首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
太湖MS岩芯重金属元素地球化学形态研究   总被引:21,自引:4,他引:17  
采用BCR三步提取法对太湖MS岩芯沉积物中Cu、Fe、Mn、Ni、Pb和Zn等6种重金属元素的化学形态进行了研究.结果表明,有效结合态的Cu、Ni和Pb主要以有机物及硫化物结合态、Fe-Mn氧化物结合态存在,Fe和Zn主要以Fe-Mn氧化物结合态存在,Mn主要以可交换态及碳酸盐结合态存在;Fe-Mn氧化物结合态的Ni、Pb和Zn与可还原态的Mn有较好的正相关关系,有机物及硫化物结合态的Cu、Mn、Ni、Pb和Zn与有机碳含量有较好的正相关关系;重金属形态分布体现了重金属元素地球化学性质的差异,以及重金属形态含量与沉积物理化性质的关系.沉积岩芯重金属元素形态垂向变化规律及次生相富集系数表明,Cu、Mn、Ni、Pb和Zn在沉积岩芯13~4 cm有效结合态含量较稳定,为自然沉积;4~0 cm有效结合态含量明显升高,存在一定程度的人为污染.根据137Cs测年结果判断,沉积岩芯Cu、Mn、Ni、Pb和Zn等重金属污染开始于20世纪70年代末期,主要污染元素及污染历史与太湖流域污染工业类型及经济发展阶段相吻合.  相似文献   

2.
重金属元素在环境介质中的存在形态及各形态比例是决定其迁移性和生物可利用性的重要因素.采用BCR法连续提取过程对大型金属矿山周围土壤和水体沉积物中Cd、Cr、Cu、Ni、Pb和Zn化学形态的分析结果表明,土壤和水体沉积物中不同重金属元素化学形态分布有很大差异.总体而言,Cd以弱酸提取态为主(约占60%),Cr以残渣态为主,占90%以上,Cu以可氧化态为主(约占60%),Ni和Pb以可还原态为主,分别约占50%和60%,Zn以残渣态为主,约占45%.不同区域土壤中重金属元素各形态质量分数之和依次为厂区外围>尾矿坝旁>农田,各形态分布也与总量具有相似的变化趋势.金昌市矿山环境介质中重金属以Cu和Ni为主,白银市以Cd、Cu和Pb为主,重金属元素的生物可利用态和潜在可利用态质量分数高,平均约占各金属,总量的60%~90%,对周围环境具有很大的潜在生态危害性.  相似文献   

3.
张开毕 《福建地质》2008,27(4):392-401
通过福建省沿海经济带生态地球化学调查,在福建近岸浅海区域共采集479件沉积物样品,分析测试了52种化学元素以及pH值和有机碳等指标。总结了该区域浅海沉积物化学元素的丰度、含量变化及其区域分布,并分不同沉积物类型统计有害元素的污染起始值。福建近岸浅海沉积物与中国浅海沉积物对比,大部分元素的含量高于中国浅海沉积物,含量变化基本遵循“元素的粒度控制律”,除Si元素相反外,Al、Fe、Cu、Co、Ni等绝大多数元素的含量随沉积物粒度变细(砂→粉砂→泥)而升高,有些元素在泥质沉积物中的含量常高出砂质的数倍;其高值、高背景区的区域分布也总是与细粒沉积物有关,而低值、低背景区则明显地与砂质沉积物的分布相关。  相似文献   

4.
为了解东菲律宾海新型铁锰结壳中元素的赋存状态, 采用化学提取方法对3个结壳样品进行了物相分析.不同类型结壳中成矿和稀土元素的赋存状态总体一致, 表明它们形成于相近的地质和海洋环境中.成矿元素中的Fe和Cu绝大部分赋存在残渣态中, Mn、Co和Ni则主要赋存在锰氧化物结合态、有机结合态和残渣态中, 并且埋藏型结壳样品锰氧化物结合态中赋存了相对更高比例的成矿元素.三价稀土元素主要集中在锰氧化物结合态中.两个沉积物表层结壳样品中的Ce主要集中在残渣态中.而埋藏型结壳样品中的Ce则主要赋存在锰氧化物结合态中, 这可能与该样品此相态中赋存了相对较多的Mn有关.呈碳酸盐结合态和有机结合态的稀土元素含量仅各占稀土总量的1%左右, 表明两者对结壳中稀土元素的富集作用很小.   相似文献   

