首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吗啉废水的生化处理工艺   总被引:2,自引:0,他引:2  
以含有吗啉、甲基吗啉的高浓度有机废水为研究对象,提出了曝气吹脱-吸附-生物处理的联合工艺,并在室内进行了小试实验。结果表明:原废水经过2次曝气吹脱后,ρ(NH3-N)从62 500 mg/L降为431 mg/L,ρ(COD)从50 840 mg/L降为26 051 mg/L。通过吸附实验,ρ(COD)从26 051 mg/L降为2 769 mg/L,ρ(NH3-N)从412 mg/L降为134 mg/L。在生物处理室内小试实验中,采用了活性污泥反应器与曝气生物滤池相结合的处理工艺。在活性污泥反应系统中,当废水pH为7.5、ρ(DO)为4.3 mg/L、水力停留时间为30 h时,COD的去除率最高,可以达到83.1%。在曝气生物滤池中,当ρ(DO)为3.3 mg/L时,COD去除率最高,达到55.8%。在生物处理的最佳参数条件下进行连续监测,当进水ρ(COD)为2 769 mg/L、出水ρ(COD)平均值为387 mg/L时,COD去除率可达到85.9%。吗啉废水经过此联合工艺的处理,ρ(COD)从50 840 mg/L降为387 mg/L。  相似文献   

2.
Continuous upflow anaerobic sludge blanket reactor performs more favorably at the higher organic loading rate than other anaerobic treatment. The treatment of municipal landfill leachate of Shiraz??s city investigated using continuous flow anaerobic reactor and subsequently aerated lagoon. Landfill leachate has chemical oxygen demand of 45,000?C90,000?mg/L and ammonia nitrogen at 1,000?C2,500 and heavy metals that can impact biological treatments. Capacity of anaerobic and aerobic reactors is 10 and 20?L that operated at detention time of 2 and 4?days, respectively. Organic loading rate of upflow anaerobic sludge blanket is between 0.5?C20?g chemical oxygen demand/L/day. Chemical oxygen demand removal efficiencies are between 57?C87, 35?C70 and 66?C94% in the anaerobic, aerobic and whole system, respectively. As the entry, leachate organic loading rate increased from 1 to 20?g/L/day, the chemical oxygen demand removal efficiency reached a maximum of 71% and 84% in the anaerobic reactor and whole system, respectively, at high organic loading rate. Ammonium removal efficiency was about 54% after the aerobic stage.  相似文献   

3.
4.
中温UBF与UASB两相厌氧系统处理垃圾渗滤液的实验研究   总被引:1,自引:0,他引:1  
针对石碑岭垃圾场渗滤液水质特性,采用以高效生物陶粒为填料的UBF反应器作酸化相,以UASB反应器作甲烷相的两相厌氧系统进行了处理垃圾渗滤液的实验研究.实验结果表明:在系统进水CODCr和BOD5质量浓度分别为3 887 mg/L和819 mg/L,UBF与UASB的HRT分别控制在10.3 h和61.7 h时,CODCr和BOD5总去除率分别为85.4%和90.1%,UBF酸化率达42.9%,BOD5/CODCr比值由0.21提高到0.39.  相似文献   

5.
The co-treatment of landfill leachate (LFL) with municipal wastewater (MWW) using shortcut sequencing batch reactor combined with coagulation–settling process (SBR + CS) was investigated. Four ratios of LFL to MWW volume (v/v) were used during experiments including the ratios 1:9, 2:8, 3:7 and 5:5. The average quality of the LFL was chemical oxygen demand (COD) of 20,800 mg L?1 and NH4-N of 2,645 mg L?1. The SBR-treating LFL in six series where mixing aeration and settling phases were varied from 4 to 14 h was combined with coagulation (FeCl3, Al2(SO4)3) with an interval of 2 h. It was found that ratio (1:9) of leachate to MWW under aeration and mixing phase of 4 h with settling time of 1.5 h exhibited the highest ability to remove both COD and NH 4 + -N, 99% and 85%, respectively. The short-time sequential batch reactor was tested for the treatment of raw LFL, and only 47% and 23% removal of COD and NH 4 + -N, respectively, could be achieved.  相似文献   

