首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以三江源东部河曲高寒草甸为研究对象,通过分析1991—2015年气温、降水、潜在蒸散、湿润指数和牧草产量变化特征,探讨了地区干湿状况对牧草产量的影响。研究表明:1991—2015年河曲高寒草甸潜在蒸散以3.5 mm·a-1的速率增加(P<0.01),在年降水量按2.3 mm·a-1呈非显著性(P>0.05)增加的趋势下,地区干湿状况基本保持平稳(多年均值为0.52),隶属于半湿润气候区。25年来牧草干重产量平均为303.7 g·m-2,并以3.0 g·m-2·a-1的速率下降。分析牧草产量与影响干湿状况的气候因素之间的相关性发现,气温对牧草产量影响不明显(P>0.05),降水量表现为正相关关系(P>0.10),说明该区域降水是牧草产量提高与否的主导因素;牧草产量与潜在蒸散表现为负相关关系(P>0.10),与湿润指数表现为正相关关系(P>0.10);在生长季时期,牧草产量与降水量、潜在蒸散和湿润指数的相关性关系达到了显著水平(P<0.10),说明牧草产量在生长季对地区环境条件湿润与否较为敏感。  相似文献   

2.
基于WRF模式数据和CASA模型的青海湖流域草地NPP估算研究   总被引:4,自引:1,他引:3  
植被净初级生产力(NPP)是研究陆地碳循环过程的核心内容, 而高海拔区域由于气象观测数据的缺乏造成模型对其估算的不准确.在WRF模式气象数据和SPOT-VEGETATION遥感影像的基础上, 利用CASA模型对青海湖流域2000-2010年的草地NPP进行了估算, 经过实地样方数据和其他模型数据的验证后, 分析了青海湖流域近11 a来草地NPP的空间分布格局和时间变化特征.结果表明: 1)在气象观测资料缺乏的青海湖流域, WRF模式的气象数据能较好地应用到模型中, CASA模型对该区域草地NPP的模拟精度较高; 2)2000-2010年青海湖流域草地年均NPP为2.71×1012gC·a-1, 单位面积草地NPP为145.71 gC·m-2·a-1; 空间分布上呈现出由东南向西北随着海拔升高逐渐下降的格局, 在海拔3 200~3 500 m的区域草地单位面积的NPP达到最大; 3)2000-2010年青海湖流域草地NPP年际变化明显, 近11 a呈现出明显的增加趋势, 增加区域主要分布在环湖地区; 年内季节变化显著, 夏季NPP占到全年的57.36%; 4)对NPP和气象站点太阳辐射、 气温、 降水数据进行相关性分析, 发现影响青海湖流域草地NPP变化的主要驱动力是气温.  相似文献   

3.
利用被动微波探测青海湖湖冰物候变化特征   总被引:3,自引:2,他引:1  
湖冰物候是气候变化的敏感因子,不仅能反映区域气候变化特征,还可以反映区域气候与湖泊相互作用。利用长时间序列(1978—2018年)被动微波遥感18 GHz和19 GHz亮度温度数据、MODIS数据(2000—2018年)、实测湖冰厚度数据(1983—2018年)和气温、风速、降水(雪)数据(1961—2018年),分析青海湖湖冰变化特征及其对气候变化的响应。结果表明:青海湖流域呈现显著的变暖趋势(1961—2018年),气温上升2.85 ℃,在这种气候条件下,青海湖湖冰封冻日推迟(0.23 d·a-1),消融日呈现明显的提前趋势(0.33 d·a-1),湖冰封冻期天数明显减少,减少速率为0.57 d·a-1;同时,湖冰厚度以0.29 cm·a-1的速率减薄。此外,总结归纳了青海湖冻结-融化空间特征,青海湖主要由东部海晏湾地区开始冻结,从西部黑马河等地区开始消融,冻结和消融过程存在空间差异。通过分析湖冰冻融特征和气候因子关系发现,青海湖流域冬季气温是影响青海湖湖冰物候变化的主要因素,同时风速和降水(雪)也是影响湖冰发育和消融的重要因素。  相似文献   

