偶见固体包裹体和熔融包裹体。其中, 伟晶岩型绿柱石中包裹体数量和种类更为丰富, 常见含子晶多相包裹体和气液包裹体共存, 岩浆热液型绿柱石中包裹体则相对较少, 可见熔融包裹体与富液相CO2流体包裹体共存。流体包裹体气相成分主要以CO2和N2为主, 液相主要为H2O和CO2以及CO2– 3、HCO– 3等离子。伟晶岩型绿柱石中常见含石英、云母、钠长石等子矿物的多相包裹体, 由伟晶岩中晶体快速结晶形成; 岩浆热液型绿柱石中的有机质气体更丰富, 与氧化剂Al2O3活度较低而形成相对还原环境有关。富含CO2、H2O成分的流体更有利于绿柱石的形成。结合流体包裹体的生成机制, 认为岩浆热液型绿柱石形成于岩浆演化晚期的热液阶段, 伟晶岩型绿柱石形成于岩浆-热液过渡→热液阶段, 绿柱石的形成机制为岩浆的结晶分异和液态不混溶作用。  相似文献   

11.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

12.
Quartzitic pelites forms a part of Higher Himalayan Crystalline of higher geotectonic zone in Garhwal Himalaya. Quartzitic pelites (locally known as Pandukeshwar Quartzite) in Garhwal Himalaya is sandwiched between high grade metamorphic rocks of Central Crystallines and Badrinath Formation. Fluid inclusion studies are carried out on the detrital, and recrystallized quartz grains of quartzitic pelites to know about the fluid phases present during recrystallization processes at the time of maximum depth of burial. The quartzitic pelite (Pandukeshwar Quartzite) essentially consists of recrystallised quartz with accessory minerals like mica and feldspar. Fluid microthermometry study reveals the presence of three types of fluids: (i) high-salinity brine, (ii) CO2-H2O and (iii) H2O-NaCl. These fluids were trapped during the development of grain and recrystallization processes. The high saline brine inclusions and CO2-H2O fluid with the density of 0.90 to 0.97 gm/cm3 are remnants of provenance area. CO2 density in detrital quartz grains characterise the protolith of the sandstone as granite or metamorphic rock. The H2O-NaCl fluids involved in the recrystallization processes at temperature-pressure of 430-350°C; 4.8 to 0.5 Kbars as constrained by fluid isochores of CO2-H2O and H2O-NaCl inclusions and bulging and subgrain development during recrystallization processes. The re-equilibration of the primary fluid due to elevated internal and confining pressure is evident from features like ‘C’ shaped cavities, stretching of the inclusions, their migration and decrepitation clusters. The observed inclusion morphology revealed that the rocks were exhumed along an isothermal decompression path.  相似文献   

13.
Beryl crystals from the stockscheider pegmatite in the apical portion of the Li-F granite of the Orlovka Massif in the Khangilay complex, a tantalum deposit, contain an assemblage of melt and fluid inclusions containing two different and mutually immiscible silicate melts, plus an aqueous CO2-rich supercritical fluid. Pure H2O and CO2 inclusions are subordinate. Using the terminology of Thomas R, Webster JD, Heinrich W. Contrib Mineral Petrol 139:394–401 (2000) the melt inclusions can be classified as (i) water-poor type-A and (ii) water-rich type-B inclusions. Generally the primary trapped melt droplets have crystallized to several different mineral phases plus a vapor bubble. However, type-B melt inclusions which are not crystallized also occur, and at room temperature they contain four different phases: a silicate glass, a water-rich solution, and liquid and gaseous CO2. The primary fluid inclusions represent an aqueous CO2-rich supercritical fluid which contained elemental sulfur. Such fluids are extremely corrosive and reactive and were supersaturated with respect to Ta and Zn. From the phase compositions and relations we can show that the primary mineral-forming, volatile-rich melt had an extremely low density and viscosity and that melt-melt-fluid immiscibility was characteristic during the crystallization of beryl. The coexistence of different primary inclusion types in single growth zones underlines the existence of at least three mutually immiscible phases in the melt in which the large beryl crystals formed. Moreover, we show that the inclusions do not represent an anomalous boundary layer.  相似文献   

