首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对葫芦铜镍硫化物矿石的Re-Os同位素物质来源示踪研究, 其187Os/188Os初始比值介于1.40~1.97,γOs值介于1110~1565,平均为1379, 表明在成矿过程及岩浆侵位期间有大量地壳物质加入到成矿系统中。  相似文献   

2.
A number of mafic–ultramafic intrusions that host Ni–Cu sulfide mineralization occur in the northeastern Tarim Craton and the eastern Tianshan Orogenic Belt (NW China). The sulfide-mineralized Pobei mafic–ultramafic complex is located in the northeastern part of the Tarim Craton. The complex is composed of gabbro and olivine gabbro, cut by dunite, wehrlite, and melatroctolite of the Poyi and Poshi intrusions. Disseminated Ni–Cu sulfide mineralization is present towards the base of the ultramafic bodies. The sulfide mineralization is typically low grade (<0.5 wt.% Ni and <2 wt.% S) with low platinum-group element (PGE) concentrations (<24.5 ppb Pt and <69 ppb Pd); the abundance of Cu in 100 % sulfide is 1–8 wt.%, and Ni abundance in 100 % sulfide is typically >4 wt.%. Samples from the Pobei complex have εNd (at 280 Ma) values up to +8.1, consistent with the derivation of the magma from an asthenospheric mantle source. Fo 89.5 mol.% olivine from the ultramafic bodies is consistent with a primitive parental magma. Sulfide-bearing dunite and wehrlite have high Cu/Pd ratios ranging from 24,000 to 218,000, indicating a magma that evolved under conditions of sulfide saturation. The grades of Ni, Cu, and PGE in 100 % sulfide show a strong positive correlation. A model for these variations is proposed where the mantle source of the Pobei magma retained ~0.033 wt.% sulfide during the production of a PGE-depleted parental magma. The parental magma migrated from the mantle to the crust and underwent further S saturation to generate the observed mineralization along with its high Cu/Pd ratio at an R-factor varying from 100 to 1,200. The mineralization at Poshi and Poyi has very high γOs (at 280 Ma) values (+30 to +292) that are negatively correlated with the abundance of Os in 100 % sulfide (5.81–271 ppb) and positively correlated with the Re/Os ratios; this indicates that sulfide saturation was triggered by the assimilation of crustal sulfide with both high γOs and Re/Os ratios. When compared to other Permian mafic–ultramafic intrusions with sulfide mineralization in the East Tianshan, the Poyi and Poshi ultramafic bodies were formed from more primitive magmas, and this helps to explain why the sulfide mineralization has high Ni tenor.  相似文献   

3.
《International Geology Review》2012,54(14):1783-1791
The Chibaisong magmatic Cu–Ni sulphide deposit is located in Tonghua City, Jilin Province, in the eastern part of the northern margin of the North China Craton. The geological characteristics of the deposit have been investigated, and pyrrhotite Re–Os isotope dating has been utilized to constrain the age. Five pyrrhotite samples separated from the Chibaisong Cu–Ni sulphide deposit yielded a Re–Os isotopic isochron age of 2237 ± 62 Ma (mean squared weighted deviation = 1.13, n = 5), indicating that the only Palaeoproterozoic magmatic Cu–Ni sulphide deposit in China is the Chibaisong Cu–Ni sulphide deposit. The geodynamic setting during ore formation was related to the Liaoning–Jilin Palaeoproterozoic rift split. The Re–Os isotope analyses showed an initial 187Os/188Os ratio of 0.778 ± 0.033, and (187Os/188Os)i and γOs(t) values ranged from 0.7531 to 0.8013 (average 0.7734) and from 574 to 617 (average 592), respectively, indicating that abundant crustal material (5–10%) was mixed with the Cu–Ni sulphide ore system during magma ascent and ore formation.  相似文献   

4.
金川超大型铜镍硫化物矿床的铂族元素地球化学特征   总被引:21,自引:2,他引:19  
对金川超大型铜镍岩浆硫化物矿床岩石、矿石的铂族元素地球化学特征研究表明 ,金川岩体的平均Cu/Pd值远大于原生地幔岩浆的Cu/Pd值 ,说明其岩石为因硫化物析离而失去Pd的岩浆所结晶 ;且岩石的PGE具有部分熔融趋势 ,与地幔橄榄岩接近 ,这些均指示存在岩浆熔离作用。该矿床岩石、矿石的PGE球粒陨石标准化分布模式比较对应 ,均可分为两种类型 ,反映了岩浆多次侵入、熔离分异同时成岩成矿的特征。另外 ,PGE S关系分析表明其成岩成矿过程中有少量地壳物质混染。PGE地球化学特征参数还指示了其高镁拉斑玄武质母岩浆的性质。  相似文献   

