首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The inter- and intragrain distribution of Li and Be in the subduction-related ultrahigh-pressure (UHP) garnet peridotite from Alpe Arami, Central Swiss Alps, was studied using secondary ion mass spectrometry. The data indicate substantial Li infiltration during exhumation of this ultramafic body. Orthopyroxene porphyroclasts and neoblasts are characterised by low Li contents (0.11-0.36 µg/g) typical of depleted peridotites, whereas Li zonation profiles across porphyroclasts of garnet and clinopyroxene document a metasomatic addition of Li. Small clinopyroxene grains in the matrix contain extremely high and variable abundances of Li (4-16 µg/g). In marked contrast to the behaviour of Li, the abundances of Be (77-134 ng/g) are similar in all textural types of clinopyroxene. Olivine porphyroclasts and neoblasts are characterised by somewhat elevated Li contents (0.95-1.79 µg/g), typical of fertile lherzolites. All textural types of clinopyroxene in the Alpe Arami peridotite are enriched in Li, providing evidence for infiltration of Li-rich and Be-poor aqueous solutions after the peak of UHP metamorphism. The lack of Li enrichment in orthopyroxene is consistent with orthopyroxene dissolution and formation of secondary olivine and clinopyroxene during metasomatism. Cr-diopside pyroxenite veins and boudins within the peridotite show low abundances of Li, with 0.7-2.5 µg/g in clinopyroxene and 1.1-1.5 µg/g in olivine. These pyroxenites likely represent precipitates from aqueous solutions which infiltrated the host peridotite after Li enrichment of the peridotite. A slab-derived nature of the metasomatic agent is suggested by the general lack of Ti enrichment in the Alpe Arami rocks.  相似文献   

2.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   

3.
Dunite, wehrlite and websterite are rare members of the mantle xenolith suite in the Kimberley kimberlites of the Kaapvaal Craton in southern Africa. All three types were originally residues of extensive melt extraction and experienced varying amounts and types of melt re-enrichment. The melt depletion event, dated by Re-Os isotope systematics at 2.9 Ga or older, is evidenced by the high Mg# (Mg/(Mg + Fe)) of silicate minerals (olivine (0.89-0.93); pyroxene (0.88-0.93); garnet (0.72-0.85)), high Cr# (Cr/(Cr + Al)) of spinel (0.53-0.84) and mostly low whole-rock SiO2, CaO and Al2O3 contents. Shortly after melt depletion, websterites were formed by reaction between depleted peridotites and silica-rich melt (>60 wt% SiO2) derived by partial melting of eclogite before or during cratonization. The melt-peridotite interaction converted olivine into orthopyroxene.All three xenolith types have secondary metasomatic clinopyroxene and garnet, which occur along olivine grain boundaries and have an amoeboid texture. As indicated by the preservation of oxygen isotope disequilibrium in the minerals and trace-element concentrations in clinopyroxene and garnet, this metasomatic event is probably of Mesozoic age and was caused by percolating alkaline basaltic melts. This melt metasomatism enriched the xenoliths in CaO, Al2O3, FeO and high-field-strength-elements, and might correspond to the Karoo magmatism at 200 Ma. The websterite xenoliths experienced both the orthoyproxene-enrichment and clinopyroxene-garnet metasomatic events, whereas dunite and wehrlite xenoliths only saw the later basaltic melt event, and may have been situated further away from the source of melt migration channels.  相似文献   

