首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
During dyeing process, industries consume large quantity of water and subsequently produce large volume of wastewater. This wastewater is rich in color and contains different dyes. Orange II is one of them. In this article, metal-impregnated TiO2 P-25 catalyst was used to enhance the photocatalytic degradation of Orange II dye. Photodegradation percentage was followed spectrophotometrically by the measurements of absorbance at λ max = 483 nm. The effect of copper-impregnated TiO2 P-25 photocatalyst for the degradation of Orange II has been investigated in terms of percentage removal of color, chemical oxygen demand (COD) and total organic carbon (TOC). As such 98 % color removal efficiency, 97 % percentage removal of COD and 89 % percentage removal of TOC was achieved with TiO2 P-25/Cu catalysts under typical conditions. Copper-impregnated TiO2 P-25 photocatalyst showed comparatively higher activity than UV/H2O2 homogeneous photodegradation. The relative electrical energy consumption for photocatalytic degradation was considerably lower with TiO2 P-25/Cu photocatalyst than that with homogeneous photodegradation. Transmission electron microscopic analysis was used for catalyst characterization.  相似文献   

2.
A variety of processes can be used in treatment of industrial wastewaters. The relatively newest of which is photo catalysis with titanium dioxide which may also be used plus hydrogen peroxide to improve the treatment rate. In this study, photo catalysis/ hydrogen peroxide processes had been employed for the removal of phenol, lead and cadmium by three different pHs of 3.5, 7 and 11. The treatment tests were also accomplished without UV irradiation. In both experiments, the variables were pH and concentrations of reagent chemicals, but the detention time was kept constant (180 min). Results indicated that the optimum efficiencies of phenol and Cd removal were 76 % and 97.7 % at pH=11, respectively, and for lead, it was 98.8% in all pHs. In other words, no pH dependency was regarded for lead treatment. These results were all obtained by simultaneous use of UV irradiation with 3 mL/L H2O2 and 0.8 g/L TiO2. Finally, the best pH for treatment, when all the three contaminants are presented is considered to be at 11. These results should be regarded by all industrial treatment plants which have experienced the problem of these three special contaminants in their effluents.  相似文献   

3.
煤系共伴生非金属矿产开发及综合利用难度大。本文针对先锋褐煤共伴生硅藻土高有机质、高铁的特点,提出硅藻土原矿经提纯处理后,在N2作为保护气氛下,高温煅烧形成硅藻土-无定形碳-氧化铁三元复合材料,在类Fenton体系下,去除TNT污染物的开发利用技术路线。本文考察了硅藻土处理条件、反应时间、H2O2浓度、三元复合硅藻土投加量、pH值等因素对TNT降解效能的影响。研究表明三元复合硅藻土对TNT吸附降解的最佳工艺条件为:硅藻土用量为2 g/L,H2O2(30%)4 m L/L,pH值1,反应时间2.5 h。该工艺条件下,50 mg/L TNT去除率为98%。  相似文献   

4.
In the present work, a continuous catalytic wet peroxide oxidation fixed bed reactor was employed to treat a simulated wastewater sample with malachite green dye, as a contaminant. Natural perlite particle-supported nano-Fe3O4 catalyst was used as a fixed bed inside a reactor, and it was immobilized by a persistent magnetic field. The range of (perlite) particle sizes was from 100 to 1000 nm. The effects of various operating parameters, including temperature of the reactor, pH, initial hydrogen peroxide concentration and initial dye concentration, were investigated on the percentage removal of malachite green dye. Load of catalyst of 2 g and volumetric flow rate of 1 L/h were selected for all the tests. Maximum malachite green degradation was 99.5 ± 0.3%. This removal percentage was attained at temperature of 80 °C, pH = 6, initial dye concentration of 6 mg/L and initial hydrogen peroxide concentration of 100 mg/L. The process was isotherm, and the catalyst showed high catalytic activity in the steady-state condition. The loss of catalyst was less than 0.3%.  相似文献   

