首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The central portion of the Aldan Shield hosts very widely spread Archean and Early Proterozoic granitoids, much of which are granite-gneisses. Geochemical lines of evidence, data on inclusions in minerals, and Sm-Nd isotopic geochemical data suggest that the protoliths of granite-gneisses in the central part of the Aldan Shield were granitoids that had various composition, age, and were derived from distinct sources and under different parameters and were then emplaced in different geodynamic environments. The granitoids belong to at least two types of different composition that occur within spatially separated areas. The protoliths of granite-gneisses in the western part of the Western Aldan Megablock and the junction zone of the Chara-Olekma and Aldan geoblocks (granite-gneisses of type I) had the same age and affiliated to the same associations as the within-plate granitoids of the Nelyukinskii Complex. Their parental melts were derived at 2.4–2.5 Ga by the melting of Archean tonalite-trondhjemite orthogneisses of the Olekma and Aldan complexes. The protolith of granite-gneisses in the eastern portion of the Western Aldan Megablock (granite-gneisses of type II) can be subdivided into two groups according to their composition: granitoids with geochemical characteristics of subduction- and collision-related rocks. The protoliths of the type-II granite-gneisses with geochemical characteristics of subduction granitoids were produced simultaneously with the development of the Fedorovskaya island arc (at 2003–2013 Ma), whereas the protoliths of the type-II granite-gneisses with geochemical characteristics of collision granitoids were formed in the course of accretion of the Fedorovskaya island arc and the Olekma-Aldan continental microplate at 1962–2003 Ma, via the melting of magmatic rocks of the Fedorovskaya unit and older continental crustal material.  相似文献   

2.
The autonomous (massif-type) anorthosite massifs of the Kalar Complex (2623 ± 23 Ma) intrude high-grade metamorphic rocks of the Kurulta tectonic block at the junction of the Aldan and Dzhugdzhur-Stanovoi fold area. These rocks belong to the most ancient anorthosite-mangerite-charnockite-granite (AMCG) magmatic association, whose origin was constrained to the Mesoproterozoic (1.8–1.1 Ga). The charnockites are typical high-potassium reduced granites like rapakivi, which affiliate with the A type. The Nd and Pb isotopic composition of these rocks suggests their predominantly crustal genesis, whereas the anorthosites were most probably produced by a mantle magma that was significantly contaminated by crustal material at various depth levels. The intrusions of the Kalar Complex were emplaced in a postcollision environment, with the time gap between the collisional event and the emplacement of these massifs no longer than 30 m.y. The southern Siberian Platform includes two definitely distinguished and spatially separated AMCG associations, which have different ages and tectonic settings: (i) the Late Archean (2.62 Ga) postcollision Kalar plutonic complex and (ii) the Early Proterozoic (1.74–1.70 Ga) anorogenic Ulkan-Dzhugdzhur volcano-plutonic complex.  相似文献   

3.
Comparative U-Pb (zircon- and sphene-based, for the first time) and K-Ar (biotite-, amphibole, and whole rock-based) dating of monzonitoids and subalkaline granitoids of the Ket-Kap and Uchur volcanic-plutonic complexes (Ket-Kap-Yuna Igneous Province is one of the areas of tectonic-magmatic activation of the Aldan Shield), respectively, has been made.  相似文献   

4.
Results of U–Th–Pb LA–ICP–MS analysis of detrital zircons from metasandstones of the Chiney Subgroup (Udokan Group, Aldan Shield) have been obtained. It has been revealed that rocks of the Paleoproterozoic (about 1.90, 1.98, and 2.50 Ga) and Neoarchean (2.55 and 2.72 Ga) were their provenance sources. Deposition of the Chiney Subgroup occurred in the interval 1.87–1.90 Ga and was separated in time from the accumulation of the Kodar Subgroup siliciclastics (2.1–2.3 Ga).  相似文献   

5.
The eastern part of the Voronezh Crystalline Massif hosts coeval S- and A-granitoids. The biotite-muscovite S-granites contain elevated concentrations of Si, Al, and alkalis (with K predominance) and relatively low concentrations of Ca, Mg, Ti, Sr, and Ba, show pronounced negative Eu anomalies, and have low concentrations of Y and HREE. The biotite A-granitoids are enriched in Fe, Ti, P, HFSE, REE and have strongly fractionated REE patterns with deep Eu minima. According to their Rb/Nb and Y/Nb ratios, these rocks are classified with group A2 of postcollisional granites. The SIMS zircon crystallization age of the granitoids lies within the range of 2050–2070 Ma. Both the A- and the S-granitoids have positive ?Nd(T) values, which suggests that they should have had brief crustal prehistories and were derived from juvenile Paleoproterozoic sources. The simultaneous derivation of the A- and S-granites was caused by the melting of the lower crust in response to the emplacement of large volumes of mafic magma in an environment of postcollisional collapse and lithospheric delamination with the simultaneous metamorphism of the host rocks at high temperatures and low pressures. The S-granites are thought to be derived via the melting of acid crustal material in the middle and lower crust. The A2 granites can possibly be differentiation products of mafic magmas that were emplaced into the lower crust and were intensely contaminated with crustal material.  相似文献   

