首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对东南亚某水电站坝址区上游右岸古滑坡,通过钻探、地质调查及长期监测研究了滑坡地层特征、滑带特征及变形特征,并对古滑坡复活机制进行探究。结果表明:(1)坡脚卸载和强降雨是古滑坡复活的主要原因;(2)道路开挖导致应力场发生改变,滑坡沿浅表部第四系坡积物和板岩、砂岩接触面“复活”,向临空面产生蠕变变形;(3)古滑坡变形与降雨呈正相关,雨季高强度降雨期间位移与变形速率急速增大,旱季无降雨时滑坡基本处于稳定状态;(4)深部位移监测数据显示,古滑坡深部未见位移突变,降雨对深部位移基本无影响。  相似文献   

2.
为深入研究库区古滑坡变形特征及其复活机理,文章以三峡库区藕塘滑坡为研究对象,通过对钻孔、探槽及平硐等现场勘查资料和监测资料的深入分析,并结合数值模拟方法,探讨了藕塘滑坡的时-空变形特点及影响因素,并揭示其复活机制。电子自旋共振试验和现场勘查结果表明藕塘滑坡由三个次级滑体组成。监测数据显示:总体上,地表累计位移-时间曲线呈阶跃状变化,即雨季滑坡变形速率急剧加快,旱季则骤减;在空间上滑坡的变形速率随高程的增加而增加。库水和降雨是导致藕塘滑坡变形破坏的主要因素:滑坡下部区域变形主要受库水影响,而滑坡中、上部区域变形主要受降雨影响。数值模拟结果也进一步揭示了影响滑坡孔隙水压力响应的主控因素随滑坡高程的变化而变化。库水骤降使得坡体前部渗透压增大,同时强降雨使得坡体中部及上部孔隙水压力升高,二者共同作用下导致滑坡复活。此外库水位下降或降雨量增加,均会不同程度降低边坡的稳定性。以上结论对于指导实际工程及深化库区古滑坡的研究具有一定的理论意义,同时加强古滑坡的研究有助于丰富滑坡稳定性评价及预测预报方法,为古滑坡的治理提供一定的理论依据。  相似文献   

3.
中等倾角岩层顺向坡,受坡体结构和岩体物理力学性质控制,多存在变形、崩塌、滑坡等工程地质问题,常常会诱发大规模的地质灾害。该类斜坡潜在滑动面不直接出露地表,一般具有变形机制复杂、隐蔽性强和危害大的特点,是滑坡领域关注与研究的重点。拖担水库大坝左岸为一古滑坡,在水库扩建开挖过程中,诱发古滑坡体复活。在分析古滑坡工程地质条件的基础上,结合地质勘察和变形监测结果,研究了其变形特征及形成机制。研究结果表明:(1)左岸古滑坡具有岩层倾角"上陡下缓"、滑体底部存在反倾坡内的剪切破碎带、滑床岩体产生弧状弯曲的特点;(2)古滑坡体为一基岩顺层滑坡,滑动模式为"滑移(弯曲)—剪断"型,其变形破坏过程包括三个阶段:弯曲隆起阶段、滑移剪出阶段和扰动变形阶段;(3)该类斜坡变形破坏后,坡体易沿"上陡下缓"的椅型软弱层面发生二次滑动,滑坡控制关键是对下部变形区的保护。  相似文献   

4.
中等倾角岩层顺向坡,受坡体结构和岩体物理力学性质控制,多存在变形、崩塌、滑坡等工程地质问题,常常会诱发大规模的地质灾害。该类斜坡潜在滑动面不直接出露地表,一般具有变形机制复杂、隐蔽性强和危害大的特点,是滑坡领域关注与研究的重点。拖担水库大坝左岸为一古滑坡,在水库扩建开挖过程中,诱发古滑坡体复活。在分析古滑坡工程地质条件的基础上,结合地质勘察和变形监测结果,研究了其变形特征及形成机制。研究结果表明:①左岸古滑坡具有岩层倾角“上陡下缓”、滑体底部存在反倾坡内的剪切破碎带、滑床岩体产生弧状弯曲的特点;②古滑坡体为一基岩顺层滑坡,滑动模式为“滑移(弯曲)—剪断”型,其变形破坏过程包括三个阶段:弯曲隆起阶段、滑移剪出阶段和扰动变形阶段;③该类斜坡变形破坏后,坡体易沿“上陡下缓”的椅型软弱层面发生二次滑动,滑坡控制关键是对下部变形区的保护。  相似文献   