6.
Two sets of lab-scale sequencing batch reactors (SBR), i.e., control SBR and SBR using zeolite as carrier (zeo-SBR), were applied to assess nitrogen removal efficiency. The test results revealed that zeolite powder added in SBR could improve its performance. Due to the combination of zeolite adsorption for NH4 +–N and enhanced simultaneous nitrification and de-nitrification (SND), a higher removal ratio of ammonia nitrogen in wastewater was observed in the test reactor, and the introduction of zeolite powder was helpful to inhabit sludge bulging comparing with the control SBR, in other words, activated sludge immobilized by zeolite powder could remove NH4 +–N, COD, and PO4 significantly in a shorter cycle time. Applied two hydraulic retention times (HRTs) showed that the nitrogen and phosphorus removal could be improved while adapting to load variations.  相似文献   

7.
The upflow anaerobic sludge blanket process followed by the biological aerated filter process was employed to improve the removal of color and recalcitrant compounds from real dyeing wastewater. The highest removal efficiency for color was observed in the anaerobic process, at 8-h hydraulic retention time, seeded with the sludge granule. In the subsequent aerobic process packed with the microbe-immobilized polyethylene glycol media, the removal efficiency for chemical oxygen demand increased significantly to 75 %, regardless of the empty bed contact time. The average influent non-biodegradable soluble chemical oxygen demand was 517 mg/L, and the average concentration in effluent from the anaerobic reactor was 363 mg/L, suggesting the removal of some recalcitrant matters together with the degradable ones. The average non-biodegradable soluble chemical oxygen demand in effluent from the aerobic reactor was 87, 93, and 118 mg/L, with the removal efficiency of 76, 74, and 67 %, at 24-, 12-, and 8-h empty bed contact time, respectively. The combined anaerobic sludge blanket and aerobic cell-entrapped process was effective to remove the refractory compounds from real dyeing wastewater as well as in reducing organic loading to meet the effluent discharge limits. This integrated process is considered an effective and economical treatment technology for dyeing wastewater.  相似文献   

8.
在多级折流板反应器生物处理装置中,采用活性炭为载体人工固定化生物处理合成染料废水,出水水质稳定, 出水中的烷烃肽链变短;其对CODCr和BOD5的去除率可达96.46%、99.77% ;对SO2-4和钙镁总量的去除效率超过80.37%、78.66%;折流板反应器的容积负荷率Nv可达2.8 kg COD/(d•m3)。活性炭经生物固定化后,不仅不会影响它的处理效果,还会延长活性炭的使用寿命;当冲击性有机负荷发生时,固定化生物活性炭能够承受并能很快恢复。  相似文献   

9.
This research investigated the potential for industrial-strength 2-methyl-4-chlorophenoxyacetic acid (MCPA) degradation by activated sludge microorganisms in a sequencing batch reactor (SBR) under nitrate-reducing conditions. The research was divided into four phases consisting of Phase I (a “proof-of-concept” phase); Phase II (an initial “tolerance” exploration phase); Phase III (an “effect of hydraulic retention time” phase), and Phase IV (a “limits” phase). The SBR successfully and simultaneously removed the nitrates completely and around 98 % of the MCPA up to an initial concentration of 50 mg/L MCPA in the dimethylamine salt form (DMCPA) (Phases I, II and III); however, it took approximately 28 days to observe a steady, high-level of MCPA removal. When the concentration of DMCPA was increased to 75 mg/L (Phase IV), the MCPA removal efficiency dropped to 85 %, but removal was observed only for a relatively short period of time since the biomass appeared to eventually become saturated with the herbicide, stopping conversion of DMCPA to its acid form and halting biodegradation.  相似文献   

10.
A combined ABR–MBR process consisting of an anaerobic baffled reactor (ABR) combined with an aerobic membrane bioreactor (MBR) treating municipal wastewater was investigated at controlled pH range 6.5–8.5 and at constant temperature 25 ± 1 °C. Total nitrogen (TN), ammonia (NH4 +–N), total phosphorus (TP), and chemical oxygen demand (COD) removal performances were evaluated by analyzing the mechanism for efficient nutrient removal. The results showed that the average removal rates of COD, NH4 +–N, TN, and TP reached 93, 99, 79, and 92 %, respectively, corresponding with the COD, NH4 +–N, TN, and TP effluent of 24 (18–31), 0.4 (0–0.8), 10.6 (8.8–12.9), and 0.31 (0.1–0.5) mg/L under the operational condition of hydraulic retention time (HRT) 7.5 h, recycle ratio 200 %, and dissolved oxygen 3 mg/L. The MBR enhanced NH4 +–N, TN, and TP removal rates of 13, 10, and 18 %, respectively, and the membrane retention reduced TP 0.17 mg/L. The process was able to maintain a stable performance with high-quality effluent. Analysis of the results by fluorescence in situ hybridization showed that the abundance of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and phosphorus accumulating organisms as percentages of all bacteria in each compartment was stable. The enriched microorganisms in the system appear to be the main drivers of the process efficient for nutrient removal.  相似文献   