6.
A brief geological and petrographic characterization of the Early Precambrian dike complexes of the Kola region is given along with data on new estimates of dike age and analysis of their distribution over the entire Fennoscandian Shield. The emplacement of dikes in the Archean core of the shield continued after consolidation of the sialic crust 2.74?C1.76 Ga ago. After the Svecofennian Orogeny, dikes continued to form in the west in the area of newly formed crust, while the amagmatic period began in the Archean domain. The intense formation of dikes in the Svecofennian domain lasted approximately for 1 Ga (1.8?C0.84 Ga). The younger igneous rocks in the crustal domains of different age are less abundant and localized at their margins. A similar distribution of dikes is characteristic of other shields in different continents. This implies that the formation of the sialic crust in the shields is not completed by its consolidation and formation of the craton. For 1 Ga after completion of this process, the crust is underplated by mantle-derived magmas. This process is reflected at the Earth??s surface in the development of mantle-derived mafic and anorogenic granitoid magmatism. The process of crust formation is ended as the subcratonic lithosphere cools and the amagmatic period of the craton history is started. Beginning from this moment, the manifestations of cratonic magmatism were related either to the superposed tectonomagmatic reactivation of the cold craton under the effect of crust formation in the adjacent mobile belts or to the ascent of mantle plumes.  相似文献   

7.
The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04–2.97 Ga), metavolcanic-sedimentary units (2.76–2.74 Ga), granitoids (3.07–2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74–2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb–Y–Sn–Be–U. The latter, as well as Sn–W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0–1.87 Ga), two calc-alkaline volcanic sequences (2.0–1.95 Ga to 1.89–1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu–Au and Cu–Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98–1.75 Ga), generated in ocean–ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Colíder and Teles Pires suites). The Transamazonas Province corresponds to a N–S-trending orogenic belt, consolidated during the Transamazonian cycle (2.26–1.95 Ga), comprising the Lourenço, Amapá, Carecuru, Bacajá, and Santana do Araguaia tectonic domains. They show a protracted tectonic evolution, and are host to the pre-, syn-, and post-orogenic to anorogenic granitic magmatism. Gold mineralization associated with magmatic events is still unclear. Greisen and pegmatite Sn–Nb–Ta deposits are related to 1.84 to 1.75 Ga late-orogenic to anorogenic A-type granites. The Pitinga Tin Province includes the Madeira Sn–Nb–Ta–F deposit, Sn-greisens and Sn-episyenites. These are associated with A-type granites of the Madeira Suite (1.84–1.82 Ga), which occur within a cauldron complex (Iricoumé Group). The A-type magmatism evolved from a post-collisional extension, towards a within-plate setting. The hydrothermal processes (400 °C–100 °C) resulted in albitization and formation of disseminated cryolite, pyrochlore columbitization, and formation of a massive cryolite deposit in the core of the Madeira deposit. The Rondônia Tin Province hosts rare-metal (Ta, Nb, Be) and Sn–W mineralization, which is associated with the São Lourenço-Caripunas (1.31–1.30 Ga), related to the post-collisional stage of the Rondônia San Ignácio Province (1.56–1.30 Ga), and to the Santa Clara (1.08–1.07 Ga) and Younger Granites of Rondônia (0.99–0.97 Ga) A-type granites. The latter are linked to the evolution of the Sunsás-Aguapeí Province (1.20–0.95 Ga). Rare-metal polymetallic deposits are associated with late stage peraluminous granites, mainly as greisen, quartz vein, and pegmatite types.  相似文献   