5.
More effective techniques are required to mineralize the increasing number of recalcitrant organic contaminants at low concentrations in the water environment using advanced oxidation process. Though relatively new, photocatalytic ozonation (O3/UV/TiO2) is considered superior to ozonation (O3) and photocatalysis (UV/TiO2), due to synergistic effects and use of immobilized TiO2 photocatalysts is a milestone in advance oxidation process. This article aimed to elucidate 2, 4-dichlorophenoxyacetic acid (2, 4-D) mineralization characteristics in low aqueous solutions by O3/UV/TiO2 using the world’s first high-strength TiO2 fiber catalyst in laboratory experiments. 2, 4-D degradation and TOC removal in O3, UV/TiO2 and O3/UV/TiO2 followed pseudo-first order reaction kinetic. The removal rates for 2, 4-D and TOC in O3/UV/TiO2 were respectively about 1.5 and 2.4-fold larger than the summation of the corresponding values in O3 and UV/TiO2. The O3/UV/TiO2 process was characterized by short-lived few aromatic intermediates, faster degradations of aliphatic intermediates and dechlorination as a major step in 2, 4-D mineralization. The significantly enhanced 2, 4-D mineralization in the process was attributed to increased ozone decomposition and reduced electron-hole recombination on TiO2 surface resulting to a large number of OH generation. The O3/UV/TiO2 process with the TiO2 fiber catalyst was very promising with respect to the major challenges being faced in AOP involving TiO2, namely separation of powder catalyst in suspension and reduced efficiency of immobilized catalysts (e.g. TiO2 film/fiber).  相似文献   

6.
The hydrolyzed titania residue with mainly precipitated hydrated TiO2 is prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid. We use H2O2 as a coordination agent to leach Ti from the hydrolyzed titania residue. The effects of H2O2 to-hydrolyzed titania residue mass ratio, leaching pH value, leaching temperature, leaching time, and H2O2 concentration on leaching of hydrolyzed titania residue by H2O2 are investigated. The recovery of Ti is above 98% under the optimal conditions. XRD shows that the peroxo-titania powder prepared by boiling the aqueous titanium peroxide solution is crystalline anatase phase. A well-crystallized anatase TiO2 and rutile TiO2 can be obtained through calcining at the temperature of 800 and 1000 °C, respectively. EDS shows that the impurities including silicon are enriched in the leaching slag. Little Si is detected as the only impurity in the synthetic TiO2 due to the weak alkaline condition of leaching.  相似文献   

7.
The rates of Sb(III) oxidation by O2 and H2O2 were determined in homogeneous aqueous solutions. Above pH 10, the oxidation reaction of Sb(III) with O2 was first order with respect to the Sb(III) concentration and inversely proportional to the H+ concentrations at a constant O2 content of 0.22 × 10−3 M. Pseudo-first-order rate coefficients, kobs, ranged from 3.5 × 10−8 s−1 to 2.5 × 10−6 s−1 at pH values between 10.9 and 12.9. The relationship between kobs and pH was:
  相似文献   

8.
The oxidation of Fe(II) with H2O2 at nanomolar levels in seawater have been studied using an UV-Vis spectrophotometric system equipped with a long liquid waveguide capillary flow cell. The effect of pH (6.5 to 8.2), H2O2 (7.2 × 10−8 M to 5.2 × 10−7 M), HCO3 (2.05 mM to 4.05 mM) and Fe(II) (5 nM to 500 nM) as a function of temperature (3 to 35 °C) on the oxidation of Fe(II) are presented. The oxidation rate is linearly related to the pH with a slope of 0.89 ± 0.01 independent of the concentration of HCO3. A kinetic model for the reaction has been developed to consider the interactions of Fe(II) with the major ions in seawater. The model has been used to examine the effect of pH, concentrations of Fe(II), H2O2 and HCO3 as a function of temperature. FeOH+ is the most important contributing species to the overall rate of oxidation from pH 6 to pH 8. At a pH higher than 8, the Fe(OH)2 and Fe(CO3)22− species contribute over 20% to the rates. Model results show that when the concentration of O2 is two orders of magnitude higher than the concentration of H2O2, the oxidation with O2 also needs to be considered. The rate constants for the five most kinetically active species (Fe2+, FeOH+, Fe(OH)2, FeCO3, Fe(CO3)22−) in seawater as a function of temperature have been determined. The kinetic model is also valid in pure water with different concentrations of HCO3 and the conditions found in fresh waters.  相似文献   