5.
采用工程地质调查、钻探、地表变形监测和岩土试验等手段,对朱家店滑坡进行系统研究.发现此滑坡是一古滑坡复活形成的中型黄土滑坡,其诱发因素包括,堆放废弃矿渣和煤矸石,井口开挖形成临空面,及降雨汇集下渗.位移监测查明的滑动方向受控因素, 一是西侧坡脚开挖形成的临空面,二是基岩面产状.  相似文献   

6.
工程建设引发禾草沟煤矿工业场地主厂房段古滑坡复活,通过野外调查和测量、钻探、探槽、变形监测、室内试验和数值计算,分析该古滑坡的复活原因及变形破坏特征;采用改进的数值计算法对古滑坡的稳定性进行分析,古滑坡在天然条件下处于稳定状态;对古滑坡复活采用"削头压脚"措施后,稳定性满足安全要求,这对古滑坡的治理设计提供了理论依据。同时,该措施能节约工程投资,缩短工期,具有良好的经济效益。  相似文献   

7.
江顶崖古滑坡位于甘肃舟曲白龙江左岸,区内地形地貌和地质构造复杂,多高山峡谷且河流纵坡降大,晚第四纪以来强烈活动的坪定—化马断裂带从区内通过,造成地层岩性极为破碎,古滑坡发育,且复活特征明显。在遥感解译和现场调查的基础上,对江顶崖古滑坡的发育特征和复活机理进行分析,认为江顶崖古滑坡堆积体方量为41×106~49×106m3,为在地质历史上形成的巨型古滑坡,位于坪定—化马断裂带及其次级断裂形成的断裂带内。根据滑坡不同位置和坡体结构特征,将江顶崖古滑坡共划分为古滑坡崩塌区、滑坡岩体变形区、古滑坡堆积区等3个大区,以及4个古滑坡复活区等7个区域,坡体内断错陡坎和拉裂缝极为发育。江顶崖古滑坡的中部复活区是主要变形和破坏区,1991年和2018年的复活区均位于该区域内,2018年复活滑坡体体积为480×104~550×104m3,为缓慢滑动的牵引式滑坡。江顶崖古滑坡复活机理复杂,在断裂活动和地震作用下形成的破碎岩土体和斜坡结构特征为滑坡复活提供了内因,强降雨作用增加了坡体自重并弱化了岩土体的力学强度,在暴雨期形成的强烈河流侵蚀作用进一步切割坡脚,从而诱发滑坡的复活;因此,江顶崖古滑坡是在内外动力耦合作用下形成的典型古滑坡复活案例。目前江顶崖古滑坡区域内的4个滑坡复活区仍处于蠕滑状态,在强降雨和河流侵蚀等作用下极可能再次发生复活,并造成堵江和毁坏国道等灾害事件。  相似文献   

8.
三福高速公路尤溪段K201滑坡是在持续暴雨影响下引起前缘老滑坡复活,并牵引扩大发展,形成高速公路路基坡体变形破坏的岩石滑坡;经滑坡后部刷方减载的应急抢险措施有效控制了滑坡变形快速发展的趋势,并通过路面裂缝位移监测评价了应急减载的工程效果;深部位移监测成果确定了滑面的确切位置,监控了滑坡的发展趋势;滑带强度指标的反演分析和滑坡的稳定性计算进一步揭示滑坡经应急减载后虽处于相对稳定状态,但在暴雨期不利工况条件下,仍存在变形恢复和失稳破坏的可能;通过多方案计算比较和论证分析,确定了路肩锚桩加固的根治工程对策,并经过一年的工后坡体深部位移监测证明了该治理方案的合理性和有效性。  相似文献   