14.
Fluid inclusion measurements on quartz, scheelite, beryl, fluorite and calcite in the metamorphosed Felbertal scheelite deposit display two main types of fluid inclusions:
  1. H2O-CO2 fluid inclusions are characterized by variable amounts of CO2 up to 18 wt.%. They show two or three phases at room temperature. The bulk homogenization temperatures for the inclusions range between +269 °C and +357 °C. The calculated salinities are between 2.2 and 7.8 wt.% NaCl equivalent. For the late CO2-bearing fluid inclusions a methane component is evident from microthermometrical data (Tmclath >10.0 °C combined with TmCO2
  2. Aqueous, two-phase fluid inclusions with salinities in the range between 0 and 11 wt.% NaCl equivalent. Their homogenization temperatures are scattered between 100 °C and 360 °C.
Both types of fluid inclusions are of Alpine origin. They do not record the conditions of the original tungsten ore formation in pre-Alpine (Upper Proterozoic) time. However, it was possible to deduce a path for the fluid evolution and the combined ore redeposition during the retrograde Alpine metamorphism and tectonism from microthermometrical and petrographical studies.  相似文献   

15.
The tin‐ and tantalum‐bearing pegmatites of the Bynoe area are located in the western Pine Creek Geosyncline. They are emplaced within psammopelitic rocks in the contact aureole of the Two Sisters Granite. The latter is a Palaeoproterozoic, fractionated, granite with S‐type characteristics and comprises a syn‐ to late‐orogenic, variably foliated, medium‐grained biotite granite and a post‐orogenic, coarse‐grained biotite‐muscovite granite. The pegmatites comprise a border zone of fine grained muscovite + quartz followed inward by a wall zone of coarse grained muscovite + quartz which is in turn followed by an intermediate zone of quartz + feldspar + muscovite. A core zone of massive quartz is present in some occurrences. Feldspars in the intermediate zone are almost completely altered to kaolinite. This zone contains the bulk of cassiterite, tantalite and columbite mineralization. Fluid inclusions in pegmatitic quartz indicate that early Type A (CO2 + H2O ± CH4) inclusions were trapped at the H2O‐CO2 solvus at P~100 MPa, T~300°C (range 240–328°C) and salinity ~6 wt% eq NaCl. Pressure‐salinity corrected temperatures on Type B (H2O + ~20% vapour), C (H2O + < 15% vapour) and D (H2O + halite + vapour) inclusions also fall within the range of Type A inclusions. Oxygen and hydrogen isotope data show that kaolin was either formed in isotopic equilibrium with meteoric waters or subsequent to its formation, from hydrothermal fluid, underwent isotopic exchange with meteoric waters. Fluid inclusion waters from core zone quartz show enrichment in deuterium suggesting metamorphic influence. Isotope values on muscovite are consistent with a magmatic origin. It is suggested that the pegmatites were derived from the post‐orogenic phase of the Two Sisters Granite. Precipitation of cassiterite took place at about 300°C from an aqueous fluid largely as a result of increase in pH due to feldspar alteration.  相似文献   