5.
采用ICP—MS方法分析了煎茶岭和金川硫化镍矿床岩石、矿石的铂族元素含量,煎茶岭岩体蛇纹岩的Cu/Pd比值低于原生地幔岩浆,说明岩浆熔离作用较弱,矿石的Pd/Ir比值较小,指示其多数矿石属于岩浆型,以岩浆成矿作用为主;而金川岩体的平均Cu/Pd比值远大于原生地幔岩浆,表明岩浆熔离作用强,矿石的Pd/Ir比值较大,体现了钯族元素矿化及成矿物质以幔源为主的特征。煎茶岭在成矿过程中有壳源物质的混染,整体上岩石、矿石铂族元素含量较低,这与岩浆熔离作用弱、铂族元素成矿作用不发育等因素有关;金川在成岩成矿过程中也有少量地壳物质的混染,但岩石、矿石铂族元素含量较高,反映了以岩浆深部熔离成矿作用为主的特征。  相似文献   

6.
新疆东部葫芦岩体地表出露面积0.75km2,是由辉长闪长岩、辉长岩、辉石岩、辉橄岩、橄榄岩组成的复式岩体。LA-ICP-MS锆石U-Pb定年,岩体形成年龄为274.5±3.9Ma,是东天山后碰撞伸展环境的产物。岩石和矿石的PGE总量低,其中IPGE与PPGE含量相近,PPGE略高于IPGE。岩石平均7.90×10-9,矿石平均45.57×10-9。在原始地幔标准化图解上,岩石和矿石具有相似的分配模式,PPGE和IPGE之间分异较弱。Ni/Cu-Pd/Ir关系图显示母岩浆主要为高镁的玄武质岩浆。根据矿石Cu/Pd比值114.67×103~157.42×103(平均136.05×103)和岩石Cu/Pd比值11.07×103~294.35×103(平均125.48×103)推断,葫芦矿床成矿母岩浆演化过程中经历了深部硫化物部分熔离的过程,这可能是导致该矿床PGE明显亏损的原因之一。地壳物质的混染(SiO2、S等的加入)以及橄榄石、辉石等矿物的分离结晶,是引起该矿床硫饱和并发生硫化物熔离作用而成矿的主要因素。  相似文献   

7.
Mafic intrusions and dykes are well preserved in the Yinmin and Lanniping districts, located within the western margin of the Yangtze Block, SW China. Although these mafic rocks from the two areas formed during different periods, they share similar ranges of PGE concentration. Most of the Yinmin gabbroic dykes contain relatively high PGE concentrations (PGEs = 13.9–87.0 ppb) and low S contents (0.003 %–0.020 %), higher than the maximum PGE concentrations of mafic magmas melting from the mantle. Two exceptional Yinmin samples are characterized by relatively low PGE (PGEs = 0.31–0.37 ppb) and high S (0.114 %–0.257 %) contents. In contrast, most samples from the Lanniping gabbroic intrusion have low PGE concentrations (PGEs = 0.12–1.02 ppb) and high S contents (0.130 %–0.360 %), except that the three samples exhibit relatively high PGE (PGEs = 16.3–34.8 ppb) and low S concentrations (0.014 %–0.070 %). All the Yinmin and Lanniping samples are characterized by the enrichment of PPGE relative to IPGE in the primitive-mantle normalized diagrams, and the high-PGE samples exhibit obvious Ru anomalies. This study suggests that during the ascent of the parental magma, removal of Os–Ir–Ru alloys and/or chromite/spinel leads to high Pd/Ir ratios and Ru anomalies for the Yinmin high-PGE samples and relatively lower Pd/Ir ratios and Ru anomalies for the Lanniping low-PGE samples. We propose that the magmas parental to the Yinmin gabbroic dykes are initially S-unsaturated, and subsequently, minor evolved magma reached sulfur saturation and led to sulfide segregation. Although the Lanniping parental magmas are originally not saturated in S, the high Cu/Pd ratios (3.8 × 104 to 3.2 × 106) for most of the Lanniping samples indicate the S-saturated state and sulfide segregation. A calculation shows that the PGE-poor magmas might have experienced 0.01 %–0.1 % sulfide segregation in the magma chamber. Therefore, our study provides a possible opportunity to discover PGE-enriched sulfide mineralization somewhere near or within the Lanniping mafic intrusion.  相似文献   