5.
东海DGKS9617岩芯物源研究   总被引:4,自引:1,他引:4  
东海内陆架东北部DGKS9617岩芯以55cm为界明显地分为两个沉积相,岩芯下部(55~851cm)潮流作用明显,为浅海潮流相,而上部(0~55cm)潮流作用不明显,为浅海相沉积。岩芯的重矿物含量特征,Fe、Mn、V、Cr、Ni、Cu、Zn等7个元素的判别函数计算结果,以及碳酸盐分析和Ba-Sr-Zn三角判别图均一致显示岩芯沉积物的重矿物和元素地球化学特征与长江沉积物类似,柱样沉积物主要来源于长江,虽然不同沉积相的沉积环境差别较大,但其物质来源并未发生变化。  相似文献   

6.
雅鲁藏布江表层沉积物地球化学元素研究   总被引:4,自引:0,他引:4  
雅鲁藏布江流域还没有大的工业污染源,仍然属于自然河流.对雅鲁藏布江16个表层沉积样品的全样、小于20μm 和小于63μm 粒级的32种元素含量进行了测定,并分析了与人类活动密切相关的元素 Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Cd 和 Pb 的含量分布特征,以及这些元素含量与粒径之间的关系.结果表明,多数元素(Cs 除外)与西藏土壤元素背景值相差不大, B、Cr、Ni、As 和 Cs 含量高于中国陆壳元素丰度值,但这些元素主要来源于该流域富含这些元素的页岩、片岩和千枚岩等母岩.由于相似的地球化学行为,沉积物中 Cr、Mn、Fe、Co、Ni、Cu、Zn 之间显著正相关;除 Pb、As 外,一些元素(如 Zn、Ni)与沉积物的粒径显著负相关  相似文献   

7.
对南沙海域西南海区101个站位表层沉积物中的元素含量及分布特征分析表明:①元素含量的分布规律是Al、Fe、Mg、Ti、P、K、Na及Cu、Co、Ni、Pb、Zn、Ba、Zr含量从陆架到陆坡直到深海明显递增;Ca、Sr含量由陆架到陆坡递增,由陆坡向深海锐减;Si含量在陆坡低,在陆架和深海高。②沉积物中元素的分布和含量变化与沉积物类型有密切关系。粗粒沉积物中Si、Sr含量较高,细粒沉积物则相对富集Al、Fe、Mg、Ti、P、K、Na及Cu、Co、Ni、Pb、Zn、Ba、Zr等元素,并且随沉积物变细,其含量亦增加,在粘土中含量最高。③SiO2与其余常量组分均呈负相关,且随水深的增加,含量逐渐减少。Al、Fe与大多数常、微量元素(Si、Ca、Sr除外)呈正相关,Ca、Sr与大多数元素呈负相关,而它们本身呈强正相关。Co、Ni、Zn、Ba、Zr与Cu呈正相关,表现为亲铜性。④本区元素的分布主要受沉积物类型、物质来源、水深和生物生产力的影响。  相似文献   

8.
泉州湾洛阳江河口潮间带沉积物中重金属来源分析   总被引:4,自引:0,他引:4  
采用ICP-MS检测技术,对泉州湾洛阳江河口潮间带3个沉积柱中重金属Hg、V、Cr、Mn、Co、Ni、Cu、Zn、Cd、Pb、Fe的含量与垂向分布特征进行了分析,并结合因子分析、聚类分析和元素地球化学特征对柱中各重金属元素的来源进行了探讨。结果表明,泉州湾洛阳江潮间带柱状沉积物中主要受污染元素为Cu、Zn、Cd、Hg,以人类活动输入为主;V、Mn、Co、Ni、Fe主要受地球化学背景值影响,以自然来源为主。并利用V和Fe作为参考元素,将数据进行标准化,以目标元素和V对应Fe的变化趋势做了归一化分析并作散点图,得出的结论与因子分析和聚类分析的结果一致,说明该方法适用于区分沉积物重金属的自然来源和人为来源。  相似文献   

9.
莫坝-希拉沟地区16个元素水系沉积物测量地球化学特征研究表明,贫乏元素有Au、Hg、Mo;正常元素有Cu、Pb、Zn、Co、Mn、W、Sn、Bi;富集元素有As、Sb、Ag、Fe、Ni;无强富集的元素。通过各元素空间分布研究,对主要地球化学异常进行推断解释,指出三叠系地层、尤其与喷出岩有关的地区是寻找Cu、Pb、Zn、Au、Ag等多金属矿的有利地区。  相似文献   