4.
三江源地区是我国重要生态安全屏障,冻土是其高寒生态系统的重要组成部分,冻土的变化深刻影响高寒生态系统固碳及水源涵养。基于英国东英吉利大学(University of East Anglia,UEA)气候研究中心(Climatic Research Unit,CRU)月平均气温再分析资料,利用线性倾向法和滑动平均法并结合GIS空间分析和制图,计算并分析了三江源地区1901—2018年冻融指数变化趋势及其空间分布特征。结果表明:三江源地区冻结指数在1901—2018年整体以-1.1 ℃·d·a-1的斜率呈波动减少趋势,经历了三个波动变化阶段:1901—1943年的下降(-3.4 ℃·d·a-1)、1943—1966年的升高(8.8 ℃·d·a-1)、1966—2018年的再次下降(-4.3 ℃·d·a-1)。融化指数与冻结指数的变化相反,整体以0.34 ℃·d·a-1的斜率呈波动上升趋势,呈现升高(1901—1943年,3.3 ℃·d·a-1)、下降(1943—1981年,-3.1 ℃·d·a-1)、再次升高(1981—2018年,2.9 ℃·d·a-1)的趋势。在空间分布上,自西向东随海拔和多年冻土连续性降低,冻结指数由3 400 ℃·d递减到600 ℃·d,融化指数由接近0 ℃·d增加到1 800 ℃·d。长江源区冻结指数最大,融化指数最小;黄河源区冻结指数最小,融化指数最大。研究成果可为三江源地区冻土变化及其对高寒生态环境的影响研究提供科学借鉴。  相似文献   

5.
青海湖流域生态补偿空间选择与补偿标准研究   总被引:3,自引:1,他引:2  
生态补偿是环境保护对策措施中的一种创新途径.以青海湖流域为研究区域, 以碳蓄积量作为主要生态系统服务目标, 结合人文调查数据和自然模拟结果, 分别采用福利成本法和最小数据方法对研究区生态补偿中的空间选择和补偿标准确定进行了分析.结果表明: 环青海湖四个县的生态补偿效率成本比分别是海晏县0.5353、 刚察县0.5398、 天峻县0.5549、 共和县0.4353.在生态补偿资金有限的情况下, 生态补偿的优先顺序依次是天峻、 刚察、 海晏, 最后是共和.若海晏县全部低盖度草地退牧则需付费328.5元·hm-2·a-1, 可年新增碳固定量1.7×107 kg; 若刚察县全部低盖度草地退牧则需付费250.5元·hm-2·a-1, 可年新增碳固定量5.25×107kg; 若天峻县全部低盖度草地退牧则需付费181.5元·hm-2·a-1, 可年新增碳固定量18.52×107kg; 若共和县全部低盖度草地退牧则需付费478.5元·hm-2·a-1, 可年新增碳固定量2.86×107kg.  相似文献   

6.
基于多源数据的天山乌鲁木齐河源1号冰川变化研究   总被引:1,自引:1,他引:0  
基于2012年RTK-GPS、2015年三维激光扫描和2018年无人机航测数据,以天山乌鲁木齐河源1号冰川为研究区,分别从物质平衡、面积、末端等方面分析近期冰川变化。结果表明:乌鲁木齐河源1号冰川近年来呈快速消融趋势。2012—2018年冰川面积减少0.07 km2,年平均面积变化率为-0.01 km2·a-1;同期,冰川末端退缩率为6.28 m·a-1,且2015—2018年退缩速率大于2012—2015年;2012—2018年间表面高程下降,物质平衡为-1.13±0.18 m w.e.·a-1,物质损失主要发生在消融区。将2012—2018年间大地测量法冰川物质平衡与传统的花杆/雪坑法观测结果相比较,发现二者较为一致。而2012—2018年间物质平衡减小速率(-0.64 m w.e.·a-1)大于1980—2012年间(-0.47 m w.e.·a-1),表明近期乌鲁木齐河源1号冰川继续呈快速消融趋势。  相似文献   

