首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Arthur River Complex is a suite of gabbroic to dioritic orthogneisses in northern Fiordland, New Zealand. The Arthur River Complex separates rocks of the Median Tectonic Zone, a Mesozoic island arc complex, from Palaeozoic rocks of the palaeo‐Pacific Gondwana margin, and is itself intruded by the Western Fiordland Orthogneiss. New SHRIMP U/Pb single zircon data are presented for magmatic, metamorphic and deformation events in the Arthur River Complex and adjacent rocks from northern Fiordland. The Arthur River Complex orthogneisses and dykes are dominated by magmatic zircon dated at 136–129 Ma. A dioritic orthogneiss that occurs along the eastern margin of the Complex is dated at 154.4 ± 3.6 Ma and predates adjacent plutons of the Median Tectonic Zone. Rims on zircon cores from this sample record a thermal event at c. 120 Ma, attributed to the emplacement of the Western Fiordland Orthogneiss. Migmatitic Palaeozoic orthogneiss from the Arthur River Complex (346 ± 6 Ma) is interpreted as deformed wall rock. Very fine rims (5–20 µm) also indicate a metamorphic age of c. 120–110 Ma. A post‐tectonic pegmatite (81.8 ± 1.8 Ma) may be related to phases of crustal extension associated with the opening of the Tasman Sea. The Arthur River Complex is interpreted as a batholith, emplaced at mid‐crustal levels and then buried to deep crustal levels due to convergence of the Median Tectonic Zone arc and the continental margin.  相似文献   

2.
The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20–25 km-thick, 125.3?±?1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3?±?1.2 Ma old, pre-MDC lattice dykes and 117.4?±?3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9–14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only?~?2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740–640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1?±?1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths. Thus, our integrative approach provides the opportunity to discriminate between igneous and metamorphic zircon within deep-crustal complexes. Also, without the tight field relations at Mt Daniel, the scatter beyond a statistically coherent group might be ascribed to the presence of “antecrysts”, but it is clear that the WFO solidified before the MDC was emplaced, and these older “igneous” grains are inherited. The bimodal age range of inherited igneous grains, dominated by ~?125 Ma and 350–320 Ma age clusters, indicate that the adjacent WFO and a Carboniferous metaigneous basement were the main sources of the MDC magmas. Mafic lenses, stretched and highly attenuated into wisps within the MDC and dominated by ~?124 Ma inherited zircons, are considered to be entrained restitic material from the WFO. A comparison with lower- and upper-crustal, high Sr/Y metaluminous granites elsewhere in Fiordland shows that zircon inheritance is common in the deep crust, near the source region, but generally much less so in coeval, shallow magma chambers (plutons). This is consistent with previous modelling on rapid zircon dissolution rates and high Zr saturation concentrations in metaluminous magmas. Accordingly, unless unusual circumstances exist, such as MDC preservation in the deep crust, low temperatures of magma generation, or rapid emplacement and crystallization at higher structural levels, information on zircon inheritance in upper crustal, Cordilleran plutons is lost during zircon dissolution, along with information on the age, nature and variety of the source material. The observation that dioritic magmas can form at these low temperatures (<?750 °C) also suggests that the petrogenesis of mafic rocks in the arc root might need to be re-assessed.  相似文献   

3.
贺振宇  张泽明  宗克清  王伟  于飞 《岩石学报》2012,28(6):1857-1874
天山造山带是中亚造山带(CAOB)的主要组成部分,对于其前寒武纪古老基底的起源、古生代构造单元划分和造山作用过程的认识还存在很大分歧。本文对分布在星星峡镇西的石英闪长质片麻岩开展了系统地岩相学观察和锆石U-Pb年龄、Hf同位素及全岩地球化学分析。根据矿物组成推测它们的原岩为石英闪长岩,两个样品中的锆石具有基本一致的内部结构特征,均发育黑色、均一的边部和具震荡环带的核部,部分保留有更早的继承锆石核。分析结果表明,它们的原岩形成于~425Ma,变质作用年龄为约320~360Ma,继承锆石的年龄为1381~1743Ma。原岩结晶锆石具有正的且变化较大的εHf(t)值(0.9~17.8),继承锆石的tDM2模式年龄变化于1.54~2.44Ga。在全岩地球化学组成上,石英闪长质片麻岩具有明显富集Rb、Ba、Th、K等大离子亲石元素和Pb、U元素,亏损Nb、Ta、Ti等高场强元素的特点。结合区域上已有的前寒武纪基底、高级变质岩、蛇绿混杂岩、岩浆岩的研究资料,获得以下认识:中天山地块的前寒武纪基底的起源与塔里木板块没有明显的相关性,可能是中元古代时期,由东欧板块边缘的弧增生造山作用形成;中天山地块东部在早古生代为大陆边缘弧的构造环境,可能形成于南天山洋向中天山板块的俯冲作用;南天山洋在天山造山带的东部和西部可能具有一致的闭合时间。  相似文献   