8.
The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.  相似文献   

9.
作为塔里木大火成岩省形成最晚的火成岩,新疆巴楚瓦吉里塔格霞石岩的岩浆源区性质的确定对于揭示塔里木大火成岩省的深部地质过程具有重要的约束作用。对瓦吉里塔格霞石岩的铂族元素地球化学特征进行了研究,铂族元素(PGE)分析结果显示,原始地幔标准化的PGE呈正斜率型分布,且Pd/Ir值高于原始地幔比值,说明霞石岩的铂族元素发生了分异。霞石岩全岩的PGE与Mg O呈正相关,Pd/Ir、Cu/Pd与Mg O则呈负相关,说明PGE的分异主要受到橄榄石的结晶分异作用控制,也是其Cu/Pd值极高及岩浆S饱和的因素之一,同时Cu/Pd值说明霞石岩岩浆为硫饱和岩浆,但是没有因素导致岩浆S过饱和进而发生硫化物的熔离。与其他大火成岩省岩石相比,瓦吉里塔格霞石岩极度亏损PGE,SCSS(硫承载量)计算结果表明母岩浆在形成之初就发生S过饱和,主要是地幔低程度部分熔融造成的,据此认为地幔源区的部分熔融程度在塔里木大火成岩省Cu-Ni硫化物铂族元素矿床形成过程中起着至关重要的作用。  相似文献   

10.
A set of platinum group element (PGE) analyses of about 120 samples from a 250-m continuous drill core through the Mount Keith komatiite-hosted nickel orebody, combined with Ni, Cu, Co, S, and major elements, reveals a complex trend of covariance between the original cumulus components of a thick sequence of nearly pure olivine–sulphide liquid adcumulates. The intersection is divided into informal chemostratigraphic zones, defined primarily by combinations of fine-scale cyclicity in original olivine composition, defined by Mg#, and sulphide composition, defined by Pt/S and Ni/S. Contents of Ni and PGE in 100% sulphides (tenors) were determined from linear regressions of the Ni–S and PGE–S covariance for each zone. Inferred olivine compositions range from about Fo92 to Fo94.6 and show a broad decrease from bottom to top of the sequence complicated by numerous reversals, revealing crystallisation in an open conduit system. Ni and PGE tenors of Mount Keith sulphide ores have typical values similar to the type I deposits of the Kambalda Dome. Mobility of S, at least on the scale of 2-m sample composites, is evidently relatively minor. Tenors for the various zones range 12–22% Ni, 370–1540?ppb Pt, 970–3670?ppb Pd, 100–460?ppb Ir, 170–460?ppb Rh, and 710–1260?ppb Ru. Pt, Pd, and Rh tenors are very strongly correlated, but the iridium group of platinum group elements (IPGEs; Ir and Ru) less so. Tenor variations are predominantly controlled by variations in magma/sulphide ratio R (100–350), with a minor component of variance from equilibrium crystallisation trends in the parent magma. PGE depletion in the silicate melt due to sulphide liquid extraction is limited by entrainment of sulphide liquid droplets and continuous equilibration with the transporting silicate magma. Ratios of the PGEs to one another are similar to those in the host komatiite magma, with the exception of Pt, which is systematically depleted in ores, relative to Rh and Pd and relative to host magma, by a consistent factor of about 2 to 2.5. This anomalous Pt depletion relative to PGE element ratios in unmineralized komatiitic rocks matches that observed in bulk compositions of many komatiite-hosted orebodies. The highly consistent nature of this depletion, and particularly the very strong correlation between Pt, Pd, and Rh in the Mount Keith deposit, argue that this depletion is a primary magmatic signal and not an artefact of alteration. Differential diffusion rates between Pt and the other PGEs, giving rise to a low effective partition coefficient for Pt into sulphide liquid, is advanced as a possible but not definitive explanation.  相似文献   