7.
以长江源各拉丹冬为研究区,针对该地区地物特点,选取了1986—2015年间云量较少、成像质量较高的相关卫星影像作为数据源,在充分了解环境特征与影像特点的基础上,基于“波段阈值比值法”,通过人机交互调整阈值,对大范围冰川区域进行快速边界提取,并基于提取结果,结合数字高程数据、气象数据等相关数据展开了分析。结果表明:1986—2015年间研究区冰川面积减小92.06 km2,减少速率为0.33%·a-1;其中1986—1994年、1994—2001年、2001—2009年、2009—2015年分别减少32.95 km2、27.37 km2、13.11 km2和18.63 km2,减少速率分别为0.47%·a-1、0.41%·a-1、0.17%·a-1和0.34%·a-1。同时,依据空间组织方式进行了研究区冰川变化的分区分析,结果表明在不同分区、不同规模上该地区冰川变化呈现出不同的趋势;部分区域内冰川的降级、分裂现象较为明显,对不同等级规模冰川的变化趋势有一定影响。研究区冰川面积的坡向变化以东南向退缩最剧烈,西向增加最多。典型冰川方面,岗陇加玛冰川2001—2009年为面积退缩最为剧烈,1994—2001年面积略有增加。研究时段内冬季降水量逐年减少,不足以弥补因为气温升高导致的快速消融。  相似文献   

8.
基于全球开放冰川模型(OGGM),结合第六次气候模式比较计划(CMIP6),在5种气候模式(BCC-CSM2-MR、CESM2、CESM2-WACCM、FGOALS-f3-L、NorESM2-MM)模拟的3种气候情景(SSP1-2.6、SSP2-4.5、SSP5-8.5)下,系统分析了萨吾尔山冰川2020—2100年间面积和储量的变化。结果显示,3种气候情景下,萨吾尔山冰川面积和储量都呈现退缩趋势,其中SSP5-8.5气候情景下的冰川面积和储量损失最大,对应面积和储量变化为-0.154 km2·a-1和-5.11×106 m3·a-1,其次是SSP2-4.5,对应面积和储量变化为-0.150 km2·a-1和-5.05×106 m3·a-1,SSP1-2.6气候情景下面积和储量损失最小,面积和储量变化为-0.139 km2·a-1和-4.93×106  相似文献   

9.
利用2000年的Landsat5遥感数据、1970年和2009年的冰川编目数据, 对天山中段南坡开都河流域和北坡玛纳斯河流域的冰川变化进行了对比分析, 并结合地面气象站点数据分析了冰川对气候变化的响应及南北坡冰川变化的差异性. 研究表明: 1970-2009年间, 两流域冰川面积减少了494.33 km2, 占总面积的26.8% (0.8%·a-1); 冰川储量减少了32.73 km3, 占总储量的27.9% (0.8%·a-1). 其中, 2000-2009年冰川面积和冰储量年退缩率(1.3%·a-1)比1970-2000年(0.6%·a-1)大; 冰储量减少的速率略大于面积缩小的速率, 说明冰川面积缩小的同时, 其厚度在迅速减薄. 1970-2000年和2000-2009年间, 玛纳斯河流域的冰川年均面积退缩率分别为0.5%·a-1和1.4%·a-1, 开都河流域的冰川年均面积退缩率为0.9%·a-1和1.1%·a-1, 显示出玛纳斯河流域冰川在2000年后呈加速萎缩趋势. 影响研究区冰川变化的主因是气温, 而夏季升温幅度及降水的不同是造成南北坡冰川差异性变化的重要原因.  相似文献   

10.
青藏高原草地土壤有机碳库及其全球意义   总被引:55,自引:5,他引:50  
定量分析了青藏高原各类草地0~0.65m深度范围内有机碳储量,结果表明:青藏高原总面积为1.6027×10hm2的草地有机碳量达到335.1973×108tC,其中以高原草甸土和高原草原土有机碳积累量为主,两者之和达到232.36×108tC,占全国土壤有机碳量的23.44%,是全球土壤碳库的2.4%.在有机碳储量分析的基础上,按土壤碳释放的两种主要途径:土壤呼吸作用和土地利用方式变化与草地退化,对草地土壤碳排放进行了估算,揭示出青藏高原草地土壤通过呼吸每年排放的CO2达到11.7×108tC·a-1,约占中国土壤呼吸总量的2.3%,明显高于全国乃至全球平均值;近30a来,青藏高原草地土壤由于土地利用变化和草地退化所释放的CO2估计约有30.23×108tC.保护青藏高原草地对于全球变化意义重大.定量分析了青藏高原各类草地0~0.65m深度范围内有机碳储量,结果表明:青藏高原总面积为1.6027×10hm2的草地有机碳量达到335.1973×108tC,其中以高原草甸土和高原草原土有机碳积累量为主,两者之和达到232.36×108tC,占全国土壤有机碳量的23.44%,是全球土壤碳库的2.4%.在有机碳储量分析的基础上,按土壤碳释放的两种主要途径:土壤呼吸作用和土地利用方式变化与草地退化,对草地土壤碳排放进行了估算,揭示出青藏高原草地土壤通过呼吸每年排放的CO2达到11.7×108tC·a-1,约占中国土壤呼吸总量的2.3%,明显高于全国乃至全球平均值;近30a来,青藏高原草地土壤由于土地利用变化和草地退化所释放的CO2估计约有30.23×108tC.保护青藏高原草地对于全球变化意义重大.  相似文献   