4.
Sensitive high-resolution ion microprobe (SHRIMP) U–Pb dating, laser-ablation multi-collector ICPMS Hf isotope and electron microprobe element analyses of inherited/antecrystal and magmatic zircons from five granitoid intrusions of Linxi area, in the southern segment of the Great Xing’an Range of China were integrated to solve continental crustal growth mechanisms. These intrusions were divided into two suites. Suites 1 and 2 are mainly granodiorite and syenogranite and correspond to magnesian and ferroan granites, respectively. SHRIMP dating establishes an Early Cretaceous (135–125 Ma) age for most Linxi granitoids and a time of ∼146 Ma when their source rocks were generated or re-melted. However, some granitoids were generated in Early Triassic (241 Ma) and Late Jurassic (146 Ma), after their source rock experienced precursory melting episodes at 263 Ma and 165 Ma, respectively. All zircon 206Pb/238U ages (<300 Ma, n = 100), and high positive zircon εHf(t) values (n = 175) suggest juvenile source materials with an absence of Precambrian basement. Hf–Nd isotopic decoupling of Linxi granitoids suggests a source component of pelagic sediments, i.e. Paleozoic subduction accretion complexes. Zircon εHf(t) values (t = 263–165 Ma) form a trend sub-parallel to the depleted mantle Hf isotope evolution curve, whilst those with t = 146–125 Ma fall markedly below the latter. The first trend indicates a provenance from essentially subducted oceanic slabs. However, the abrupt εHf(t) decrease, together with extensive Early Cretaceous magmatism, is interpreted as reflecting mantle upwelling and resultant underplating, and exhumation of subducted oceanic slabs. Suite 1 granitoids derive mainly from subducted oceanic slabs or Paleozoic subduction accretion complex, whereas Suite 2 from underplated mafic rock and, subordinately, Paleozoic subduction accretion complex. Compositions of Suites 1 and 2 depend on the hydrous, oxidized or relatively anhydrous, reduced nature of source rocks. Among each of these five intrusions, magmatic zircons have systematically lower 176Hf/177Hf than inherited/antecrystal zircons. Hf isotopic and substituting element profiles through inherited/antecrystal zircons (t = 263 to ∼146 Ma) indicate repeated low melt-fraction melting in the source region. In contrast, profiles through inherited/antecrystal and magmatic zircons (t = 146–125 Ma) reveal melting region expansion with a widening range of source compositions and increasing melt fractions. These results lead to the conclusion that continental growth in this region involved a three-step process. This included subduction accretion and repeated underplating, intermediary differentiation of juvenile rocks, and granitoid production from these differentiated rocks.  相似文献   