4.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

5.
A suite of metasomatised xenoliths from the Letlhakane kimberlite (Botswana) forms a metasomatic sequence from garnet peridotite to garnet phlogopite peridotite to phlogopite peridotite. Before the modal metasomatism, most of the Letlhakane xenoliths were depleted harzburgites that had been subjected to an earlier cryptic metasomatic event. Modal phlogopite and clinopyroxene - Cr-spinel increase at the expense of garnet and orthopyroxene with increasing degrees of metasomatism. The most metasomatised xenolith is a wehrlite. With progressive modal metasomatism, the clinopyroxene becomes enriched in Sr, Sc and the LREE, orthopyroxene becomes depleted in Ca and Ni, but enriched in Al and Mn, and olivine becomes depleted in Al and V. Garnet chemical composition largely remains unchanged. The garnet replacement reaction seen in most xenoliths allows the measurement of the flux of trace elements through detailed modal analysis of the pseudomorphs. Mass balance calculations show that the modally metasomatised rocks became enriched in incompatible elements such as Sr, Na, K, the LREE and the HFSE (Ti, Zr and Nb). Major elements (Al, Cr and Fe) and garnet-compatible trace elements (V, Y, Sc, and the HREE) were removed during this metasomatic process. The modal metasomatism caused a strong depletion in Al, and the results challenge previous suggestions that this metasomatic process merely occurred within an Al-poor environment. The data suggest that the xenoliths represent the mantle wallrock adjacent to a major conduit for an alkaline basic silicate melt (with high contents of volatile and incompatible elements). The volatile and incompatible element-enriched component of this melt percolated into the wallrock along a strong temperature gradient and caused the observed range of metasomatism.  相似文献   

6.
Omphacite is a typomorphic mineral of eclogites, which is inappropriate to mineral assemblages of peridotites. Nevertheless, findings of this mineral in inclusions in peridotitic diamonds can be considered as indirect evidence for the existence of this paradoxical mineral assemblage.In this paper we present experimental results on the interaction between carbonate-bearing amphibolite and olivine that model processes operated at the crust–mantle boundary in subduction zones. The experiments demonstrate growth of omphacite at the interface between acid melt and peridotite media at 2.9 GPa and 850–900 °C; the omphacite coexists either with garnet and orthopyroxene or with phlogopite. The synthetic omphacite is exclusively of reactive-magmatic origin and does not form in metasomatic way. Findings of omphacite inclusions in peridotitic diamonds and in some pyroxenites from kimberlites are discussed in scope of the obtained experimental data.  相似文献   

7.
One mantle xenolith from a basanite host of the Mt. Melbourne Volcanic Field (Ross Sea Rift) is extraordinary in containing veins filled with leucite, plagioclase, clinopyroxene, nepheline, Mg-ilmenite, apatite, titaniferous mica, and the rare mineral zirconolite. These veins show extensive reaction with the dunitic or lherzolitic host (olivine+spinel+orthopyroxene+clinopyroxene). The reaction areas contain skeletal olivine and diopside crystals, plagioclase, phlogopite, aluminous spinel and ilmenite in a fine grained groundmass of aluminous spinel, clinopyroxene, olivine, plagioclase and interstitial leucite. The vein composition estimated from modal abundances and microprobe analyses is a mafic leucite-phonolite with high amounts of K, Al, Ti, Zr and Nb but low volatile contents. The melt is unrelated to the host basanite and was probably derived by smallscale melting of incompatible element-enriched phlogopite-bearing mantle material and must have lost most of its volatile content during migration, crystallization and reaction with the host dunite. While the veins are completely undeformed the dunitic host shows slight deformation. Vein minerals crystallized at high temperatures above 1000°C and pressures below 5 kbar according to the phase assemblage including leucite, nepheline and K-feldspar. Spinel/olivine geothermometry yielded 800–920°C for the re-equilibration of the host peridotite. Thus the xenolith must have been at shallow depth prior to and during the late veining event. Mantle material at shallow depths is consistent with rifting and the regional extreme displacement at the transition from the rifted Victoria Land Basin in the Ross Sea to the uplifted Trans-Antarctic Mountains.  相似文献   