11.
The Palaeoproterozoic Ni–Cu sulphide deposits of the PechengaComplex, Kola Peninsula, occur in the lower parts of ferropicriticintrusions emplaced into the phyllitic and tuffaceous sedimentaryunit of the Pilgujärvi Zone. The intrusive rocks are comagmaticwith extrusive ferropicrites of the overlying volcanic formation.Massive lavas and chilled margins from layered flows and intrusionscontain <3–7 ng/g Pd and Pt and <0·02–2·0ng/g Ir, Os and Ru with low Pd/Ir ratios of 5–11. Theabundances of platinum group elements (PGE) correlate with eachother and with chalcophile elements such as Cu and Ni, and indicatea compatible behaviour during crystallization of the parentalmagma. Compared with the PGE-depleted central zones of differentiatedflows (spinifex and clinopyroxene cumulate zones) the olivinecumulate zones at the base contain elevated PGE abundances upto 10 ng/g Pd and Pt. A similar pattern is displayed in intrusivebodies, such as the Kammikivi sill and the Pilgujärvi intrusion.The olivine cumulates at the base of these bodies contain massiveand disseminated Ni–Cu-sulphides with up to 2 µg/gPd and Pt, but the PGE concentrations in the overlying clinopyroxenitesand gabbroic rocks are in many cases below the detection limits.The metal distribution observed in samples closely representingliquid compositions suggests that the parental magma becamesulphide saturated during the emplacement and depleted in chalcophileand siderophile metals as a result of fractional segregationof sulphide liquids. Relative sulphide liquid–silicatemelt partition coefficients decrease in the order of Ir >Rh > Os > Ru > Pt = Pd > Cu. R-factors (silicate-sulphidemass ratio) are high and of the order of 104–105, andthey indicate the segregation of only small amounts of sulphideliquid in the parental ferropicritic magma. In differentiatedflows and intrusions the sulphide liquids segregated and accumulatedat the base of these bodies, but because of a low silicate–sulphidemass ratio the sulphide liquids had a low PGE tenor and Pt/Irand Cu/Ir ratios similar to the parental silicate melts. Duringcooling the sulphide liquid crystallized 40–50% of monosulphidesolid solution (mss) and the residual sulphide liquid becameenriched in Cu, Pt and Pd and depleted in Ir, Os and Ru. TheCu-rich sulphide liquid locally assimilated components of thesurrounding S-rich sediments as suggested by the radiogenicOs isotopic composition of some sulphide ores (  相似文献   

12.
The Nantianwan mafic intrusion in the Panxi region, SW China, part of the ~260?Ma Emeishan large igneous province, consists of the olivine gabbro and gabbronorite units, separated by a transitional zone. Olivine gabbros contain olivine with Fo values ranging from 83 to 87, indicating crystallization from a moderately evolved magma. They have 0.2 to 0.9?wt?% sulfide with highly variable PGE (17?C151?ppb) and variable Cu/Pd ratios (1,500?C32,500). Modeling results indicate that they were derived from picritic magmas with high initial PGE concentrations. Olivine gabbros have negative ??Nd(t) values (?1.3 to ?0.1) and positive ??Os(t) values (5?C15), consistent with low degrees of crustal contamination. Gabbronorites include sulfide-bearing and sulfide-poor varieties, and both have olivine with Fo values ranging from 74 to 79, indicating crystallization from a more evolved magma than that for olivine gabbros. Sulfide-bearing gabbronorites contain 1.9?C4.1?wt?% sulfide and 37?C160?ppb PGE and high Cu/Pd ratios (54,000?C624,000). Sulfide-poor gabbronorites have 0.1?C0.6?wt?% sulfide and 0.2?C15?ppb PGE and very high Cu/Pd ratios (16,900?C2,370,000). Both sulfide-bearing and sulfide-poor gabbronorites have ??Nd(t) values (?0.9 to ?2.1) similar to those for olivine gabbros, but their ??Os(t) values (17?C262) are much higher and more variable than those of the olivine gabbros. Selective assimilation of crustal sulfides from the country rocks is thus considered to have resulted in more radiogenic 187Os of the gabbronorites. Processes such as magma differentiation, crustal contamination and sulfide saturation at different stages in magma chambers may have intervened during formation of the intrusion. Parental magmas were derived from picritic magmas that had fractionated olivine under S-undersaturated conditions before entering a deep-seated staging magma chamber, where the parental magmas crystallized olivine, assimilated minor crustal rocks and reached sulfide saturation, forming an olivine- and sulfide-laden crystal mush in the lower part and evolved magmas in the upper part of the chamber. The evolved magmas were forced out of the staging chamber and became S-undersaturated due to a pressure drop during ascent to a shallow magma chamber. The magmas re-attained sulfide saturation by assimilating external S from S-rich country rocks. They may have entered the shallow magma chamber as several pulses so that several gabbronorite layers each with sulfide segregated to the base and a sulfide-poor upper part. The olivine gabbro unit formed from a new and more primitive magma that entrained olivine crystals and sulfide droplets from the lower part of the staging chamber. A transitional zone formed along the boundary with the gabbronorite unit due to chemical interaction between the two rock units.  相似文献   