5.
The Sri Lankan fragment of Gondwana preserves the records of Neoproterozoic tectonothermal events associated with the final assembly of the supercontinent. Here we investigate a suite of magmatic rocks from the Wanni, Kadugannawa and Highland Complexes through geological, petrological, geochemical and zircon U–Pb and Lu–Hf isotopic techniques. The hornblende biotite gneiss, charnockites, metagabbro and metadiorites investigated in this study show geochemical features consistent with calc-alkaline affinity and subduction-related signature including LILE enrichment relative to HFSE coupled with distinct Nb–Ta depletion and weak negative Zr–Hf anomalies. The felsic suite falls in the volcanic arc granites (VAGs) field and the mafic suite shows island arc basalt affinity in tectonic discrimination plots, suggesting that the protoliths of the rocks were derived from arc-related magmas in a convergent margin setting. LA-ICPMS zircon U–Pb analyses show crystallization of charnockite and dioritic mafic magmatic enclave from the Highland Complex during ca. 565 and 576 Ma corresponding to bimodal magmatism. The diorite also contains metamorphic zircons of ca. 525 Ma. Hornblende–biotite gneiss from the Kadugannawa Complex shows protolith emplacement age at 973–980 Ma, followed by new zircon growth during repeated thermal events through late Neoproterozoic. The dioritic enclaves in these rocks are much younger, and form part of a deformed and metamorphosed dyke suite with emplacement ages of 559 Ma, broadly coeval with the bimodal magmatism in the Highland Complex at that time. The youngest group of zircons in this rock shows ages of 508 Ma, corresponding to the latest thermal event. A charnockite from this locality shows oldest group of zircons at 962 Ma, corresponding to emplacement age similar to that of the magmatic protolith of the hornblende biotite gneiss. This rock also shows zircon growth during repeated thermal events at 832 Ma, 780 Ma, 721 Ma and 661–605 Ma. The lower intercept age of 543 Ma marks the timing of collisional metamorphism. Charnockite from the Wanni Complex shows emplacement age at 1000 Ma, followed by thermal event at 570 Ma, the latter correlating with the bimodal magmatic event in the Highland Complex. The dioritic enclave within this charnockite shows an age of ca. 980 Ma, suggesting intrusion of mafic magma into the felsic magma chamber. Zircons in the diorite also record multiple zircon events during 950 to 750 Ma. Zircons in the Highland Complex charnockite possess negative εHf(t) values in the range − 6.7 to − 12.6 with TDMC of 2039–2306 Ma suggesting magma derivation through melting of Paleoproterozoic source. In contrast, the εHf(t) range of − 11.1 to 1.6 suggests a mixed source of both of older crustal and juvenile material. The εHf(t) values of − 4.5 to 4.5 and TDMC of 1546–1962 Ma for the hornblende biotite gneiss also shows magma derivation from mixed sources that included Paleoproterozoic components. The younger dioritic intrusive, however, has a more juvenile magma source as indicated by the mean εHf(t) value of 1.3. The associated charnockite shows a tight positive cluster of εHf(t) from 0.6 to 5.1, suggesting juvenile input. Charnockite from the Wanni Complex shows clearly positive εHf(t) values of up to 13.1, and TDMC in the range 937–1458 Ma suggesting much younger and depleted mantle source. The diorite enclave also has positive εHf(t) values with an average value of 8.5 and TDMC in the range of 709–1443 Ma clearly suggesting younger juvenile sources. The early and late Neoproterozoic bimodal suites are correlated to convergent margin magmatism associated with the assembly of Sri Lanka within the Gondwana supercontinent.  相似文献   