8.
The Raobazhai ultramafic body of the North Dabie Complex is re-interpreted as a mantle-derived peridotitic slice enclosed in, and isofacially metamorphosed with, surrounding granulite-to-amphibolite facies gneisses. The ultramafic sheet consists mainly of metaharzburgite, but includes subunits of metadunite and mylonitic lherzolite. The rocks contain spinel but neither garnet nor plagioclase. However, in the mylonitic lherzolite, fine-grained intergrowths of spinel, orthopyroxene and clinopyroxene outline domains resembling the habit of garnet in two dimensions; broad-beam microprobe analyses imply pseudomorphs after a pyropic garnet precursor. The mineral assemblage of the metadunite and metaharzburgite is: olivine (Fo92)+orthopyroxene (En92)+tremolitic-to-magnesiohornblende+Mg–Al-chromite, indicating amphibolite facies recrystallization. The mineral assemblage of the mylonitic lherzolite is: olivine (Fo90)+orthopyroxene (En90)+clinopyroxene+Cr-bearing spinel+pargasitic amphibole, indicative of granulite-to-amphibolite facies metamorphism. Phase equilibria and geothermometric estimations show that the Raobazhai meta-ultramafics have undergone at least three stages of recrystallization: (I) 950–990 °C, (II) 750–860 °C, and (III) 670–720 °C, assuming equilibrium in the spinel peridotite stability field ( c. 6–15 kbar), although an early, high-pressure stage (≥18 kbar) is probable, based on the inferred garnet pseudomorphs. Petrochemical and geothermobarometric data suggest that the ultramafic slice represents a fragment of the mantle wedge, tectonically incorporated into subducted continental crust and re-equilibrated at granulite-to-amphibolite facies conditions while being exhumed to shallow levels.  相似文献   

9.
We present data on the phase relationships of mixtures between natural tonalite and peridotite compositions with excess H2O at 30 kbar, and on the composition of the piercing point where the peridotite-tonalite mixing line intersects the L(Ga,Opx) reaction boundary. These data, in conjunction with earlier analogous data along peridotite-granite and basalt-granite mixing lines, permit construction of a pseudoternary liquidus projection that is relevant to interaction of peridotite with slab-derived magmas. Knowledge of the liquidus phase and temperature for a range of compositions within this projection enables us to map primary crystallization fields for quartz, garnet, orthopyroxene, clinopyroxene, and olivine, and to estimate the distribution of isotherms across the projection. Using this projection, we explore the consequences of peridotite assimilation by mafic to intermediate (basalt to dacite) hydrous slab-derived melts. Progressive assimilation under isothermal conditions results in garnet precipitation as the melt composition traverses the garnet liquidus surface and then garnet+orthopyroxene crystallization once the melt reaches the L(Ga,Opx) field boundary. The melt is constrained to remain on this field boundary and further assimilation of peridotite simply results in continued precipitation of garnet+orthopyroxene until the melt is consumed. The product is a hybrid solid assemblage consisting of Ga+ Opx. It is noteworthy that this process drives the melt composition in a direction nearly perpendicular to the mixing line between peridotite and the initial melt. If assimilation occurs with increasing temperature (as might occur if a slab-derived magma rises into the hotter mantle wedge), intermediate magmas (e.g. andesites) will again precipitate garnet until they reach the L(Ga,Opx) reaction boundary at which point Ga re-dissolves and orthopyroxene precipitates as the melt composition moves up-temperature along this boundary. The product of this process is a hybrid solid assemblage with garnet subordinate to orthopyroxene. For more mafic initial compositions (e.g. basalts) originally plotting in the Cpx field, it appears possible to avoid field boundaries involving garnet and shift in composition more directly toward peridotite, if assimilation is accompanied by a sharp increase in temperature. Considering published REE evidence (arguing against garnet playing a significant role in the genesis of many subduction-related magmas) in light of our results, it appears unlikely that peridotite assimilation by intermediate magmas under conditions of constant or increasing temperature is an important process in subduction zones. However, if assimilation is accompanied by an increase in temperature, our data do permit the derivation of high-Mg basalts from less refractory precursors (e.g. high-Al basalts) by peridotite assimilation.  相似文献   