16.
Fluid inclusions in quartz veins within Proterozoic metamorphic rocks in the Black Hills, South Dakota, were examined by microthermometry and Raman spectroscopy to assess the evolution of fluid compositions during regional metamorphism of organic-rich shales and late-orogenic magmatism, both of which were related to the collision of the Wyoming and Superior crustal blocks. Fluid inclusions occur in veins that began to be generated before or during regional compression and metamorphism that reached at least garnet-grade conditions, and in veins within the aureole of the Harney Peak Granite (HPG), where temperatures reached second-sillimanite grade conditions. Early veins in the schists have undergone recrystallization during heating and deformation that modified the composition of early CH4 or CO2 and N2-dominated inclusions. These fluids were apparently trapped under conditions of immiscibility with a saline aqueous fluid phase. They are interpreted to represent components generated during maturation of organic matter and dehydration of phyllosilicates during incipient metamorphism at reducing fO2 conditions. Most inclusions in the quartz veins are, however, secondary CO2-bearing. They imply a transition to higher fO2 conditions with increasing temperature of regional metamorphism. The fO2 conditions may have been controlled by the mineral assemblage in the host metapelites. The prevalence of bimodal distributions of trapped CO2-N2 and aqueous endmembers in the biotite and garnet zones also suggests that two immiscible fluid phases existed during the regional metamorphism.In the aureole of the HPG, graphite was evidently consumed by influx of magmatic fluids. CO2-H2O fluid inclusions dominate, but they have significantly less N2 than inclusions at lower metamorphic grades. All inclusions define secondary trails in mostly unstrained quartz. The bimodality of inclusion compositions is not as well defined as at lower grades, with many inclusions containing intermediate CO2-H2O compositions. This suggests that a single fluid phase existed at the high temperatures in the granite aureole, but then unmixed during cooling. A set of late quartz veins with graphitized and tourmalinized selvages in the granite aureole contains CH4-bearing inclusions with little N2. The existence of CH4 in these inclusions is attributed to complexing of magmatic B with hydroxyl anions taken from the CO2-H2O fluid phase, effectively causing reduction in fO2 and promoting precipitation of graphite.  相似文献   

17.
Fluid inclusions in quartz grains from five samples of high-grade rocks (two paragneisses, an amphibolite, a mafic gneiss and a tonalite dike) from the 2.7 Ga Kapuskasing structural zone (KSZ), Ontario, were examined with petrographic, microthermometric and laser Raman techniques. Three types of fluid inclusions were observed: CO2-rich, H2O-rich and mixed CO2-H2O. CO2-rich fluid inclusions are pseudosecondary or secondary in nature and are generally pure CO2; a few contain varying amounts of CH4·H2O-rich fluid inclusions are secondary in nature, contain variable amounts of dissolved salts, and generally contain daughter crystals. Mixed CO2-H2O fluid inclusions occur where trails of H2O-rich inclusions intersect trails of CO2-rich inclusions. Isochores for high density (p=1.03 g/cm3) pseudosecondary, pure CO2 inclusions intersect the lower pressure portion of the estimated P-T field for high-grade metamorphism, implying that pure CO2 was the peak metamorphic fluid. The variable CH4 content of CO2 inclusions within graphite-bearing samples suggests that CH4 was introduced locally after the formation of the CO2 inclusions; however the origin of the CH4 remains problematic. An aqueous fluid clearly penetrated the gneisses after the peak metamorphism (during uplift/erosion), forming secondary inclusions and contributing to the minor retrogressive hydration observed in these rocks. The presence of the pseudosecondary, high-density CO2 inclusions in quartz crystals in the KSZ rocks constrains the uplift/ erosion path for the KSZ to one of simultaneous decrease in pressure and temperature.  相似文献   

18.
The Xiaojiashan tungsten deposit is located about 200 km northwest of Hami City, the Eastern Tianshan orogenic belt, Xinjiang, northwestern China, and is a quartz vein‐type tungsten deposit. Combined fluid inclusion microthermometry, host rock geochemistry, and H–O isotopic compositions are used to constrain the ore genesis and tectonic setting of the Xiaojiashan tungsten deposit. The orebodies occur in granite intrusions adjacent to the metamorphic crystal tuff, which consists of the second lithological section of the first Sub‐Formation of the Dananhu Formation (D2d 12). Biotite granite is the most widely distributed intrusive bodies in the Xiaojiashan tungsten deposit. Altered diorite and metamorphic crystal tuff are the main surrounding rocks. The granite belongs to peraluminous A‐type granite with high potassic calc‐alkaline series, and all rocks show light Rare Earth Element (REE)‐enriched patterns. The trace element characters suggest that crystallization differentiation might even occur in the diagenetic process. The granite belongs to postcollisional extension granite, and the rocks formed in an extensional tectonic environment, which might result from magma activity in such an extensional tectonic environment. Tungsten‐bearing quartz veins are divided into gray quartz vein and white quartz veins. Based on petrography observation, fluid inclusions in both kinds of vein quartz are mainly aqueous inclusions. Microthermometry shows that gray quartz veins have 143–354°C of Th, and white quartz veins have 154–312°C of Th. The laser‐Raman test shows that CO2 is found in fluid inclusions of the tungsten‐bearing quartz veins. Quadrupole mass spectrometry reveals that fluid inclusions contain major vapor‐phase contents of CO2, H2O. Meanwhile, fluid inclusions contain major liquid‐phase contents of Cl?, Na+. It can be speculated that the ore‐forming fluid of the Xiaojiashan tungsten deposit is characterized by an H2O–CO2, low salinity, and H2O–CO2–NaCl system. The range of hydrogen and oxygen isotope compositions indicated that the ore‐forming fluids of the tungsten deposit were mainly magmatic water. The ore‐forming age of the Xiaojiashan deposit should to be ~227 Ma. During the ore‐forming process, the magmatic water had separated from magmatic intrusions, and the ore‐bearing complex was taken to a portion where tungsten‐bearing ores could be mineralized. The magmatic fluid was mixed by meteoric water in the late stage.  相似文献   