6.
锆石U-Pb定年及Hf同位素测定结果表明,鄂尔多斯盆地周缘的华北板块北缘、兴蒙造山系及扬子板块-秦岭-大别-苏鲁造山带等构造单元系统具有明显不同的形成与演化历史。华北板块北缘锆石年龄平均值为1 837 Ma,最强烈的岩浆活动出现于2 200~1 800 Ma,该期锆石约占全部的40%;次为强烈的岩浆活动在2 800~2 200 Ma,其众数在全部锆石中约占30%;1 500~1 200 Ma、500~100 Ma这两个阶段形成的锆石在全区所占比例各约为15%。华北板块北缘最突出的特征是基本不含1 000~700 Ma期间形成的锆石,>3 000 Ma的锆石在全区分布极为有限。锆石Hf同位素亏损地幔模式年龄表明华北板块北缘平均值为2.55 Ga,较U-Pb平均年龄老,说明2 200~1 800 Ma期间形成的锆石含有较多的古老地壳再循环组分。Hf亏损地幔模式年龄最强峰值约为2.8 Ga,与全岩Nd亏损地幔模式年龄的峰值相一致,Hf模式年龄为3.0~2.25 Ga的颗粒占全部的近95%,证明华北板块北缘的地壳增生主要在太古宙至古元古代期间。Hf同位素亏损地幔模式年龄>3.0 Ga的锆石颗粒所占比例不到0.1%,另外近5%锆石的模式年龄分布于中元古代。晚古生代-中生代所形成的锆石均是先存地壳组分,尤其是中元古代增生地壳的熔融作用形成。兴蒙造山系中锆石U-Pb年龄平均值为497 Ma,最强峰分布于石炭纪(约320 Ma),石炭纪-二叠纪末(350~250 Ma)形成的锆石所占比例达30%以上。新元古代至早古生代(600~440 Ma)形成的锆石占全部锆石的55%以上,而中元古代末-新元古代期间(1 200~600 Ma)形成的锆石在全区仅占4%。中元古代以前形成的锆石非常有限,说明该区最早形成的地壳组分在兴蒙造山系的形成过程中较充分地参与到后期的岩浆作用过程中。兴蒙造山系中锆石相应的Hf同位素亏损地幔模式年龄平均为1.13 Ga,明显较相应的U-Pb年龄老,最强峰值出现于约0.6 Ga。Hf亏损地幔模式年龄为0.7~0.28 Ga的颗粒在兴蒙造山系所占比例达57%,证明该区最强烈的地壳增生发生于新元古代至古生代期间。Hf同位素亏损地幔模式年龄分布于1.5~0.7 Ga的锆石在全区约占38%,说明此期间也是该区地壳较强烈的增生期。Hf亏损地幔模式年龄大于1.5 Ga的锆石所占比例不到5%,古生代以后兴蒙造山系也基本没有明显的地壳增生。扬子与秦岭-大别-苏鲁造山带构造单元中的锆石U-Pb年龄平均为799 Ma,年龄为1 300~750 Ma的锆石在全部锆石中约占70%。晚古生代-燕山期形成的锆石约占20%。年龄在3 500~2 650 Ma、2 118~1 680 Ma的锆石在该区各约占5%。结合扬子与秦岭-大别-苏鲁造山带平均为1.56 Ga的Nd亏损地幔模式年龄特征,说明1 300~750 Ma期间该区较强烈的岩浆作用事件中有较多的古老地壳组分加入其中。锆石U-Pb年龄及Hf同位素组成均说明鄂尔多斯盆地周缘各构造单元具有不同的形成演化历史。地壳是幕式增长的,但各构造单元每幕发生的时间、强度存在明显差别。因此,由盆地中不同时代地层中碎屑锆石U-Pb年龄及Hf同位素组成及全岩Nd同位素特征的系统研究可反演盆地物源供给与周围构造单元之间的关系。  相似文献   

7.
The Central Asian Orogenic Belt (CAOB), as one of the largest accretionary orogens in the world, was built up through protracted accretion and collision of a variety of terranes due to the subduction and closure of the Paleo-Asian Ocean in the Neoproterozoic to Early Mesozoic. Located in the Uliastai continental margin of the southeastern CAOB, the Chagan Obo Temple area is essential for understanding the tectonic evolution of the southeastern part of the CAOB and its relation with the “Hegenshan Ocean”. In this study, detrital zircon U-Pb geochronology coupled with Hf isotopic analysis was performed on Paleozoic sedimentary strata in this area. Most detrital zircons from the studied samples possess oscillatory zoning and have Th/U ratios of 0.4-1.73, indicative of an igneous origin. Detrital zircons from the Ordovician to Devonian sedimentary strata yield a predominant age group at 511-490 Ma and subordinate age groups at 982-891 Ma, 834-790 Ma and ~ 574 Ma, and have a large spread of εHf(t) values (-20.77 to + 16.94). Carboniferous and Early Permian samples yield zircon U-Pb ages peaking at ~ 410 Ma and ~ 336 Ma, and have dominantly positive εHf(t) values (+ 1.30 to + 14.86). Such age populations and Hf isotopic signatures match those of magmatic rocks in the Northern Accretionary Orogen and the Mongolian arcs. A marked shift of provenance terranes from multiple sources to a single source and Hf isotope compositions from mixed to positive values occurred at some time in the Carboniferous. Such a shift implies that the Northern Accretionary Orogen was no longer a contributor of detritus in the Carboniferous to Early Permian, due to the opening of the “Hegenshan Ocean” possibly induced by the slab rollback of the subducting Paleo-Asian Ocean.  相似文献   