11.
Hybrid anaerobic baffled reactor for treatment of desizing wastewater   总被引:3,自引:3,他引:0  
Polyvinyl alcohol-containing desizing wastewater discharged within final textile wastewater has a great impact to the environment due to its poor biodegradability. An improved lab-scale hybrid anaerobic baffled reactor was developed to treat desizing wastewater. The modification was achieved by increasing the height of hybrid anaerobic baffled reactor and application of proper effluent recycle enabled to increase the ability of entrapping microbe-rich small particles in the reactor and prompted the formation of granules. The significant difficulty in hybrid anaerobic baffled reactor operation is the slow start-up procedure, which is crucial to the overall polyvinyl alcohol-containing desizing wastewater treatment. Therefore, the ability of a hybrid anaerobic baffled reactor, treating desizing wastewater, to achieve a prompt start-up was studied at lab-scale. Results showed that inoculated with anaerobic granular sludge and adoption of effluent recycle during start-up, the system demonstrated a good performance of polyvinyl alcohol removal efficiency (above 17.2 %) and satisfactory stability of pH and alkalinity in effluent (range around 7.4–8.0 and 700–920 mg/L, respectively) and the sludge appeared obviously granulation. Thus, the prompt start-up was achieved after 60 days. The start-up strategy used for this process has achieved its goals by creating an active microbial population. The improved lab-scale hybrid anaerobic baffled reactor proved to be an efficient reactor configuration for the treatment of desizing wastewater, which favored the prompt start-up of hybrid anaerobic baffled reactor. The results also provide evidence to modify the design of anaerobic baffled reactor to improve reactor performance.  相似文献   

12.
Sewage treatment station in oilfield needs a new process to meet the desired requirements. A new process was proposed to meet the discharge standards, which consisted of the following sub-processes: electrochemical treatment → coagulation treatment → integrated biochemical treatment of moving bed biofilm reactor and membrane bio-reactor → combined treatment process of macroporous adsorption resin. Electrochemical treatment included 5 electrolytic cells, total volume of which was 10 L. The PFS was chosen as the coagulants in the coagulation treatment, and the removal rate of COD could reach 66% when the dosage of PFS was 500 mg/L. The biochemical treatment consisted of anoxic tank, aerobic tank and membrane zone, and the removal rate of COD was about 55–70% when HRT was 12 h. SD300 resin was chosen as the best adsorbent in the treatment using macroporous adsorption resin. In addition, the effluent COD after coagulation treatment process becomes about 180 mg/L, the effluent COD after biological treatment becomes about 50 mg/L, and the last effluent COD with the macroporous adsorption resin becomes about 20 mg/L. The three-dimensional fluorescence spectrum was used to analyze the differences in types of organic matters in water samples between the raw water and the treated one. The results demonstrated that the new process meets the needs of wastewater treatment.  相似文献   

13.
新型SBR工艺处理生活废水的研究   总被引:2,自引:0,他引:2  
新型SBR工艺是在传统SBR反应器中加一隔板,将反应器从空间上分成上下两个区域,上面是好氧区,下面为缺氧厌氧区。实验通过水力停留时间和上下区域体积比对脱氮除磷效果影响的研究,确定该工艺的最佳运行工况和反应器内挡板位置;同时与传统SBR工艺进行对比实验研究。结果表明,进水60 m in,曝气240 m in,沉淀30 m in,排水15 m in,闲置15 m in;上下区域体积比为1∶1时脱氮除磷效果最佳,TN和TP去除率达到88.7%和78.4%,其效果均好于传统SBR工艺。  相似文献   

14.
Landfill leachate treatment was investigated using two anaerobic/aerobic sequencing batch reactors inoculated with suspended growth-activated sludge (ASBR) and aerobic granular sludge (GSBR). The total ammonium nitrogen (TAN) concentration in the GSBR influent was as high as 1200 mg/L with an average TAN removal efficiency of 99.7%. However, the ASBR treatment did not show a consistent performance in TAN removal. The TAN removal efficiency decreased with increasing ammonium concentration in the influent. Aerobic granular sludge was found to be more resistant to free ammonia (FA). In the GSBR, nitrification was partially inhibited at FA concentration from 48 to 57 mg/L, which was two times more than the FA concentration that inhibited nitrification in the ASBR. Low chemical oxygen demand removal efficiencies were obtained in both reactors, which was associated with the refractory organic content of the leachate used in this study. This resulted in poor phosphorous removal in both treatments. The results prove that aerobic granular sludge is a robust method as compared to suspended-activated sludge to treat leachate containing high levels of TAN and FA.  相似文献   