9.
位于白龙江断裂带的甘肃舟曲江顶崖古滑坡规模巨大,受断裂活动、降雨入渗与河流侵蚀和人类工程活动等因素影响,多次发生复活-堵塞白龙江灾害事件,造成极大危害。为研究江顶崖古滑坡的复活机理,本文在野外地质调查的基础上,重点开展了滑体在含水率为10%、15%和20%条件下的离心机模型试验。研究表明:在滑体含水率为10%情况下,试验结束后仅在坡体中后部产生少量裂缝,但滑坡体整体还处于稳定状态; 而在滑体含水率为15%和20%情况下,滑坡均发生了破坏,在滑体含水率分别为15%、20%情况下坡体失稳所需离心加速度分别为100g和50g。试验测试分析表明,江顶崖古滑坡为推移式滑坡,其变形先从坡体中后部开始,坡体中后部产生裂缝,随后裂缝逐渐向前缘扩展,最终裂缝贯通造成滑坡滑动破坏。滑坡体的变形过程主要分为3个阶段: ①变形启动阶段(裂缝开始形成阶段); ②变形加速阶段(裂缝加速发展阶段); ③失稳阶段。通过离心模拟试验,结合野外调查分析,认为江顶崖古滑坡复活的因素主要受降雨和孔隙水压力的影响,是受前缘河流侵蚀牵引、降雨入渗造成滑坡中后部推移的耦合滑动。  相似文献   

10.
骊山滑坡位于西安市临潼区骊山北坡,目前骊山北坡局部发生变形,滑坡正在发育.鉴于骊山滑坡所处位置的重要性,结合工作实际,为了提高骊山滑坡监测精度和监测时效,实现人防与技防相结合、实现实时变形监测与监控,在主要变形区域:I、Ⅱ、Ⅲ区坡体上建立一套滑坡自动化监测及视频监控系统,进行24小时不间断监测.通过该系统提供的有效数据,结合人工监测数据进行综合分析,可及时发现坡体变形隐患,并发出地质灾害预警信息,为政府决策提供可靠依据.监测内容包括:降雨量、孔隙水压力、土壤含水率、地表位移及深部位移、视频监控.  相似文献   

11.
随着黄河流域生态保护与高质量发展上升为国家战略,滑坡灾害防治成为迫切需要攻克的基础性问题。另外,黄河上游地区因地形高差大、古地震及强降雨事件频繁,诱发的滑坡及滑坡堰塞湖数量多、分布广、危害重,是近年来滑坡发育和演化机制以及滑坡堰塞湖溃决效应研究的热点。本文在综合整理该地区已有研究工作的基础上,结合笔者研究团队近20年来所获得的滑坡调查评价、测试分析和防灾减灾研究成果,系统归纳了黄河上游地区滑坡调查与风险评价、滑坡时空展布规律及主控因素研究、典型滑坡堰塞湖的续存时长及溃决危害、古滑坡堆积体开发利用及防灾减灾等方面的研究进展和成果,提出了未来在该地区研究古滑坡、堰塞湖沉积与河流阶地以及堰塞湖溃决效应等应关注的4个科学问题。研究结果对于揭示黄河上游地质历史时期滑坡发育和堰塞湖形成的主控因素,探讨滑坡发育的动力机制对地震和降雨的响应过程,拓展第四纪地质学在古滑坡形成演变方面的应用研究等具有重要参考价值。  相似文献   

12.
哀牢山中段滑坡灾害类型及其变形失稳模式   总被引:1,自引:0,他引:1  
陈红旗 《地学前缘》2007,14(6):112-118
以哀牢山地区中段为理论研究基地,在地质灾害详细调查试点工作的基础上,对西南山区地质灾害进行详细调查工作方法、对哀牢山地区中段滑坡灾害发育分布特征及变形失稳模式进行了描述性研究。调查研究表明:在西南山区地质灾害详细调查中,调查部署应兼顾流域环境、地质条件和社会经济等三要素,应充分发挥遥感调查的先导性作用,采用"点、线、面"相结合的专业调查方式,加强对区域灾害地质条件的调查,结合国土资源开发利用规划,增强对地质灾害趋势的预测能力;哀牢山中段滑坡点多面广,规模小,包括特殊土体型、崩滑堆积体型、残坡积层型、人工堆填土型和风化层型5种类型;滑坡分布受地质构造的控制作用显著,现代滑坡集中分布于地理地质-人类活动的频变区(或带),古滑坡主要沿主干构造或深切河谷岸坡分布;滑坡变形失稳具有散裂-摩阻-溜滑、蠕滑-拉裂-转动、滑移-拉裂-溃屈、蠕滑-拉裂-追踪和弯曲-拉裂-崩滑等5种模式;概括出了区内3种滑坡-泥石流转化模式。  相似文献   