8.
李壮  郎兴海  章奇志  何亮 《岩石学报》2019,35(3):737-759
浦桑果矿床位于拉萨地块冈底斯成矿带中段,为侵入岩体与钙质围岩接触带内形成的矽卡岩型高品位铜多金属矿床(Cu@1. 42%,Pb+Zn@2. 83%),是冈底斯成矿带目前唯一一个大型富铜铅锌(钴镍)矿床。本文以浦桑果矿床相关中酸性侵入岩体(黑云母花岗闪长岩和闪长玢岩)为主要研究对象,开展LA-ICP-MS锆石U-Pb年代学、全岩主微量元素、全岩SrNd-Pb及锆石Lu-Hf同位素研究,旨在厘定侵入岩体的形成时代、岩石成因及成岩成矿的动力学背景。LA-ICP-MS锆石U-Pb定年结果表明,黑云母花岗闪长岩和闪长玢岩侵位年龄分别为13. 6~14. 4Ma和13. 6~14. 6Ma,岩体形成时代均属中新世。岩石地球化学特征表明,闪长玢岩和黑云母花岗闪长岩均属高钾钙碱性I型花岗质岩石;岩石普遍具高Sr含量(599×10~(-6)~1616×10~(-6))、高Sr/Y(48. 2~132. 3)和高(La/Yb)N(19. 6~25. 4)比值特征,具低Y(10. 38×10~(-6)~12. 70×10~(-6))和Yb含量(0. 79×10~(-6)~1. 17×10~(-6))特征,表现出埃达克质岩的地球化学属性。全岩稀土元素表现为明显富集轻稀土元素(LREEs)和大离子亲石元素(LILEs),而相对亏损重稀土元素(HREEs)和高场强元素Nb、Ta、P、Ti等(HFSE)。全岩Sr-Nd-Pb及锆石Hf同位素分析结果表明,浦桑果矿床相关中酸性岩石与冈底斯成矿带中新世大多斑岩-矽卡岩矿床紧密相关的埃达克质侵入岩体具相似的同位素组成特征,指示岩石具同源岩浆特征且埃达克质岩浆主要起源于拉萨地块加厚新生下地壳。浦桑果矿床中酸性岩体主要形成于后碰撞伸展的构造背景,因碰撞挤压向后碰撞伸展背景的构造转换,引起印度大陆岩石圈发生拆沉(42~25Ma)及拉萨地块中富集岩石圈地幔发生部分熔融,从而形成富含Cu、Co等基性岩浆熔体底侵加厚新生下地壳(25~18Ma),导致拉萨地块加厚新生下地壳中部分石榴子石角闪岩相发生部分熔融,最终形成闪长质熔体于浦桑果矿区有利构造部位形成具埃达克质属性的中酸性侵入岩体(13~14Ma)和矽卡岩型铜多金属矿体。  相似文献   

9.
The Dongping gold deposit, located in Chongli County (Hebei Province) about 200 km northwest of Beijing, is one of the largest gold-producing areas along the northern margin of the North China Craton. It is located in the of Shuiquangou alkaline igneous complex of Middle Devonian age (394.3 ± 3.2 Ma), composed chiefly of highly alkaline syentite and quartz syenites. This study reveals the age of the Carboniferous in the deposit at 351.7 ± 2.8 Ma (MSWD = 1.9). The Dongping deposit is locally hosted in Cretaceous (~143 ± 1 Ma) alkali granites that intruded the older and the gold mineralization is closely associated genetically with this event. Hydrothermal zircons in the alkali granites have Th/U ratios mostly ranging between 0.01 and 0.7 indicating oscillatory zoning. A few grains with high Th/U ratios (1.31–2.07) may be from metamorphic domains. Negative εHf(t) values of the zircon mainly range between −19.75 and −16.93, suggesting that they originated principally by the melting of recycled continental crust. Less abundant zircons with εHf(t) ranging from −25.76 to −23.46, with Hf model ages (TDM2) of 2.54 to 2.67 Ga, (mainly 2.2 to 2.3 Ga) suggest that recycled Neoarchean basement was also present in the source region. The Devonian syenites and quartz syenites have TDM1 ages ranging from 1.96 to 2.08 Ga. Zircons from these rocks have εHf(t) values of −11.9 to −18.9. Certain zircons from the gold-bearing granite of Paleozoic age have an initial 176Hf/177Hf ratio of 0.281816 to 0.282058 and 0.282147 to 0.282348, reflecting a homogenous distribution of hafnium isotopes typical of magmatic sources. The TDM1 and TDM2 of the latest intrusion varying 1.33 to 1.59 Ga and 1.72 to 2.11 Ga respectively, indicating that the Neoproterozoic to Mesoproterozoic rocks of this area are an important source for the younger magma which are important to forming ore deposits. The TDM2 indicate that the magma may be derived from a very old crustal basement (~2.67 Ga) in the northern margin of North China Craton by partial melting.  相似文献   