15.
采用PAC(聚合氯化铝)与PFS(聚合硫酸铁)混凝剂处理污水,并进行了对比实验。结果表明。在污水COD浓度为920mg/L,PFS折算为Fe2O3的投加量为300mg/L,pH为9.0时,出水COD为406mg/L,COD去除率为55.8%,而PAC折算为Al2O3的投加量为120mg/L时,出水COD为369.8mg/L,COD去除率为59.8%。PAC较PFS对COD的去除率高约4%。  相似文献   

16.
在上流式好氧颗粒污泥床反应器中, 以厌氧颗粒污泥和好氧絮状活性污泥为接种泥, 采用人工配制的模拟废水, 成功培养出性能优异的好氧颗粒污泥.反应器内污泥浓度稳定在5g/L左右, 颗粒污泥粒径为0.5~2.0mm, 当进水COD为2000mg/L, 容积负荷为4.8kg/(m3·d)时, 系统对COD的去除率稳定在96%以上.通过扫描电镜观察, 好氧颗粒污泥是层状结构, 表面有大量丝状菌缠绕, 内部有短杆菌和空穴存在.逐步提高制药废水在进水中的比例, 经过47d的培养, 生物制药废水完全取代模拟废水, 系统对COD、NH3-N、TP的去除率分别稳定在90%、90%和70%以上.   相似文献   

17.
Exhausted Reactive dye bath samples of Turquoise Blue, Olive Green and Navy Blue shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. Complete decolorization of the effluent was achieved in 10 min contact time and ozone consumption of 153 mg/ L for Turquoise Blue, 128 for Olive Green and 143 for Navy Blue shades effluents respectively. The corresponding COD removal was 43%, 44% and 43% for the three shades while TOC removal efficiency was 45%, 45% and 40% respectively. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.  相似文献   

18.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   

19.
人工快速渗滤复合系统处理洗浴污水的试验研究   总被引:22,自引:0,他引:22  
针对传统污水快速渗滤土地处理系统水力负荷低,占地面积大的弱点,提出了采用人工砂和天然砂作为渗滤介质建立复合系统的试验方案,并以洗浴污水为研究对象进行了5个月的室内试验研究。结果表明,复合系统具有较高的水力负荷和较好的去污效果,其COD,BOD5,SS和阴离子洗涤剂(以MBAS代表)的平均去除率分别为86.25%,86.75%,98.95%和90.86%。处理出水中COD,BOD5,SS和阴离子洗涤剂的平均浓度分别为17.30,5.84,0.3和0.18mg/l。  相似文献   

20.
The main objective of this study was to investigate the efficiency of biological treatment of azo dye-containing wastewater with a sequencing batch reactor system, followed by ultrafiltration. The performance of the system was quantified by measuring the chemical oxygen demand and azo dye concentration. The biodegradation was carried out under combined alternating anaerobic and aerobic conditions with Nylosan Yellow E2RL SGR as a model azo dye contaminant. The bioprocess revealed a maximal reduction in chemical oxygen demand and dye removal efficiency of 91 and 85%, respectively. After ultrafiltration of effluent from the biological treatment, the efficiency increased to 94% for chemical oxygen demand and to 97% for the azo dye decolourisation. Samples of activated sludge from the bioprocess were collected for microbial characterisation. Bacteria and fungi were isolated and identified by 16S rRNA gene and ITS1-5.8S rDNA-ITS2 sequence analysis, respectively. Serratia marcescens and Klebsiella oxytoca were the most common bacteria with the highest number present during the aerobic and anaerobic phases of the bioprocess. In addition, a high number of Elizabethkingia miricola, Morganella morganii, Comamonas testosteroni, Trichosporon sp. and Galactomyces sp. were detected. Taken together, our results demonstrated that the sequencing batch reactor system combined with ultrafiltration is an efficient technique for treatment of wastewater containing azo dye. Moreover, the ultrafiltration effectively removes the microbiota from the final effluent resulting in stable product water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号