11.
利用1971-2010年青海省境内43个气象站的降水量和水汽压月资料, 运用整层大气可降水量经验公式, 计算了青海高原东部农业区、环青海湖区、三江源区和柴达木盆地4个不同生态功能区的可降水量和降水转化率. 结果表明: 不同生态功能区可降水量均呈单峰形态分布, 均在夏季达到最大值; 降水转化率在三江源区和东部农业区呈双峰分布, 柴达木盆地和环青海湖地区呈单峰分布. 不同生态功能区年可降水量近40 a均呈上升趋势, 其中, 柴达木盆地和环青海湖区上升趋势显著; 不同生态功能区年可降水量均发生了突变, 东部农业区发生在1983年, 柴达木盆地发生在1996年, 三江源区和环青海湖区发生在1993年. 可降水量自西向东呈逐渐增加趋势, 降水转化率形成以青海湖区为中心的马鞍形场.  相似文献   

12.
青海高原不同生态功能区气候突变时间的比较分析   总被引:2,自引:2,他引:0  
根据地理位置和地貌特征将青海省划分为东部农业区、 环青海湖区、 三江源区和柴达木盆地4个生态功能区, 利用这4个生态功能区1961-2010年的月平均气温和降水量资料, 对年和四季的平均气温及总降水量进行了突变检测.结果表明: 4个生态功能区年平均气温和四季气温都呈显著的上升趋势, 其中冬季气温上升最明显, 其次为秋季, 春季和夏季相对较小.气温突变时间检测表明, 年平均气温为柴达木盆地的突变时间最早, 其次为东部农业区和环湖区, 三江源区突变时间最晚.不同生态功能区四季气温突变时间不尽相同.年降水量除柴达木盆地上升趋势明显外, 其余三个地区变化趋势都不明显; 四季降水量变化趋势除冬季降水量变化明显(除东部农业区)外, 其余三季变化趋势基本不明显.降水量突变信号较气温突变信号弱, 只有个别地区的个别季节降水量发生了突变.  相似文献   

13.
青海湖近20年水域变化及湖岸演变遥感监测研究   总被引:14,自引:0,他引:14       下载免费PDF全文
近年来,由于气候条件的变化,青海湖水位呈下降趋势,水域面积逐年缩小。选用1986年至2005 年的美国Landsat-5卫星图像数据对青海湖地区进行长达20年的跟踪监测研究结果表明,2004年青海湖水域面积比1986年缩小了约80 km2,与1989年相比,水域面积缩小了129 km2;水域面积最大和最小的年份分别是 1989年和2001年,面积相差135 km2。在过去20年间,青海湖水域面积的变化有2个明显的特征,第一,整体上呈现出十分明显的下降趋势;第二,年度变化呈现了在整体下降的同时又有短期小幅回升的现象,回升时间不超过2年。湖岸线年度变化遥感监测资料表明,青海湖湖岸线的年度推进量在40-200 m之间。在与青海省及湖区同期气象资料的分析对比后发现,湖区水域面积与地表蒸发量、气温以及地表温度的年度变化呈负相关, 且变化的趋势有较好的一致性。  相似文献   