10.
《International Geology Review》2012,54(16):2036-2056
ABSTRACT

The Chinese Southwest Tianshan Orogenic Belt is located along the boundary between the Central Asian Orogenic Belt (CAOB) and the Tarim Block (TB), NW China. It records the convergence of the Tarim Block and the Middle Tianshan, and is, therefore, a crucial region for understanding the Eurasia continental growth and evolution. The Wulagen (geographical name) metasedimentary rocks of the Wuqia area (mainly metamorphic sandstones and mica schists) form one of the metamorphic terranes in the Southwestern Tianshan Orogenic Belt. The geochronology of these rocks is poorly known, which hampers our understanding of the tectonic evolution of the belt. We analyzed 517 zircon grains for detrital zircon U–Pb dating and 93 zircon grains for in situ Lu–Hf isotopic compositions from the Wulagen metasedimentary rocks. The analyzed zircon grains yield Neoarchean to late Paleozoic U–Pb ages with major age peaks at ~2543 Ma, 1814 Ma, 830 Ma, 460 Ma, and the youngest cluster of zircon (magmatogene) ages is 395 Ma. The zircon U–Pb data show that the late Paleozoic (Early Devonian) is the maximum depositional age of the Wulagen metasedimentary rocks, rather than the previously considered Precambrian period. The zircons with Paleozoic ages yield εHf(t) values of ?22.0 to +11.3 and two-stage model ages (TDM2) of 3.95 to 1.30 Ga, suggesting that the parental magmas were formed from partial melting of pre-existing crustal rocks. Our zircon U–Pb geochronology and Hf isotopic data indicate the major source regions for the Wulagen metasedimentary rocks was the Kyrgyzstan North Tianshan. The zircon age population of 600–400 Ma (peak at ~460 Ma) has negative εHf(t) values (?15.0 to ?0.6) and Mesoproterozoic two-stage model ages, suggesting that the early Paleozoic magmatism resulted mainly from the melting of ancient crust, which played an important role in crustal evolution in the southern CAOB.  相似文献   

11.
《地学前缘(英文版)》2018,9(6):1921-1936
The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous (99 Ma) to Neoarchean (2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction (SSZ)-type Mayarí-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains (n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negative εHf(t) (−26 to −0.6) and occasional inclusions of quartz, K-feldspar, biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains (297 ± 5 Ma to 2126 ± 27 Ma) show positive εHf(t) (+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile (mantle) sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite. We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.  相似文献   

12.
目前对西藏冈底斯带早白垩世大规模岩浆作用的岩石成因以及冈底斯带不同构造单元的东延仍存在不同看法。为探讨这些问题,文中对冈底斯带东部地区然乌岩体中的闪长岩脉进行了锆石SHRIM PU-Pb定年和锆石Hf同位素分析。结果表明:然乌岩体中闪长岩脉的锆石SHRIM PU-Pb年龄为(114.2±0.9)Ma,与二长花岗岩为同期侵位。然乌闪长岩脉具有不均一的锆石Hf同位素组成,其εHf(t)值介于-4.2~+4.9,对应的Hf同位素地壳模式年龄为0.85~1.44Ga。闪长岩脉的全岩εNd(t)值为-4.7,Nd同位素两阶段模式年龄(TDM2)为1.29Ga,与锆石Hf同位素模式年龄一致。然乌地区同期发生的闪长质岩浆和花岗质岩浆侵位以及不均一的锆石Hf同位素组成,很可能表明然乌地区大约在115Ma发生了重要的岩浆混合作用。结合锆石Hf同位素地壳模式年龄的区域性对比,我们认为,与北冈底斯带相比,然乌地区同中冈底斯带之间具有更好的可对比性。  相似文献   