13.
Platinum group elements (PGE) enrichment occurs in Zn–Cu and Ni-rich ophiolities in a number of geological settings. Platinum group elements (PGE) mineralization in Pyroxenite from the Faryab ophiolities of Zagros belt in south Iran was studied. The ophiolite rocks represent blocks of Tethyan oceanic crust that were emplaced on the continental margin during the late Cretaceous period. Much of lower ophiolitic section is composed of homogeneous harzburgite, while upper sections harzburgite interlayer with dunite and pyroxenite are included. This study focused on pyroxenite that includes most of sulfide mineralization in Faryab. More than 500 samples were investigated from polished thin sections; that cover all area of Faryab. The sulfide phases include pyrrhotite, pentlandite, millerite, violarite, smythite, and heazlewoodite. The results show that in almost all the samples Os is below the 2 ppb detection limit, Platinum values vary from <5 to 91 ppb and the light PGE (Ru, Rh, and Pd) relative to the heavy PGE (Os, Ir, and Pt) are more concentrated. Calculation showed that in pyroxenites Pd–Pt is occurring with orthopyroxenite and Rh–Os is occurring in clinopyroxenite. Ni/Pd ratios in Faryab vary between 7 and 356 and Pd/Ir ratio is 0.1–27. This indicates that in Faryab area partial melt of mantle occurred. Pd/Rh ratio in Faryab is 0.1–11, and Pd/Pt varies between 0.2 and 1.5. Pd/Ir ratio in Faryab decreases and shows that PGE in Faryab occurred.  相似文献   

14.
金川铜镍硫化物矿床铂族元素的赋存状态及分布规律   总被引:17,自引:3,他引:14  
金川铜硫化物矿床铂族元素球粒陨石标准化型式属于Pt-Pd配分类型,Pt、pd〉Os、Ir、Ru、Rh,存在3种不同形式的图形;PGE(铂族元素)在熔离和深熔--贯入型岩矿体中,PGE含量从非含矿岩石→SN-B→SN-A2→SN-A1依次增加,显示与金属硫化物含量具有正消长关系;矿石中80%以上的铂和70T以上的钯呈矿物相存在;PGE富集体主要分布在富矿体膨大处的中、下部。  相似文献   

15.
The Jinchuan deposit, NW China, is one of the world’s most important Ni-Cu-(PGE) sulfide deposits related to a magma conduit system and is hosted in an ultramafic intrusion. The intrusion is composed of lherzolite and dunite with the two largest sulfide ore bodies (named as ore body 1 and 2) in its middle portion. The sulfide ores may be disseminated, net-textured, or massive. The disseminated and net-textured sulfide ores are characterized by variable but generally low PGE concentrations: 10-3200 ppb Pt, 240-9800 ppb Pd, 17-800 ppb Ir, 25-1500 ppb Ru, and 15-400 ppb Rh in 100% sulfides. The massive sulfide ores are extremely low in Pt (<30 ppb) on a 100% sulfides and have very high Cu/Pd ratios, ranging from 104 to 4.5 × 105. The low PGE contents suggest that the sulfide ores formed from the silicate magmas that had already experienced prior-sulfide separation.Our calculations indicate that if the first stage basaltic magmas had contained 6.3 ppb Pt, 6.2 ppb Pd, and 0.1 ppb Ir, 0.008% sulfide removal would result in PGE-depletion in the residual magma with 0.57 ppb Pt, 0.25 ppb Pd, and 0.009 ppb Ir. The Jinchuan sulfides were formed by a second stage of sulfide segregation from a PGE-depleted magma under silicate/sulfide liquid ratios (R-factor) ranging from 103 to 104 in a deep-seated staging chamber. The massive sulfide ores and some of the net-textured sulfide ores exhibit strong negative Pt-anomalies that cannot be explained by sulfide segregation under variable R-factors. Instead, the sulfide melts that formed the massive ores were segregated from magmas experienced prior fractionation of Pt-Fe alloy. Alternatively, the Pt may have been selectively leached by hydrothermal fluids during remobilization of the sulfide melts that produced the massive sulfides, which occur in cross-cutting veins. We propose that the Jinchuan intrusion and ore bodies were formed by injections of sulfide-free and sulfide-bearing olivine mushes from a deep-seated staging chamber.  相似文献   