9.
Adsorption kinetic and equilibrium studies of two reactive dyes, namely, Reactive Red 31 and Reactive Red 2 were conducted. The equilibrium studies were conducted for various operational parameters such as initial dye concentration, pH, agitation speed, adsorbent dosage and temperature. The initial dye concentration was varied from 10 - 60 mg/L, pH from 2–11, agitation speed from 100–140 rpm, adsorbent dosage from 0.5 g to 2.5 g and temperature from 30 °C -50 °C respectively. The activated carbon of particle size 600 μm was developed from preliminary tannery sludge. The dye removal capacity of the two reactive red dyes decreased with increasing pH. The zero point charge for the sludge carbon was 9.0 and 7.0 for the two dyes, respectively. Batch kinetic data investigations on the removal of reactive dyes using tannery sludge activated carbon have been well described by the lagergren plots. It was suggested that the Pseudo second order adsorption mechanism was predominant for the sorption of the reactive dyes onto the tannery sludge based carbon. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data fitted well with Langmuir model than the Freundlich model. The maximum adsorption capacity(q0) from Langmuir isotherm were found to have increased in the range of 23.15–39.37 mg/g and 47.62–55.87 mg/g for reactive dyes reactive red 31 and reactive red 2, respectively.  相似文献   

10.
The photocatalytic degradation of Indigo Caramine dye using commercial TiO2 and fine grained natural rutile has been carried out. The commercial TiO2 and natural rutile were characterized using powder X- ray diffraction (XRD) and Fourier transformed infra red spectroscopy (FTIR). The study on the photodegradation of Indigo Caramine dye using commercial TiO2 and natural rutile were investigated both under Solar and UV irradiation. The degradation of Indigo Caramine dye was checked by the following parameters like Chemical Oxygen Demand (COD), %T, irradiation time and duration. In both cases using commercial TiO2 and natural rutile, the COD of the dye solution was reduced from 288 mg/L to less than 20 mg/L, and similarly the %T was increased from 76% to 97% and the percentage decomposition upto 97% within the irradiation duration of 3.5 hrs. The preliminary results obtained on the photodegradation of Indigo Caramine dye are highly encouraging and further work is being carried out for the use of the natural rutile or anatase sources for the other organic decomposition and treatment of industrial effluents.  相似文献   

11.
Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using thermocalc and its internally consistent thermodynamic dataset constrain the effect of TiO2 and Fe2O3 on greenschist and amphibolite facies mineral equilibria in metapelites. The end‐member data and activity–composition relationships for biotite and chloritoid, calibrated with natural rock data, and activity–composition data for garnet, calibrated using experimental data, provide new constraints on the effects of TiO2 and Fe2O3 on the stability of these minerals. Thermodynamic models for ilmenite–hematite and magnetite–ulvospinel solid solutions accounting for order–disorder in these phases allow the distribution of TiO2 and Fe2O3 between oxide minerals and silicate minerals to be calculated. The calculations indicate that small to moderate amounts of TiO2 and Fe2O3 in typical metapelitic bulk compositions have little effect on silicate mineral equilibria in metapelites at greenschist to amphibolite facies, compared with those calculated in KFMASH. The addition of large amounts of TiO2 to typical pelitic bulk compositions has little effect on the stability of silicate assemblages; in contrast, rocks rich in Fe2O3 develop a markedly different metamorphic succession from that of common Barrovian sequences. In particular, Fe2O3‐rich metapelites show a marked reduction in the stability fields of staurolite and garnet to higher pressures, in comparison to those predicted by KFMASH grids.  相似文献   

12.
《Geochimica et cosmochimica acta》1999,63(19-20):3451-3455
Rain samples were collected sequentially from individual events at a site in Miami, Florida, USA, from April 1995 to October 1996, and analyzed for H2O2, major anions, pH, temperature, and rainfall amounts. The measurements showed that in the absence of lightning, the concentration of H2O2, like that of sulfate and other conservative constituents, either remained fairly constant or decreased as a function of time during the storms depending on whether rainout or washout process was the dominant pathway for the removal of atmospheric H2O2. However, during the course of several thunderstorms, H2O2 concentration increased significantly with time, whereas the concentration of sulfate and other conservative constituents remained fairly constant or decreased as a function of time. These observations indicate that substantial amounts of H2O2 in rainwater were produced by lightning activities during thunderstorms. Possible mechanisms are proposed here.  相似文献   