8.
New data are reported on the content of radioactive elements in the Precambrian Na-K granitoids from the southwestern margin of the Siberian Craton, Aldan and Ukrainian shields, and Kursk-Voronezh Massif. Analytical data on other regions were generalized for comparison. Two global epochs of Na-K granitoid magmatism bearing elevated contents of radioactive elements (U, Th, K) were distinguished in the Early Precambrian (in Ga): Neoarchean (2.8-2.6) and Late Paleoproterozoic (1.9-1.75). Mesoarchean (3.1-2.8 Ga) epoch of Na-K granite formation has been additionally distinguished at the Australian, South African, and Canadian shields. These epochs of granitization provided high maturity of the crust: geochemical differentiation of the oldest continental blocks and their geochemical and metallogenic specialization for trace elements and RAE. In the southern margin of the Siberian Craton, the most intense granite formation occurred in the Late Paleoproterozoic. The extended South Siberian belt of collisional and within-plate Na-K granitoids is characterized by intense influx of RAE and other trace elements in the upper crustal shell. The southwestern margin of the craton (Yenisei Range) was spanned by repeated Late Neoproterozoic Na-K granite formation, with wide development of collisional and within-plate Na-K granites having elevated Th content and [Th]/[U] ratio. The higher RAE concentrations are typical of within-plate Paleo and Neoproterozoic granitoids. The highest uranium content was found in the postcollisional and within-plate Na-K granites and subalkaline leucogranites. Uranium ore concentrations were formed at the riftogenic stages of evolution of these crustal blocks, when within-plate subalkaline acid magmatism and accompanying hydrothermal metamorphism overprinted granitized crystalline massifs, including high-U sedimentary and volcanic complexes. Areas with the most favorable geological-geochemical environments for the formation of uranium mineralization were distinguished in the southern margin of the Siberian Craton and its nearest folded framing.  相似文献   

9.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

10.
A suite of post-kinematic, 1.88–1.87 Ga, silicic plutons crosscut 1.89–1.88 Ga synkinematic granitoids in the Central Finland Granitoid Complex (CFGC) in south-central Finland. The plutons range from biotite±hornblende quartz monzonite to syenogranite and include pyroxene- and olivine-bearing varieties. Mineral chemical data on feldspars, biotite, amphibole, pyroxenes, olivine, and oxides of the post-kinematic plutons are presented. The data are interpreted to show that these plutons register (1) a considerable range in pressure from 2–4 kbar (amphibole barometry) to 5–7 kbar (olivine–pyroxene barometry), (2) temperatures mostly reflecting resetting during cooling (450–800°C; QUIlF thermometry), and (3) low fO2 (log fO2 ΔFMQ −0.3 to −1.5; QUIlF equilibria). In particular, plutons with olivine- and pyroxene-bearing margins and amphibole-dominated central parts record progressive oxidation and hydration upon cooling, shifting from the QUIlF equilibrium toward KUIlB. The post-kinematic granites can be considered post-collisional in regard to compressional events in the CFGC and display many of the characteristics of the anorogenic 1.6 Ga rapakivi granites further south. They were presumably derived from a deep and dry crustal source, like the rapakivi granites.  相似文献   

11.
The evolution of Late Paleozoic granitoid magmatism in Transbaikalia shows a general tendency for an increase in the alkalinity of successively forming intrusive complexes: from high-K calc-alkaline granites of the Barguzin complex (Angara–Vitim batholith) at the early stage through transitional from calc-alkaline to alkaline granites and quartz syenites (Zaza complex) at the intermediate stage to peralkaline granitoids (Early Kunalei complex) at the last stage. This evolution trend is complicated by the synchronous development of granitoid complexes with different sets and geochemical compositions of rocks. The compositional changes were accompanied by the decrease in the scales of granitoid magmatism occurrence with time. Crustal metaterrigenous protoliths, possibly of different compositions and ages, were the source of granitoids of the Angara–Vitim batholith. The isotopic composition of all following granitoid complexes points to their mixed mantle–crustal genesis. The mechanisms of granitoid formation are different. Some granitoids formed through the mixing of mantle and crustal magmas; others resulted from the fractional crystallization of hybrid melts; and the rest originated from the fractional crystallization of mantle products or the melting of metabasic sources with the varying but subordinate contribution of crustal protoliths. Synplutonic basic intrusions, combined dikes, and mafic inclusions, specific for the post-Barguzin granitoids, are direct geologic evidence for the synchronous occurrence of crustal and mantle magmatism. The geodynamic setting of the Late Paleozoic magmatism in the Baikal folded area is still debatable. Three possible models are proposed: (1) mantle plume impact, (2) active continental margin, and (3) postcollisional rifting. The latter model agrees with the absence of mafic rocks from the Angara–Vitim batholith structure and with the post-Barguzin age of peralkaline rocks of the Vitim province.  相似文献   