16.
金川铜镍硫化物矿床岩浆通道型矿体地质地球化学特征   总被引:7,自引:0,他引:7  
田毓龙  包国忠  汤中立  王玉山 《地质学报》2009,83(10):1515-1525
金川铜镍硫化物矿床6行富铜(铂族)矿体曾因Cu、Pt、Pd等含量明显高于相邻其它矿体而被认为是岩浆期后热液叠加作用的产物,研究发现,空间上该矿体受断层构造控制,在矿石组构、矿物组成和硫同位素组成方面与相邻岩浆融离型1号矿体一致,显示了该矿体岩浆成矿作用的特征。在元素地球化学方面,6行富铜(铂族)矿体的Cu、Ni、Pt、Pd含量及Cu/Ni比值明显高于1号主矿体,而Os、Ir、Rh、Ru却明显低于后者,同时,前者相对富含LREE,轻、重稀土分异程度高于后者。根据硫化物结晶分异过程中金属元素分配规律及稀土元素特征,阐明了6行富铜(铂族)矿体为岩浆通道型矿体,是岩浆硫化物晚期结晶的产物。矿区中西部存在的Cu、Ni、Pt、Pd、Au等含量高,而Os、Ir、Rh、Ru含量低的部位,是寻找岩浆通道型矿体的有利部位。  相似文献   

17.
Re–Os isotope compositions of mantle-derived magmas are highly sensitive to crustal contamination because the crust and mantle have very different Os isotope compositions. Crustal contamination may trigger S saturation and thus the formation of magmatic Ni–Cu–(PGE) sulfide deposits. The ∼287-Ma Kalatongke norite intrusion of NW China are hosted in carboniferous tuffaceous rocks and contain both disseminated and massive sulfide mineralization. The Re–Os isotope compositions in the intrusion are highly variable. Norite and massive sulfide ores have γ Os values ranging from +59 to +160 and a Re–Os isochron age of 239 ± 51 Ma, whereas disseminated sulfide ores have γ Os values from +117 to +198 and a Re–Os isochron age of 349 ± 34 Ma. The variability of Os isotope compositions can be explained as the emplacement of two distinct magma pulses. Massive sulfide ores and barren norite in the intrusion formed from the same magma pulse, whereas the disseminated sulfide ores with more radiogenic Os isotopes formed from another magma pulse which underwent different degrees of crustal contamination. Re–Os isotopes may not be suitable for dating sulfide-bearing intrusions that underwent variable degrees of crustal contamination to form magmatic sulfide deposits.  相似文献   