10.
Garnet and spinel peridotite xenoliths associated with the Phanerozoic Lambert-Amery Rift in eastern Antarctica contain evidence for several stages in the development of the mantle beneath the rift. Despite the fact that equilibria were only partly attained, a combination of petrography, whole-rock geochemistry, mineral chemistry and thermobarometry can be used to decipher four stages prior to entrainment of the xenoliths in the host magma during the initial stages of the breakup of Antarctica, India and Madagascar. The first chronological stage is represented by harzburgitic protoliths represented by rare occurrences of low-Ca olivines and orthopyroxenes in spinel lherzolites: these yield the lowest temperatures of 830-850 °C, and are also characterized by distinct trace element contents; lower Ti, Cr, V and Zn in olivine and orthopyroxene, and additionally lower Cu, Ni, Ga and Li in orthopyroxene. Some garnets are subcalcic, indicating that the spinel-garnet lherzolites also formed from harzburgitic protoliths. The second stage is the formation of garnet due to a pressure increase probably related to collision at 1.1 Ga. The third stage is marked by the growth of clinopyroxene, demonstrably in cpx-poor spinel lherzolites but probably in all xenolith groups: equilibrium of clinopyroxene with olivine and orthopyroxene was not attained in all samples, so that the non-judicious use of thermobarometers can produce bewildering results. The fourth stage is an enrichment episode that affected all spinel-garnet peridotites and about half of the spinel peridotites. During this stage, reaction rims were produced on the clinopyroxenes that formed during stage 3, the modal content of olivine and Mg/(Mg + Fe) in the rocks was reduced, CaO, Al2O3 and trace elements were enriched, and garnets were almost completely transformed to kelyphites. A later stage is documented by interstitial glasses and films around spinels related to infiltration of melt from the host magma. These post-date, and are more enriched in alkalies than, partially melted rims on clinopyroxenes, demonstrating that all the three earlier episodes were pre-entrainment events. Pressures indicated by the spinel + garnet lherzolites are restricted to 20-24 kbar at 1040-1180 °C. Early harzburgitic assemblages are interpreted to represent an earlier, cooler geotherm, whereas the kelyphite assemblages indicate temperatures 180-200 °C hotter than the main xenolith geotherm. This event also caused recrystallization of the clinopyroxene rims and is attributed to heating during rifting, but not due to the host magma itself. The preservation of evidence for three progressively hotter geotherms can be related to the upward movement of isotherms during the development of the sub-rift mantle.  相似文献   

11.
首次报道了来自东北地区岩石圈地幔水含量的数据。通过对吉林龙岗和汪清新生代玄武岩中的橄榄岩包体矿物进行电子探针(EMP)和激光熔蚀等离子体质谱(LA-ICPMS)的分析,得到了矿物的主量元素和微量元素的数据,结果显示这些橄榄岩是原始地幔经历了不同程度部分熔融的残余,大部分样品的熔融程度可能<10%。橄榄岩样品在后期还经历了地幔交代作用,大部分样品受到硅酸岩熔体的交代,少部分样品受到碳酸岩熔体的交代。显微傅里叶变换红外光谱(FTIR)的分析结果显示,橄榄岩样品中的单斜辉石、斜方辉石均含有以结构羟基形式存在的水,而橄榄石中没有明显的羟基吸收峰。龙岗样品中单斜辉石的水含量为(48~464)×10-6(H2O, 质量分数),斜方辉石水含量为(28~104)×10-6;汪清样品中单斜辉石的水含量为(34~403)×10-6,斜方辉石的水含量为(13~89)×10-6;所有样品全岩水含量为(8~92)×10-6。样品的水含量可以代表龙岗和汪清地区岩石圈地幔的水含量信息,并且水含量变化范围较大,造成这种变化的原因可能是由于地幔源区初始水含量的不均一,以及部分熔融和地幔交代作用叠加的结果。  相似文献   