12.
Late Mesozoic PGE, Au and U mineralization in the Precambrian Aldan Shield constitutes important ore deposits on the southern margin of the Siberian Craton. Here we provide an overview of the salient characteristics of these ore deposits and evaluate their regional geodynamic setting. Geological, geophysical, and geochronological data on the distribution and timing of the ultramafic and alkaline magmatism in the Aldan Shield and the associated Late Jurassic–Early Cretaceous PGE, Au, and U mineralization correlate with the convergence in the Asia-Pacific zone during the Late Mesozoic. The multistage magmatism and ore formation can be traced along the perimeter of the subducted slab now stagnant at the mantle transition zone, the flanks of which coincide with paleo-transform faults. Slab dehydration is considered to have transferred source metals through plume conduits resulting in the formation of productive ore-magmatic systems.  相似文献   

13.
We discuss problems of the origin, settings, and age of Neoproterozoic A-type leucogranites widespread in the Yenisei Ridge. Combined analysis of geological, petrological, and geochemical (including isotope) data shows that some granitoids (Glushikha complex) were formed at the postcollisional stage (750–720 Ma), and others (Tatarka complex), in an anorogenic environment (680–630 Ma). The anorogenic complex contains diverse igneous rocks, including alkaline varieties and carbonatites. Leucogranites form separate plutons within different igneous complexes. They have high contents of potassium (up to ultrapotassic composition in the Glushikha complex), iron, and fluorine and are depleted in europium. Postcollisional granitoids show the highest concentrations of Rb, Th, and U, extremely low concentrations of Ba and Sr, whereas anorogenic granitoids are rich in Ta, Nb, Y, Sm, and HREE. The obtained data point to the augmented mantle contribution to the formation of continental crust of the Yenisei Ridge between 750 and 630 Ma. We also report new results of U-Pb zircon dating, including SHRIMP and Ar-Ar data.  相似文献   

14.
Gran berg 《Lithos》1988,21(4):279-289
Compilation of geochronological data from southeastern Sweden indicates widespread anorogenic intrusive activity between 1.40 and 1.35 Ga ago. This activity was part of a major igneous event in a belt extending from Siberia and the Urals in the U.S.S.R. across southern Scandinavia, southern Greenland, and Labrador to western North America. It was characterized by high-level granites, sometimes rapakivilike, intruded under anorogenic conditions. The source granite melts were probably derived by the fusion of lower crust, i.e. older calc-alkaline Proterozoic granitoids, by mantle magma. These composite melts were mixed at the time of intrusion and gave rise to granitoids showing mixed I- and S-type features. The causes for the igneous activity were probably related to changes in the configuration of the continents with ensuing rifting and associated igneous activity. The 1.40-1.35 Ga old intrusions reset older isotope systems, especially the K---Ar one in southeastern Sweden. Between 1.25 and 1.20 Ga ago, there was a second event of smaller magnitude, characterized by the intrusion of acid and basic dykes. These dykes probably correspond to an initial stage of the Grenvillian (Sveconorwegian) orogeny soon to be followed by a 90° rotation of the Baltic shield.  相似文献   

15.
This paper compares the 1.67–1.47 Ga rapakivi granites of Finland and vicinity to the 1.70–1.68 Ga rapakivi granites of the Beijing area in China, the anorogenic 130 Ma granites of western Namibia, and the 20–15 Ma granites of the Colorado River extensional corridor in the Basin and Range Province of southern Nevada. In Finland and China, the tectonic setting was incipient, aborted rifting of Paleoproterozoic or Archean continental crust, in Namibia it was continental rifting and mantle plume activity that led to the opening of southern Atlantic at 130 Ma. The 20–15 Ma granites of southern Nevada were related to rifting that followed the Triassic–Paleogene subduction of the Farallon plate beneath the southwestern United States. In all cases, extension-related magmatism was bimodal and accompanied by swarms of diabase and rhyolite–quartz latite dikes. Rapakivi texture with plagioclase-mantled alkali feldspar megacrysts occurs in varying amounts in the granites, and the latest intrusive phases are commonly topaz-bearing granites or rhyolites that may host tin, tungsten, and beryllium mineralization. The granites are typically ferroan alkali-calcic metaluminous to slightly peraluminous rocks with A-type and within-plate geochemical and mineralogical characteristics. Isotope studies (Nd, Sr) suggest dominant crustal sources for the granites. The preferred genetic model is magmatic underplating involving dehydration melting of intermediate-felsic deep crust. Juvenile mafic magma was incorporated either via magma mingling and mixing, or by remelting of newly hybridized lower crust. In Namibia, partial melting of subcontinental lithospheric mantle was caused by the Tristan mantle plume, in the other cases the origin of the mantle magmatism is controversial. For the Fennoscandian suites, extensive long-time mantle upwelling associated with periodic, migrating melting of the subcontinental lithospheric mantle, governed by heat flow and deep crustal structures, is suggested.  相似文献   