13.
武都汉林沟流域古滑坡年龄的14C厘定   总被引:2,自引:1,他引:1  
古滑坡一般是指全新世以前地质历史时期发生的滑坡。武都汉林沟流域发育有第四纪晚更新世以来不同时期的滑坡,具有规模大、数量多的特点,为武都白龙江中游滑坡发育历史研究提供了典型实例。通过滑坡体的形貌、结构特征、与其他地层的接触关系分析,确定古滑坡的存在。同时也发现古滑坡曾堵塞汉林沟形成堰塞湖,并压埋了许多古树木,古滑体中残留...  相似文献   

14.
河流阶地形成演化及其对滑坡的控制是近年来古滑坡研究的热点问题。笔者在对岷江上游河流阶地和古滑坡实地调查测试的基础上,对岷江上游河流阶地的级序、拔河高度、成因类型等进行了分析,绘制了阶地高程位相图和年龄位相图,并结合阶地和古滑坡年代,讨论了阶地与古滑坡的发育关系等。主要取得了以下认识:1)岷江上游的河流阶地具有分段性,成因主要为气候多期次波动与构造活动共同作用,古滑坡及堰塞湖是影响高山峡谷区河流阶地发育的重要因素;2)叠溪-茂县段在20~30 ka B.P.发生了多处大型古滑坡,其中20 ka B.P.的古滑坡可能主要是气候波动引发,30 ka B.P.发生的古滑坡可能主要受控于构造活动(地震);3)岷江上游大量分布的古滑坡堆积体与阶地发育的叠置关系有待进一步理清,开展该地区的河流阶地级序研究要充分考虑古滑坡和堰塞湖的影响.  相似文献   

15.
青藏高原东缘是全球古滑坡最发育的地区之一。基于大量地面调查、遥感解译和年龄测试资料,总结了青藏高原东缘深切河谷区古滑坡的判识方法、主要发育特征、形成时代和分布规律。结果表明,古滑坡具有规模巨大、高位起动、物质组成和结构复杂等特征,其空间分布与地形地貌、岩性组合和活动构造等因素关系密切。古滑坡在区域上受气候变化影响较明显,一般形成于河流强烈下切阶段,与河流阶地具有较好的对应关系,多数已发现的古滑坡与T2阶地时代相当,时间跨度为40~10 ka,集中分布于30~20 ka。构造活动和地震造成古滑坡在不同区段的分布具有差异性,一般在活动断裂带附近密集发育,现今发现的古滑坡多为这种成因。这些认识对于科学认知古滑坡的形成演化过程和未来巨灾风险预测具有重要的指导作用。  相似文献   

16.
鹤庆盆地东缘古滑坡遥感识别与特征研究   总被引:1,自引:0,他引:1  
古滑坡的识别与研究对认识区域地质构造、古气候、古环境的演变及其和人类社会发展的关系具有重要意义。基于遥感图像的纹理、色调特征等古滑坡解译标志,识别出鹤庆盆地东缘存在的两处古滑坡;同时,结合利用滑坡区数字高程模型(DEM)数据的滑坡地表形态分析,解译出两处古滑坡的位置、范围、前后缘高程等特征信息。利用GIS几何形态计算的结果表明,两处古滑坡规模分别达到1.30亿m3和5.64亿m3,属于巨型滑坡。综合滑坡区地层岩性、地质构造、地表覆盖特征及古地震活动分析,推测两处古滑坡均为地震所引发。对比分析古滑坡与大丽铁路、鹤庆火车站的相对位置关系,认为大型线性工程的选址不仅要着重目前区域稳定性的评价,还应考虑古地震次生地质灾害的影响范围和地震活动周期性,避让陡峭的断陷盆地边缘部位。  相似文献   