12.
海阳所堆积辉长岩由橄长岩、橄榄辉长岩和辉长岩组成。在橄长岩和橄榄辉长岩中发育有典型的变质反应结构:主要为橄榄石与斜长石之间形成由斜方辉石、尖晶石、角闪石和石榴石等矿物组成的多期次次变边,并有三个不同世代变质矿物,早期Cpx+Opx+Spl,中期Amp,晚期Grt;期次是钛铁矿与斜长石之间形成石榴石次变边,相对比较简单,只有一个世代变质矿物,为Grt+Amp+Rut或Grt+Rut岩中石榴石是通过斜长石与角闪石或斜长石与钛铁矿之间的变质反应形成的,虽为峰值变质作用的产物,但变质反应的期次及类型不同导致了所形成石榴石的温度和压力有所不同。堆积辉长岩形成演化的温压计算表明,堆积辉长岩在经过近等压降温的岩浆作用之后的变质作用早期,仍为近等压降温,而晚期则表现为近等温升压。这一特殊的P-T演化可能反映了堆积辉长冷侵位与深俯冲特征。  相似文献   

13.
A detailed petrographic, major and trace element and isotope (Re–Os) study is presented on 18 xenoliths from Northern Lesotho kimberlites. The samples represent typical coarse, low-temperature garnet and spinel peridotites and span a PT range from 60 to 150 km depth. With the exception of one sample (that belongs to the ilmenite–rutile–phlogopite–sulphide suite (IRPS) suite first described by [B. Harte, P.A. Winterburn, J.J. Gurney, Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: Menzies, M. (Ed.), Mantle metsasomatism. Academic Press, London 1987, 145–220.]), all samples considered here have high Mg# and show strong depletion in CaO and Al2O3. They have bulk rock Re depletion ages (TRD) >2.5 Ga and are therefore interpreted as residua from large volume melting in the Archaean. A characteristic of Kaapvaal xenoliths, however, is their high SiO2 concentrations, and hence, modal orthopyroxene contents that are inconsistent with a simple residual origin of these samples. Moreover, trace element signatures show strong overall incompatible element enrichment and REE disequilibrium between garnet and clinopyroxene. Textural and subtle major element disequilibria were also observed. We therefore conclude that garnet and clinopyroxene are not co-genetic and suggest that (most) clinopyroxene in the Archaean Kaapvaal peridotite xenoliths is of metasomatic origin and crystallized relatively recently, possibly from a melt precursory to the kimberlite.

Possible explanations for the origin of garnet are exsolution from a high-temperature, Al- and Ca-rich orthopyroxene (indicating primary melt extraction at shallow levels) or a majorite phase (primary melting at >6 GPa). Mass balance calculations, however, show that not all garnet observed in the samples today is of a simple exsolution origin. The extreme LREE enrichment (sigmoidal REE pattern in all garnet cores) is also inconsistent with exsolution from a residual orthopyroxene. Therefore, extensive metasomatism and probably re-crystallization of the lithosphere after melt-depletion and garnet exsolution is required to obtain the present textural and compositional features of the xenoliths. The metasomatic agent that modified or perhaps even precipitated garnet was a highly fractionated melt or fluid that might have been derived from the asthenosphere or from recycled oceanic crust. Since, to date, partitioning of trace elements between orthopyroxene and garnet/clinopyroxene is poorly constrained, it was impossible to assess if orthopyroxene is in chemical equilibrium with garnet or clinopyroxene. Therefore, further trace element and isotopic studies are required to constrain the timing of garnet introduction/modification and its possible link with the SiO2 enrichment of the Kaapvaal lithosphere.  相似文献   