19.
Heating and freezing studies on fluid inclusions in quartz from mineralized quartzfeldspar reef reveal the presence of type A CO2-H2O (H2O>50% by volume), type B CO2-H2O (H2O<50% by volume), type C pure CO2 and type D pure aqueous inclusions. Types A, B and C are primary and/or psuedo-secondary inclusions while type D are secondary. Types A and B homogenize on heating into different phases at similar temperatures ranging between 307 and 476°C, indicating entrapment from boiling hydrothermal solutions. Type D inclusions homogenize into a liquid phase at temperatures between 88 and 196°C. Boiling of hydrothermal solutions led to the formation of a CO2-rich phase of low density and salinity that coexisted with another dense and saline aqueous phase with very little CO2 dissolved in it. Ore and gangue mineral assemblage of primary ores indicate that ore deposition was characterized by logf O 2=?34.4 to ?30.2 atm, logf S 2=?11.6 to ?8.8 atm and pH=4.5 to 6.5.  相似文献   

20.
Scheelite mineralization accompanied by muscovite and albite, and traces of Mo-stolzite and stolzite occurs in epigenetic quartz vein systems hosted by two-mica gneissic schists, and locally amphibolites, of the Paleozoic or older Vertiskos Formation, in the Metaggitsi area, central Chalkidiki, N Greece. Three types of primary fluid inclusions coexist in quartz and scheelite: type 1, the most abundant, consists of mixed H2O-CO2 inclusions with highly variable (20–90 vol.%) CO2 contents and salinities between 0.2 and 8.3 equivalent weight % NaCl. Densities range from 0.79 to 0.99 g/cc; type 1 inclusions contain also traces (<2 mol%) of CH4. Type 2 inclusions are nearly 100 vol.% liquid CO2, with traces of CH4, and densities between 0.75 and 0.88 g/cc. Type 3 inclusions, the least abundant, contain an aqueous liquid of low salinity (0.5 to 8.5 equivalent weight% NaCl) with 10–30 vol.% H2O gas infrequently containing also small amounts of CO2 (<2 mol%); densities range from 0.72 to 0.99 g/cc. The wide range of coexisting fluid inclusion compositions is interpreted as a result of fluid immiscibility during entrapment. Immiscibility is documented by the partitioning of CH4 and CO2, into gas-rich (CO2-rich) type 1 inclusions, and the conformity of end-member compositions trapped in type 1 inclusions to chemical equilibrium fractionation at the minimum measured homogenization temperatures, and calculated homogenization pressures. Minimum measured homogenization temperatures of aqueous and gas-rich type 1 inclusions of 220°–250 °C, either to the H2O, or to the CO2 phase, is considered the best estimate of temperature of formation of the veins, and temperature of scheelite deposition. Corresponding fluid pressures were between 1.2 and 2.6 kbar. Oxygen fugacities during mineralization varied from 10−35 to 10−31 bar and were slightly above the synthetic Ni-NiO buffer values. The fluid inclusion data combined with δ18O water values of 3 to 6 per mil (SMOW) and δ13C CO2− fluid of −1.2 to +4.3 per mil (PDB), together with geologic data, indicate generation of mineralizing fluids primarily by late- to post-metamorphic devolatilization reactions. Received: 8 April 1997 / Accepted: 8 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号