18.
The ~260 Ma-old Baimazhai Ni–Cu–(PGE) sulfide deposit in the Jinping region, Yunnan, SW China, is hosted in a small mafic–ultramafic intrusion, which intruded Ordovician sandstone and slate. The intrusion is concentric with lens shape, about 530 m long, 190 m wide and 24 to 64 m thick, trends 296°, and dips 22°NE. The massive sulfide ore body forms the core of the intrusion and is surrounded by variably mineralized orthopyroxenite, websterite and barren gabbro. The proportion of gabbro, websterite, orthopyroxenite and massive ore is approximately 30, 30, 20 and 20 vol.%, respectively. Magmatic pyrrhotite, pentlandite and chalcopyrite make up more than 90% of the massive ores. The massive ores contain high Ni (1.6 to 4.2 wt%) and Cu (0.4 to 6.5 wt%) and low ∑PGE contents (85 to 524 ppb). They have Pd/Ir ratios ranging from 6.7 to 530, Pd/Pt ratios from 0.7 to 2.6 and Cu/(Pd×1,000) ratios from 31 to 400, which are comparable with those of the silicate rocks [Pd/Ir = 4 to 183, Pd/Pt = 0.7 to 3.5, and Cu/(Pd×1,000) = 100 to 400]. Similar Pd/Pt and Cu/Pd ratios of the silicate rocks and massive ores throughout the intrusion indicate a single sulfide segregation event. Excess sulfide melt segregation resulted from intensive crustal contamination that formed Si-rich and Mg-rich basaltic magmas in a deep-seated staging chamber before magma emplacement. The immiscible sulfide melts and the silicate melts were eventually evacuated from the staging magma chamber by compressive forces. Flow differentiation under high velocity concentrated the sulfide melts toward the middle of the magma flow, and consequently, formed a massive sulfide ore body in the central part of the intrusion. Low concentrations of PGEs and general absence of platinum-group minerals in the massive ores may have resulted from a relatively large mass fraction of the sulfide melts (e.g. R-factor = ~70) in Baimazhai compared with other intrusions elsewhere, such as Noril’sk-Talnakh with a R-factor of >10,000.  相似文献   

19.
The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7–7.8 ppb Pd, 0.025–0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu–Au deposits.  相似文献   

20.
The Huangshannan magmatic Ni-Cu sulfide deposit is one of a group of Permian magmatic Ni-Cu deposits located in the southern Central Asian Orogenic belt in the Eastern Tianshan, northwest China. It is characterized by elevated Ni tenor (concentrations in recalculated 100% sulfide) in sulfide within ultramafic rocks (9–19 wt%), with values much higher than other deposits in the region. Sulfides of the Huangshannan deposit are composed of pentlandite, chalcopyrite, and pyrrhotite and the host rock is relatively fresh, indicating that the high-Ni tenor is a primary magmatic feature rather than formed by alteration processes. It is shown that sulfides with high-Ni tenor can be generated by sulfide-olivine equilibrium at an oxygen fugacity of QFM +0.5, for magmas containing 450 ppm Ni and 20% olivine. Ores with >10 wt% sulfur have relatively low PGE and Ni tenors compared to other ores, R factor (mass ratio of silicate to sulfide liquid) modeling of Ni indicates that they formed at moderate R values (150–600). Based on this constraint on R values, ores with <10 wt% sulfides in the Huangshannan deposit can be segregated from a similar parental magma with 0.05 ppb Os, 0.023 ppb Ir, and 0.5 ppb Pd at R values between 600 and 3000. This, coupled with the supra-cotectic proportions of sulfide liquid to cumulus silicates in the Huangshannan ores imply mechanical transport and deposition of sulfide liquid in a magma pathway or conduit, in which sulfides must have interacted with large volumes of silicate magma. Platinum and Pd depletion relative to other platinum group elements (PGEs) are observed in fresh and sulfide-rich samples (S > 4.5 wt%). As sulfide-rich samples are also depleted in Cu, and as interstitial sulfides in those samples are physically interconnected at a scale of several cms, the low Pt and Pd anomalies are attributed to solid Pt and Pd phases crystallization and retention with the monosulfide solid solution (MSS) and Cu-rich sulfide liquid percolation during MSS fractionation. This finding indicates that Pt anomalies in sulfide-rich rocks from magmatic Ni-Cu deposits in the Eastern Tianshan are the result of sulfide fractionation rather than a hydrothermal effect. 187Os/188Os(278Ma) values of the lherzolite samples vary from 0.27 to 0.37 and γOs(278Ma) values vary from 110 to 189, indicating significant magma interaction with crustal sulfides, rich in radiogenic Os. Well constrained γOs values and δ34S values (−0.4 to 0.8‰) indicate that crustal contamination occurred at depth before the arrival of the magma in the Huangshannan chamber. Regionally, deposits with high-Ni tenor have not been reported other than the Huangshannan deposit; however, many intrusions with high-Ni contents in olivine are present in NW China, such as the Erhongwa, Poyi and Poshi intrusions. Those intrusions are capable of forming high-Ni tenor sulfides due to olivine-sulfide-silicate equilibrium and relative high-Ni content in parent magma, making them attractive exploration targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号