14.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

15.
The paper reports the results of SIMS and SEM-EDS study of rock-forming minerals from melt pockets in the central part of a spinel peridotite xenolith taken from Quaternary alkaline basalts of Sverre Volcano in the northwestern part of West Spitsbergen Island. Olivine and clinopyroxene are analyzed to trace changes related to the metasomatic interaction between spinel lherzolite and a carbonate melt with formation of corresponding secondary minerals and silicate glass. It is established that the metasomatic interaction of the carbonate melt with minerals of host spinel lherzolite is accompanied by partial recrystallization of olivine and clinopyroxene, or crystallization of the second generation of these minerals. Percolating carbonate melt caused significant changes in the major, trace, and rare-earth element composition of the considered minerals, thus placing constraints on the use of the composition of these minerals for calculation of PT parameters, estimating equilibrium, and modeling petrological processes in mantle.  相似文献   

16.
 We have investigated new samples from the Gees mantle xenolith suite (West Eifel), for which metasomatism by carbonatite melt has been suggested. The major metasomatic change is transformation of harzburgites into phlogopite-rich wehrlites. Silicate glasses are associated with all stages of transformation, and can be resolved into two major groups: a strongly undersaturated alkaline basanite similar to the host magma which infiltrated the xenoliths during ascent, and Si-Al-enriched, variably alkaline glass present exclusively within the xenoliths. Si-Al-rich glasses (up to 72 wt% SiO2 when associated with orthopyroxene (Opx) are usually interpreted in mantle xenoliths as products of decompressional breakdown of hydrous phases like amphibole. In the Gees suite, however, amphibole is not present, nor can the glass be related to phlogopite breakdown. The Si-Al-rich glass is compositionally similar to glasses occurring in many other xenolith suites including those related to carbonatite metasomatism. Petrographically the silicate glass is intimately associated with the metasomatic reactions in Gees, mainly conversion of harzburgite orthopyroxene to olivine + clinopyroxene. Both phases crystallize as microlites from the glass. The chemical composition of the Si-Al-enriched glass shows that it cannot be derived from decompressional melting of the Gees xenoliths, but must have been present prior to their entrainment in the host magma. Simple mass-balance calculations, based on modal analyses, yield a possible composition of the melt prior to ascent of the xenoliths, during which glass + microlite patches were modified by dissolution of olivine, orthopyroxene and spinel. This parental melt is a calc-alkaline andesite (55–60 wt% SiO2), characterized by high Al2O3 (ca. 18 wt%). The obtained composition is very similar to high-alumina, calc-alkaline melts that should form by AFC-type reactions between basalt and harzburgite wall rock according to the model of Kelemen (1990). Thus, we suggest that the Si-Al-enriched glasses of Gees, and possibly of other suites as well, are remnants of upper mantle hybrid melts, and that the Gees suite was metasomatized by silicate and not carbonatite melts. High-Mg, high-Ca composition of metasomatic olivine and clinopyroxene in mantle xenoliths have been explained by carbonatite metasomatism. As these features are also present in the Gees suite, we have calculated the equilibrium Ca contents of olivine and clinopyroxene using the QUI1F thermodynamical model, to show that they are a simple function of silica activity. High-Ca compositions are attained at low a SiO2 and can thus be produced during metasomatism by any melt that is Opx-undersaturated, irrespective of whether it is a carbonatite or a silicate melt. Such low a SiO2 is recorded by the microlites in the Gees Si-Al-rich glasses. Our results imply that xenolith suites cannot confidently be related to carbonatite metasomatism if the significance of silicate glasses, when present, is not investigated. Received: 2 March 1995 / Accepted: 12 June 1995  相似文献   