14.
青海湖盆地是我国西北内陆干旱区典型的山间断陷湖盆,与我国西北一些含油气盆地沉积特征十分相似,发育有一系列有利于油气储集的沉积体系.对青海湖沉积体系的研究,可以为陆相古含油气盆地沉积原貌的恢复提供借鉴.通过对比总结前人研究资料、实地考察以及对湖区近40年(1972~2010)来8张遥感图像的判读,分析了青海湖滨湖区域沉积体系演变特征.同时,在青海湖水动力特征研究的基础上,通过沉积物输运模拟,结合每一区域沉积演变特征,分析该区域沉积体系形成演变的水动力成因机制,并预测未来一段时间内环青海湖滨湖区域沉积体系演变趋势.研究结果表明:青海湖水动力特征主要表现出三个顺时针主旋回和湖湾和河流入湖口等处的次级旋回,沉积物输运和堆积趋势与水动力湖流特征对应一致,水动力特征控制着沉积体系的形成及演变;河流入湖口、沙岛-海晏湾、郎剑沙嘴以及东南湖湾等区域,是青海湖滨湖区域沉积演变最明显的区域;今后较长时期内,沉积物输运、堆积趋势将不会发生大的改变.  相似文献   

15.
青海湖底沉积物的矿物物相及有机质保存研究   总被引:2,自引:0,他引:2  
盐湖沉积环境是烃源岩发育的重要地质环境。本文以青海湖湖底沉积物为例,根据有机质与粘土矿物含最及矿物表面积的关系,分析了矿物学因素对盐湖相富有机质沉积物中有机质保存的影响。研究发现:湖底沉积物中有机质丰富,为上层水中的浮游生物和南河流携带束的陆地高等植物两种来源。矿物物相分析发现沉积物中粘土矿物含量达到32.4%,以伊利石为主。沉积物经密度分离后测试发现,有机碳含量与粘土矿物含量及矿物表面积之间具有很好的正相关性,说明粘土矿物吸附是青海湖底沉积物中有机质的主要赋存形式。  相似文献   

16.
青海湖作为高海拔的内陆湖泊,其表面水体面积多年变化对寒旱区的气候变化和水循环至关重要。为了研究30年来青海湖湖泊面积变化规律,提取了1986—2017年(除去2012年)覆盖青海湖的459景Landsat5/8影像,采用6种常用的水体提取方法分别提取了青海湖表面水体面积,并分析了不同方法的差异,最终分别对Landsat 5 TM和Landsat 8 OLI遥感影像采用改进的归一化差异水体指数(MNDWI)和水体指数2015(WI2015)方法获得1986—2017年青海湖表面水体面积的年变化,并分析其变化趋势。结果表明:1989—2003年青海湖面积减小了175.34km^2,年平均减小率为12.52km^2/a,2003—2017年青海湖面积增加了183.43km^2,年平均增加率为13.10km^2/a,整体上,1986—2017年青海湖面积增加了104.46km^2,年平均增加率为3.37km^2/a。  相似文献   

17.
青海湖地区晚第四纪黄土的物质来源   总被引:3,自引:0,他引:3       下载免费PDF全文
曾方明 《地球科学》2016,41(1):131-138
青海湖地区的晚第四纪黄土记录了湖区晚第四纪以来的环境和气候变化.迄今为止,对于青海湖地区晚第四纪黄土物质来源的研究较薄弱.以青海湖东岸的种羊场晚第四纪风成沉积剖面为主要研究对象,在青海湖区及其周边采集了黄土、风成砂、湖相沉积、河流沉积等样品,结合黄土高原西部临洮黄土样品,对它们的元素组成(<75 μm的硅酸盐组分)进行了对比研究.初步结果表明:(1) K2O/Al2O3(摩尔比)和Zr/Ti、Zr/Nb比值显示青海湖地区的风成沉积显著区别于本区的河流沉积和湖相沉积;(2) 青海湖地区的晚第四纪黄土与黄土高原西部临洮黄土的K2O/Al2O3和Zr/Ti、Zr/Nb比值相一致;(3) 青海湖地区的晚第四纪黄土可能来自柴达木盆地.   相似文献   

18.
Based on the data developed from various s natural waters in the Qinghai Lake area and ostracode shells present in drill core QH-16A of recent lake-floor sediments ,this paper discusses the distribution of stable isotopes in the modern water body of Qinghai Lake,and the initial isotopic composition of the lake water has been deduced ,Studies of δ^18O,δ^13C,Mg/Ca and Sr/Ca in ostracode shells provide the basis for the establishment of the model of climatic fluctuation in the Qinghai Lake area since the postaglacial age,as well as for the elucidation of the environmental evolution of the water body of Qinghai Lake since the postglacial age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号