13.
Evaluation of the photocatalytic activities of TiO2 nanomaterials based on the chemical oxygen demand (COD) analyses under identical experimental conditions was not previously reported. In this work, COD has been selected as an adequate industrial water quality measure toward the establishment of a representative standard test method. The initial COD values of six organic pollutants representing dye, surfactants, phenols and alcohol were set at 30 ± 2 mg/L. Ten of different commercial and synthesized TiO2 samples representing anatase, rutile and mixed phases were used and characterized. The data of photocatalytic processes were compared to that obtained using the commonly widespread Degussa-P25 TiO2 (TD). The COD of all pollutants was completely removed by TD at UV exposure dose ≤9.36 mWh/cm2. Consequently, the maximum irradiation dose was set at this value in all experiments. The percentages of COD removal as well as the values of the accumulated UV doses required for complete removal of pollutants were measured using the different TiO2 samples. TiO2 samples show different performance abilities toward the various pollutants compared to TD. Based on the obtained data, TiO2 photocatalysts were divided into two categories according to the hydroxyl radical formation rates. Comparison with previous studies reveals that the photocatalytic efficiency evaluation depends on the method of measurement. COD is recommended to be used as an adequate technique of analysis that meets the purpose of water treatment applications.  相似文献   

14.
The production rate and isotopic composition of H2 derived from radiolytic reactions in H2O were measured to assess the importance of radiolytic H2 in subsurface environments and to determine whether its isotopic signature can be used as a diagnostic tool. Saline and pure, aerobic and anaerobic water samples with pH values of 4, 7, and 10 were irradiated in sealed vials at room temperature with an artificial γ source, and the H2 abundance in the headspace and its isotopic composition were measured. The H2 concentrations were observed to increase linearly with dosage at a rate of 0.40 ± 0.04 molecules (100 eV)−1 within the dosage range of 900 to 3500 Gray (Gy; Gy = 1 J Kg−1) with no indication of a maximum limit on H2 concentration. At ∼2000 Gy, the H2 concentration varied only by 16% across the experimental range of pH, salinity, and O2. Based upon this measured yield and H2 yields for α and β particles, a radiolytic H2 production rate of 10−9 to 10−4 nM s−1 was estimated for the range of radioactive element concentrations and porosities typical of crustal rocks. The δD of H2 was independent of the dosage, pH (except for pH 4), salinity, and O2 and yielded an αDH2O-H2 of 2.05 ± 0.07 (αDH2O-H2 = (D/H)H2O to (D/H)H2), slightly less than predicted radiolytic models. Although this radiolytic fractionation value is significantly heavier than that of equilibrium isotopic exchange between H2 and H2O, the isotopic exchange rate between H2 and H2O will erase the heavy δD of radiolytic H2 if the age of the groundwater is greater than ∼103 to 104 yr. The millimolar concentrations of H2 observed in the groundwater of several Precambrian Shields are consistent with radiolysis of water that has resided in the subsurface for a few million years. These concentrations are well above those required to support H2-utilizing microorganisms and to inhibit H2-producing, fermentative microorganisms.  相似文献   

15.
The oxidation of Fe(II) by H2O2 has been studied in the presence of Suwannee River fulvic acid, a standard form of natural organic matter, by adding inorganic Fe(II) to solutions containing both H2O2 and fulvic acid and monitoring the total Fe(II) concentration using a luminol chemiluminescence method. At pH 8.4 and in the absence of competing metals, Suwannee River fulvic acid significantly retards the rate of Fe(II) oxidation due to gradual formation of a species that is oxidized more slowly than inorganic Fe(II) by both O2 and H2O2. It is suggested that rapid formation of a weak Fe(II)-fulvic acid complex that is not readily oxidized by H2O2 is the cause of the reduction in the initial oxidation rate, and that the subsequent further reduction in oxidation rate is a result of the formation of a second type of Fe(II)-fulvic acid complex that is resistant to both O2 and H2O2 oxidation. A kinetic model has been developed that supports this conceptual model. The results demonstrate that, under certain conditions, natural organic matter may stabilize Fe(II) in the presence of elevated H2O2 concentrations, significantly increasing the lifetime of ferrous iron and reducing the flux of hydroxyl radicals produced through this oxidation pathway.  相似文献   