16.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   

17.
Mid-Proterozoic calc-alkaline granitoids from southern Norway, and their extrusive equivalents have been dated by LAM-ICPMS U–Pb on zircons to ages ranging from 1.61 to 1.52 Ga; there are no systematic age differences across potential Precambrian terrane boundaries in the region. U–Pb and Lu–Hf data on detrital zircons from metasedimentary gneisses belonging to the arc association show that these were mainly derived from ca. 1.6 Ga arc-related rocks. They also contain a minor but significant fraction of material derived from (at least) two distinct older (1.7–1.8 Ga) sources; one has a clear continental signature, and the other represents juvenile, depleted mantle-derived material. The former component resided in granitoids of the Transscandinavian Igneous Belt, the other in mafic rocks related to these granites or to the earliest, subduction-related magmatism in the region. Together with published data from south Norway and southwest Sweden, these findings suggest that the western margin of the Baltic Shield was the site of continuous magmatic arc evolution from at least ca 1.66 to 1.50 Ga. Most of the calc-alkaline metaigneous rocks formed in this period show major- and trace-element characteristics of rocks formed in a normal continental margin magmatic arc. The exceptions are the Stora Le-Marstrand belt in Sweden and the Kongsberg complex of Norway, which have an arc-tholeiitic chemical affinity. The new data from south Norway do not justify a suggestion that the crust on the west side of the Oslo Rift had an early to mid-Proterozoic history different from the crust to the east. Instead, they indicate that the different parts of south Norway and southwest Sweden were situated at the margin of the Baltic Shield throughout the mid-Proterozoic. Changes from arc tholeitic to calc-alkaline magmatism reflect changes with time in the subduction zone system, or lateral differences in subduction zone geometry. The NW American Cordillera may be a useful present-day analogue for the tectonomagmatic evolution of the mid-Proterozoic Baltic margin.  相似文献   

18.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   

19.
A. C. Mendes  G. Dias 《地学学报》2004,16(3):109-115
The Peneda–Gerês massif is one of the most representative NW Iberian late‐ to post‐orogenic Variscan granitic plutons. It resulted essentially from the subsynchronous emplacement, at 290–296 Ma, of two granitic magmas of Fe–K subalkaline affinity, with primitive isotopic composition: Sri = 0.703–0.707 and εNdi=?1.5 to ?2.4. An origin by mantle input followed by mantle–crust interactions is proposed, implying the contribution of a less enriched mantle component than that involved in the genesis of synorogenic hybrid granitoids of Mg–K subalkaline affinity. A less voluminous aluminopotassic and isotopically more evolved magma (Sri=0.708–0.709 and εNdi=?3.5 to ?3.9) with little or no mantle input was also generated, suggesting the involvement of lower crust materials. Therefore, this study suggests an input of juvenile magmas in late Variscan times, the mantle‐like isotope signature of Fe–K granitic magmatism being clearly related to a geodynamic setting of extensional processes, large‐scale uplift and thinning.  相似文献   

20.
Numerous Triassic granitoids in the Qinling orogenic belt related to the Late Triassic collision between the North China Craton (NCC) and the Yangtze Block (YB) are important for determining the crustal composition at depth and the geodynamic processes by which the orogen formed. Most of the Triassic plutons in the Qinling orogen were emplaced between 205 and 225 Ma. The granitoid rocks from the southern margin of the NCC, North Qinling, South Qinling, and the northern margin of the YB that were emplaced during this interval have two-stage Hf model ages of 0.60–2.52 Ga (average 2.19 Ga), 0.90–2.66 Ga (average 1.29 Ga), 0.41–3.04 Ga (average 1.48 Ga), and 1.00–1.84 Ga (average 1.34 Ga), respectively, and mean εHf(t) values of ?14.5, ?0.32, ?1.36, and ?3.98, respectively. The Hf isotope compositions of the granitoids in different tectonic units differ significantly, mirroring the diverse history of crustal growth of the four units.

The temporal and spatial distribution and Hf isotope compositions of the granitoids suggest that there was a unified geodynamic process that triggered the magmatism. Formation of the Triassic granitoid plutons at 225–205 Ma was a consequence of slab break-off or E–W-striking slab tearing, related to slab rollback in the west part of the Qinling orogen and oblique continental collision in the east. Upwelling of the asthenospheric mantle led to partial melting of the subcontinental lithospheric mantle and the lower crust, and mixing and/or mingling of the resulting magmas resulted in the formation of granitoids with diverse geological and geochemical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号