10.
湖南水口山及周边是湖南省重金属污染较为严重的地区之一,龙王山金矿床是该区中部的一个重要金矿床.为调查该矿床废石堆污染状况、是否为周边环境的污染源、污染途径、重金属迁移能力和潜在的危害,对矿区FS17废石堆进行了自然淋滤水和24 m浅钻系统取样,开展重金属元素总量分析,利用单因子指数法和内梅罗综合污染指数法对其重金属污染程度进行污染评价,采用四步改良BCR提取法分析废石堆中8种重(类)金属元素(Pb、Zn、Cd、Cu、Cr、Ni、As和Fe)的赋存形态,并利用迁移指数量化废石堆重金属元素迁移能力;发现废石堆中Cd、Cu、Pb、As、Zn、Ni重金属元素严重超标,且在垂向上分布极不均匀;其自然淋滤水样中重金属元素Cd、Ni、Zn、Cu也严重超标;废石堆浅层重金属元素潜在迁移能力顺序为:Cd>Ni≈Zn>Cu>Pb>As>Cr>Fe,深层重金属元素迁移能力顺序为:Cd>Zn>Cu>Ni>Cr>Pb>As>Fe,浅层重金属元素的迁移性大于深层;说明该废石堆重金属元素含量高,是周围环境重要污染源,酸性废水排放为其释放污染元素的主要途径;Cd、Cu、Zn、Ni迁移能力强,是周围环境的主要污染元素;Pb、Ni、As的迁移性在深层明显降低,可以通过埋深来削弱其迁移性,而Cr不会对周边环境产生污染.   相似文献   

11.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

12.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

13.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

14.
A total of 64 sediment samples were collected along a stretch of about 988 km of the Trans-Amazonian Federal Highway, between Marabá and Itaituba, Pará State, in order to characterize the distribution of metals and trace elements. Due to the lithological and geological diversity along this stretch of the Amazon, the study region was divided in three distinct tracks. Statistical data analysis (Spearman correlation and Principal Factor Analysis) shows strong signature and predominance of regional rocks chemistry, such as mafic-ultramafic-bearing elements (Ni and Cr) and hydrothermalism-bearing elements such as Cu and Pb. Enrichment factors were calculated for three different normalizer agents: 1) Fe and Mn, representing the Fe and Mn (hydr)oxides, 2) Al representing clay minerals, and 3) organic matter (OM). The Fe and Mn (hydr)oxides showed to be the most proficient metal carrier among the geological matrices, likely due to the larger lithological diversity. On the other hand, OM positively correlated to trace element distribution.  相似文献   

15.
Using trace elements to reconstruct paleoenvironment is a current hot topic in geochemistry. Through analytical tests of oil yield, ash yield, calorific value, total sulfur, major elements, trace elements, and X-ray diffraction, the quality, mineral content, occurrence mode of elements, and paleoenvironment of the Zhangjiatan oil shale of the Triassic Yanchang Formation in the southern Ordos Basin were studied. The analyses revealed relatively high oil yield (average 6.63%) and medium quality. The mineral content in the oil shale was mainly clay minerals, quartz, feldspar, and pyrite; an illite–smectite mixed layer comprised the major proportion of clay minerals. Compared with marine oil shale in China, the Zhangjiatan oil shale had higher contents of quartz, feldspar, and clay minerals, and lower calcite content. Silica was mainly in quartz and Fe was associated with organic matter, which is different from marine oil shale. The form of calcium varied. Cluster analyses indicated that Fe, Cu, U, V, Zn, As, Cs, Cd, Mo, Ga, Pb, Co, Ni, Cr, Sc, P, and Mn are associated with organic matter while Ca, Na, Sr, Ba, Si, Zr, K, Al, B, Mg, and Ti are mostly terrigenous. Sr/Cu, Ba/Al, V/(V + Ni), U/Th, AU, and δU of oil shale samples suggest the paleoclimate was warm and humid, paleoproductivity of the lake was relatively high during deposition of the shale—which mainly occurred in fresh water—and the paleo-redox condition was dominated by reducing conditions. Fe/Ti ratios of the oil shale samples suggest clear hydrothermal influence in the eastern portion of the study area and less conspicuous hydrothermal influence in the western portion.  相似文献   