13.
The western Fiordland Orthogneiss (WFO) is an extensive composite metagabbroic to dioritic arc batholith that was emplaced at c. 20–25 km crustal depth into Palaeozoic and Mesozoic gneiss during collision and accretion of the arc with the Mesozoic Pacific Gondwana margin. Sensitive high‐resolution ion microprobe U–Pb zircon data from central and northern Fiordland indicate that WFO plutons were emplaced throughout the early Cretaceous (123.6 ± 3.0, 121.8 ± 1.7, 120.0 ± 2.6 and 115.6 ± 2.4 Ma). Emplacement of the WFO synchronous with regional deformation and collisional‐style orogenesis is illustrated by (i) coeval ages of a post‐D1 dyke (123.6 ± 3.0 Ma) and its host pluton (121.8 ± 1.7 Ma) at Mt Daniel and (ii) coeval ages of pluton emplacement and metamorphism/deformation of proximal paragneiss in George and Doubtful Sounds. The coincidence emplacement and metamorphic ages indicate that the WFO was regionally significant as a heat source for amphibolite to granulite facies metamorphism. The age spectra of detrital zircon populations were characterized for four paragneiss samples. A paragneiss from Doubtful Sound shows a similar age spectrum to other central Fiordland and Westland paragneiss and SE Australian Ordovician sedimentary rocks, with age peaks at 600–500 and 1100–900 Ma, a smaller peak at c. 1400 Ma, and a minor Archean component. Similarly, one sample of the George Sound paragneiss has a significant Palaeozoic to Archean age spectrum, however zircon populations from the George Sound paragneiss are dominated by Permo‐Triassic components and thus are markedly different from any of those previously studied in Fiordland.  相似文献   

14.
The study in this paper determined whole rock major and trace elements, zircon U-Pb age and Hf, O isotopes of 5 mafic dikes in the southwestern Fujian province. The 5 dikes are mainly diabase and the whole rock SiO2 content are between 45%~53%. Most zircons of the mafic dikes display obvious oscillatory zoning and fan-shaped zoning, and have the typical magmatic zircon crystallization characteristics. Zircon U-Pb age is dispersed with 96~2 400 Ma range. In addition to the minimum age (96~142 Ma) which might be the age of the formation of dikes, the remaining are captured zircon. The captured zircon age was mainly distributed in 4 groups: Early Proterozoic (2 467~1 796 Ma); Middle and late Proterozoic (1 343~647 Ma); Silurian to late Triassic Epoch (427~225 Ma); and Late Jurassic (159~140 Ma). Hf-O isotope shows that the early Proterozoic zircon was derived from the mantle of the homogeneous chondrite reservoir, and the others show magmatic mixing characteristics between depleted mantle and crust. Zircon’s εHf(t) and δ18O of the early Late Cretaceous clearly show the mixing trend of depleted mantle and crustal magma. The peak of zircon Hf two-stage depleted mantle model age TDM2 was mainly distributed in the 1.6~1.9 Ga. The Early Proterozoic mafic crust might be the main source for latter granite.  相似文献   

15.
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle–lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131–127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from ?3 to ?8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.  相似文献   

16.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

17.
1 Introduction Mesozoic volcano-intrusive rocks are widely distributed in the Da Hinggan Range of northeastern China, and are considered as one of the most spectacular geological sights in eastern Asia. Recently, studies on granites with high εNd(t) values and Phanerozoic crustal growth in the Centra Asian Orogenic Belt have greatly promoted fundamental research into the geology of this area (Jahn et al., 2000, 2001, 2004; Wu et al., 2000, 2002, 2003). However, work on the eruption time,…  相似文献   