16.
The Mediterranean seagrass Posidonia oceanica (L.) leaf sheaths were used as low cost, available and renewable biological adsorbent for the removal of reactive textile dye from aqueous solutions. Batch experiments were carried out for sorption kinetics and isotherms. Operating variables studied were temperature, pH and chemical pre-treatment. Biosorption capacity seems to be enhanced by increasing the temperature. Maximum colour removal was observed at pH 5. Pre-treating fibres with H3PO4 and HNO3 solutions increased the adsorption efficiency up to 80 %. Experimental sorption kinetic data were fitted to both Lagergren first-order and pseudo-second-order models and the data were found to follow first-order equation for raw fibres and pseudo-second-order for pre-treated ones. Equilibrium data were well represented by the Freundlich isotherm model for all tested adsorption systems. Besides, the thermodynamic study has showed that the dye adsorption phenomenon onto P. oceanica biomass was favourable, endothermic and spontaneous.  相似文献   

17.
Migration of uranium and arsenic in aquatic environments is often controlled by sorption on minerals present along the water flow path. To investigate the sorption behaviour, batch experiments were conducted for uranium and arsenic as single components and also solutions containing both uranium and arsenic in the presence of SiO2, Al2O3, TiO2 and FeOOH at a pH ranging from 3 to 9. In solutions containing only U(VI) or As(V) with the minerals, the sorption of U(VI) was low at acidic pH range and increases with increasing pH, whereas As(V) showed opposite sorption behaviour to Al2O3, TiO2 and FeOOH from acidic pH range to alkaline condition. For the As(V)–SiO2 system, the sorption was low for almost all pH. Sorption of U(VI) and As(V) on SiO2 and FeOOH is almost similar in solutions containing either U(VI) or As(V) separately, or both together. In the U(VI)–As(V)–Al2O3 system, a significant retardation in uranyl sorption and an enhancement in arsenate sorption on Al2O3 were observed for a wide range of pH. The sorption behaviour of U(VI) and As(V) was changed when Al2O3 was replaced by TiO2, where an increase in sorption was observed for both elements. The sorption behaviour of uranyl and arsenate in the U(VI)–As(V)–TiO2 system gives evidence for the formation of uranyl–arsenate complexes. The change in sorption retardation/enhancement of U(VI) and As(V) could be explained by the formation of uranyl–arsenate complexes or due to the competitive sorption between uranyl and arsenate species.  相似文献   

18.
The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.  相似文献   

19.
Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq) oxidation in the homogeneous H2-O2-H2O system at conditions reflecting subsurface/near-seafloor hydrothermal environments (55-250 °C and 242-497 bar). The kinetics of the water-forming reaction that controls the fundamental equilibrium between dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox gradients that develop when mixing occurs between oxygenated seawater and high-temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that, indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq) oxidation suggest that active microbial populations in near-seafloor and subsurface environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower than 40 °C due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2 disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of other electron acceptors (e.g. nitrate) could provide an important energy source available at low-temperature diffuse flow vent sites.More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the distribution of dissolved organic carbon (DOC) owing to the existence of an additional strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments.  相似文献   

20.
The diffusion of water in dacitic and andesitic melts was investigated at temperatures of 1458 to 1858 K and pressures between 0.5 and 1.5 GPa using the diffusion couple technique. Pairs of nominally dry glasses and hydrous glasses containing between 1.5 and 6.3 wt.% dissolved H2O were heated for 60 to 480 s in a piston cylinder apparatus. Concentration profiles of hydrous species (OH groups and H2O molecules) and total water (CH2Ot = sum of OH and H2O) were measured along the cylindrical axis of the diffusion sample using IR microspectroscopy. Electron microprobe traverses show no significant change in relative proportions of anhydrous components along H2O profiles, indicating that our data can be treated as effective binary interdiffusion between H2O and the rest of the silicate melt. Bulk water diffusivity (DH2Ot) was derived from profiles of total water using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between DH2Ot and CH2Ot. In dacitic melts DH2Ot is proportional to CH2Ot up to 6 wt.%. In andesitic melts the dependence of DH2Ot on CH2Ot is less pronounced. A pressure effect on water diffusivity could not be resolved for either dacitic or andesitic melt in the range 0.5 to 1.5 GPa. Combining our results with previous studies on water diffusion in rhyolite and basalt show that for a given water content DH2Ot increases monotonically with increasing melt depolymerization at temperatures >1500 K. Assuming an Arrhenian behavior in the whole compositional range, the following formulation was derived to estimate DH2Ot (m2/s) at 1 wt.% H2Ot in melts with rhyolitic to andesitic composition as a function of T (K), P (MPa) and S (wt.% SiO2):
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号