17.
The ancient landslide has endured long-term slope evolution which results in its complicated material and special rock-soil properties. The risk of ancient landslide reactivation is substantially increasing due to the increase of intensified human engineering activities and the frequency of extreme weather events. Many ancient landslides have been reactivated all over the world and led to serious fatalities and severe damage to many important engineering facilities such as transportation and hydropower engineering projects. On the basis of the analysis of the research situation about the ancient landslides at home and abroad, the main research advances were summarized including the regional developing laws and recognizing of the ancient landslides, the mechanics properties of ancient landslide body and related sliding zone, reactivation mechanism of ancient landslides, reactivating process and modeling analysis of ancient landslides, early recognization of ancient landslide reactivation, etc. To meet the demands of disaster prevention and reduction, three key scientific issues were put forward to be solved: ①automaticaly establishing the methodology and identification criterions for recognition of ancient landslide; ②revealing the reactivation mechanism of ancient landslide based on a new strength theory; ③establishing the early rapid recognition method and predictive model for ancient landslide reactivation. Solving the above mentioned scientific theory and methodology will facilitate the planning and site selection of major projects as well as the disaster prevention and reduction in ancient landslide developing areas.  相似文献   

18.
Ashland  Francis X. 《Landslides》2021,18(6):2159-2174

The potential for widespread landslides is generally increased when extraordinary wet periods occur during times of elevated subsurface hydrologic conditions. A series of storms in early 2018 in Pittsburgh, Pennsylvania, overlapped with a period of increased shallow soil moisture and rising bedrock groundwater levels resulting from seasonally diminished evapotranspiration and induced widespread landslides in the region. Most of the landslides were shallow slope failures in colluvium, landslide deposits, and/or fill. However, deep-seated landslide activity also occurred and corresponded with record cumulative precipitation from late February to April and bedrock groundwater levels rising to an annual high. Landslides blocked or damaged roads, adversely affected multiple houses, disrupted electrical service, crushed vehicles, and resulted in considerable economic losses. The initial landslides occurred during or immediately after a rare period of three successive days of heavy rain that began on February 14. Subsequent landslides between late February and April were induced by multiday storms with smaller rainfall totals. As shallow soil moisture at a monitoring site rose above a volumetric water content of 32%, the mean rainfall intensities necessary to induce slope failure in colluvium and other surficial deposits decreased. Deep-seated landslide movement occurred in the region mostly when the groundwater level in a bedrock observation well was shallower than 1.7 m. The availability of hydrologic and landslide movement monitoring data during this extraordinary series of storms highlighted the evolution of the landslide hazard with changing moisture conditions and yielded insights into potential hydrologic criteria for anticipating future widespread landslides in the region.

  相似文献   

19.
Large old landslides are common in the Three Gorges area. Baota landslide, a large rockslide, is one of the largest landslides in the Three Gorges area. In the landslide body there are two terraces to be recognized. The two terrace deposits is not a two-grade terrace, but mainly remnants left by an occurrence of Baota landslide. Optically stimulated luminescence (OSL) dating suggests that the age of the terrace deposits is 38–32 kyr BP. The OSL ages along with other Thermoluminescence (TL) and Radiocarbon (14C) ages support the conclusion that the Baota landslide was originally triggered by strong precipitation occurred in a warm climate period of 30,000–40,000 years BP.  相似文献   

20.
三峡库区白衣庵滑坡地质研究   总被引:2,自引:0,他引:2  
白衣庵滑坡是一个由古滑坡、老滑坡和新滑坡组成的滑坡群,是川、峡二江在奉节东西贯通形成统一的长江后,三叠系巴东组(T2b)地层在江水强烈下切侵蚀事件的持续作用下导致江岸斜坡逐渐卸荷、倾倒、崩塌和表层滑坡等多期作用形成的古崩滑体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号