16.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

17.
The degree of metal contamination (Zn, Pb, Cu, Ni, Cd) has been investigated in the vicinity of an old unmonitored municipal landfill in Prague, Czech Republic, where the leachate is directly drained into a surface stream. The water chemistry was coupled with investigation of the stream sediment (aqua regia extract, sequential extraction, voltammetry of microparticles) and newly formed products (SEM/EDS, XRD). The MINTEQA2 speciation-solubility calculation showed that the metals (Zn, Pb, Cu, Ni) are mainly present as carbonate complexes in leachate-polluted surface waters. These waters were oversaturated with respect to Fe(III) oxyhydroxides, calcite (CaCO3) and other carbonate phases. Three metal attenuation mechanisms were identified in leachate-polluted surface waters: (i) spontaneous precipitation of metal-bearing calcite exhibiting significant concentrations of trace elements (Fe, Mn, Mg, Sr, Ba, Pb, Zn, Ni); (ii) binding to Fe(III) oxyhydroxides (mainly goethite, FeOOH) (Pb, Zn, Cu, Ni); and (iii) preferential bonding to sediment organic matter (Cu). These processes act as the key scavenging mechanisms and significantly decrease the metal concentrations in leachate-polluted water within 200 m from the direct leachate outflow into the stream. Under the near-neutral conditions governing the sediment/water interface in the landfill environment, metals are strongly bound in the stream sediment and remain relatively immobile.  相似文献   

18.
Labrador has been covered by reconnaissance-scale geochemical surveys under the National Geochemical Reconnaissance program. Lake sediment and water were the chief sample media, but stream sediment and water were employed in the mountainous terrain of northern Labrador. The main objective of these surveys was mineral resource assessment, but the data are also relevant to geological and environmental studies, and would be most useful to the non-specialist if the data from the two drainage types could be combined to produce unified element distribution maps for the whole region.A comparison of stream and lake data for a 5,700-km2 area where both drainage types were sampled suggests that only the pH of the lake and stream waters are directly comparable, showing a common range and similar spatial distribution. Comparing the two types of sediment, most elements show obvious differences in either median content or range or both, indicating that stream and lake sediment are geochemically distinct media, and their element contents cannot be compared directly. The distribution patterns of Cu, Ni and U reflect similar bedrock features in both sediment types. In contrast, Co, F, Fe, Hg, Mn, V and Zn show little or no spatial correlation between stream and lake sediment, but are strongly intercorrelated in the stream sediment data set.The sediments collected from lakes in Labrador represent disturbed column, about 40 cm in length, of organic debris that accumulated over the past several hundred years. Metal accumulation in the sediment is largely through fixation from inflowing surface and groundwater by microorganisms, coprecipitation with hydrous Fe and Mn oxides, sorption by clay minerals and chemical and biochemical processes at and just below the sediment/water interface. The stream sediments in this study were collected from active sediment, and represent principally the mechanical-weathering products of bedrock, with variable amounts of organic matter and hydrous Fe and Mn oxides. Considering the difference in the two sediment types, it is probably not surprising that there is rather limited spatial correlation between the geochemistry of the two sediment types indicating that to a large extent each medium reflects a different facet of the bedrock geochemistry. Only for a few elements should the data sets be merged. The degree of spatial correlation for U, Ni and Cu increases as the data are generalized by averaging into larger blocks, suggesting that the combined data sets will be more successful in defining broad crustal geochemical features rather than local details. The implication of this study for international geochemical mapping is that geochemical patterns for many elements are strongly dependent on the sample medium chosen. Therefore, when it is necessary to change sample media in passing from one terrain type to another, a comparative study must be carried out to determine how the geochemistry of the different sample media compare spatially.  相似文献   

19.
Sixty-eight samples of sediment collected on a variably-spaced grid pattern from Pamlico River Estuary of North Carolina were analyzed for As, Cd, Co, Cr, Cu, F, Ni, Pb, U, Zn, clay, and organic matter. The major objectives of the study were to determine background and anomalous levels of trace elements in the sediments, and the effects of human activities on concentration and distribution of trace elements in the sediments. Clay and organic matter are more concentrated near the center of the estuary. This causes the highest concentration of trace elements in the sediments to be located there also owing to their preferential uptake of these elements. Highest trace element concentrations were observed in clay and organic matter near industrial sites, housing developments, and tributary mouths that drain areas of human activity. The apparent increase in trace element contents of fine sediments in Pamlico River Estuary owing to human activities is 4 to 1,750 times normal background levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号