17.
A zoned kelyphite after garnet, from a garnet pyroxenite layer,the Ronda peridotite. Spain, has been studied and the mechanismof kelyphite formation is discussed. The kelyphite is an extremelyfinegrained symplectitic mixture of orthopyroxene, spinel, olivine,plagioclase, and ilmenite. It is concentrically zoned, formingthree mineralogical subzones. They are, from adjacent to a garnetgrain toward a clinopyroxene side, zone I (orthopyroxene+spinel+ plagioclase), zone II (olivine+spinel+plagioclase), and zoneIII (olivine+plagioclase). The analysis of phase equilibriashows that this mineralogical zonation can develop stably asa result of the presence of chemical potential gradients. Onthe basis of microprobe chemical analyses for each zone, materialtransfer across the zone that took place during the kelyphitizationwas quantitatively evaluated, and by locating the initial grainboundary between garnet and clinopyroxene grains and by writingmetasomatic reactions for each zone boundary, a simple dynamicmodel for the kelyphite formation is proposed. The kelyphiteformation probably took place when the host Ronda peridotiteascended from the upper mantle to the crust. It involved a co-operativebreakdown of the garnet and aluminous clinopyroxene, being accompaniedby a material transfer across the zone boundaries. By examiningthe Fe-Mg partitioning between olivine, spinel, and orthopyroxenein the kelyphite and by examining the Al content of the orthopyroxene,an attainment of local equilibrium has been confirmed, and thephysical conditions of the kelyphite formation have been estimatedto be 620–700C and 4–8 kbar.  相似文献   

18.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

19.
New evidence for ultrahigh‐pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet‐bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase‐peridotite or the spinel‐peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low‐Al orthopyroxene + clinopyroxene + Cr‐spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr‐spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high‐Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet‐olivine and garnet‐orthopyroxene Fe‐Mg exchange thermometers and (ii) the Al‐in‐orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation.  相似文献   

20.
Garnet-bearing mantle peridotites, occurring as either xenoliths in volcanic rocks or lenses/massifs in high-pressure and ultrahigh-pressure terrenes within orogens, preserve a record of deep lithospheric mantle processes. The garnet peridotite xenoliths record chemical equilibrium conditions of garnet-bearing mineral assemblage at temperatures (T) ranging from ~700 to 1,400°C and pressures (P) > 1.6–8.9 GPa, corresponding to depths of ~52–270 km. A characteristic mineral paragenesis includes Cr-bearing pyropic garnet (64–86 mol% pyrope; 0–10 wt% Cr2O3), Cr-rich diopside (0.5–3.5 wt% Cr2O3), Al-poor orthopyroxene (0–5 wt% Al2O3), high-Cr spinel (Cr/(Cr + Al) × 100 atomic ratio = 2–86) and olivine (88–94 mol% forsterite). In some cases, partial melting, re-equilibration involving garnet-breakdown, deformation, and mantle metasomatism by kimberlitic and/or carbonatitic melt percolations are documented. Isotope model ages of Archean and Proterozoic are ubiquitous, but Phanerozoic model ages are less common. In contrast, the orogenic peridotites were subjected to ultrahigh-pressure (UHP) metamorphism at temperature ranging from ~700 to 950°C and pressure >3.5–5.0 GPa, corresponding to depths of >110–150 km. The petrologic comparisons between 231 garnet peridotite xenoliths and 198 orogenic garnet peridotites revealed that (1) bulk-rock REE (rare earth element) concentrations in xenoliths are relatively high, (2) clinopyroxene and garnet in orogenic garnet peridotites show a highly fractionated REE pattern and Ce-negative anomaly, respectively, (3) Fo contents of olivines for off-cratonic xenolith are in turn lower than those of orogenic garnet and cratonic xenolith but mg-number of garnet for orogenic is less than that of off-cratonic and on-cratonic xenolith, (4) Al2O3, Cr2O3, CaO and Cr# of pyroxenes and chemical compositions of whole rocks are very different between these garnet peridotites, (5) orogenic garnet peridotites are characterized by low T and high P, off-cratonic by high T and low P, and cratonic by medium T and high P and (6) garnet peridotite xenoliths are of Archean or Proterozoic origin, whereas most of orogenic garnet peridotites are of Phanerozoic origin. Taking account of tectonic settings, a new orogenic garnet peridotite exhumation model, crust-mantle material mixing process, is proposed. The composition of lithospheric mantle is additionally constrained by comparisons and compiling of the off-cratonic, on-cratonic and orogenic garnet peridotite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号