18.
辽东王家堡子地区出露大量古元古代花岗质岩石,前人将其统称为花岗质混杂岩。通过详细的野外地质调查和室内综合研究,将该套花岗质混杂岩解体为条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩两类。岩石地球化学分析结果显示二者具有一致的地球化学特征。均显示高SiO_2、富K_2O、贫Al_2O_3的特征,K_2O/Na_2O=0.64~2.14,TiO_2含量为0.16%~0.3%,MnO、MgO、CaO和P_2O_5的含量较低,铝指数A/CNK集中分布在1.06~1.1之间,A/NK在1.50~1.62之间,均属于过铝质高钾钙碱性系列;微量元素显示强烈亏损Nb、Ti、Ta等高场强元素,富集Rb、U、K等大离子亲石元素,具有明显的负Eu异常,具有A型花岗岩的特征。条痕状黑云母二长花岗岩大部分锆石为具有清晰振荡环带的岩浆锆石,LA-ICP-MS锆石U-Pb年龄为2188±13Ma,代表该岩石的岩浆结晶年龄。片麻状黑云母二长花岗岩大部分锆石具有明显的变质增生边,部分核部锆石具有清晰的振荡环带,LA-ICP-MS锆石U-Pb测年获得核部年龄为2214±16Ma,代表该岩石的岩浆结晶年龄;增生边年龄为1905±13Ma,应代表该岩石的变质年龄。条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩的Hf同位素模式年龄分别为2387~2584Ma和2474~2641Ma,平均地壳模式年龄分别为2495~2808Ma和2633~2868Ma,大于岩石形成年龄,暗示研究区古元古代花岗岩源区主要为太古宙基底,混有少量古元古代新生地壳。结合前人报道的埃达克质花岗闪长岩的形成环境,认为胶-辽-吉古元古代造山/活动带早期经历了2.2~2.15Ga的拉伸裂解过程和2.0Ga左右俯冲挤压的构造演化过程。  相似文献   

19.
铜陵矿集区内广泛分布的铁铜硫金矿床被认为与中生代发生的大规模成岩作用密切相关,其中形成于140~150 Ma之间的晚侏罗世高钾钙碱性岩体是主要的成矿岩体。文章选取铜陵焦冲金硫矿区与成矿相关的闪长玢岩开展了锆石LA-ICP-MS U-Pb同位素年代学研究,测得闪长玢岩LA-ICP-MS锆石U-Pb同位素年龄为(128.0±2.2) Ma,表明铜陵地区除晚侏罗世与大规模成矿作用相关的高钾钙碱性岩浆作用外,还存在一期早白垩世与金硫多金属成矿作用相关的岩浆活动。4个中-晚石炭世岩浆锆石一致年龄(309~328 Ma)表明该区可能存在海西期的岩浆作用,但其规模、背景及与成矿的关系还需进一步研究。其他2组继承岩浆成因锆石核的一致性年龄(1870~1931 Ma、600~808 Ma)表明铜陵地区与扬子克拉通一样存在明显的古元古代及新元古代的岩浆作用。  相似文献   

20.
The North China Craton (NCC) is bounded by two Paleozoic accretionary arc terranes: the North Qinling terrane to the south and the Bainaimiao terrane to the north. The timing of arc accretion to the NCC and the architecture of the Bainaimiao arc remain unclear. During the building and accretion of the arcs along its margins, the NCC experienced a long sedimentary hiatus since the Ordovician, which ended with the deposition of bauxite-bearing sediments in the Late Carboniferous. In this paper we report the U–Pb and Hf isotopes of detrital zircons from the Late Carboniferous bauxite layer and use these data to constrain the tectonic evolution of the margin of the NCC. The detrital zircons yield a minimum U–Pb age of ca. 310 Ma and a prominent age peak at ca. 450 Ma. Zircon crystals with ages of ca. 330 Ma and ca. 1900 Ma are more common in the bauxite samples from the northern part of the NCC than in those from the central part. The εHf(t) values of the ca. 450 Ma detrital zircon crystals of the bauxite samples from the NCC are similar to those of the contemporaneous detrital zircon crystals from the North Qinling arc terrane to the south, but different from those of the contemporaneous detrital zircon crystals from the Bainaimiao arc terrane to the north. The ca. 450 Ma detrital zircon crystals in the ca. 310 Ma bauxite deposits are therefore interpreted to have been derived from the North Qinling arc terrane. The source of the ca. 330 Ma detrital zircon crystals of the bauxite deposits is interpreted to be the northern margin of the NCC, where intermediate-felsic plutons formed at ca. 330 Ma are common. The results from this study support the interpretation that the Paleozoic continental arc terranes and their concomitant back-arc basins were developed along the margins of the NCC before ca. 450 Ma, and the arc complexes were subsequently accreted to the craton in the Late Carboniferous. This was then followed by the formation of a walled continental basin within the NCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号