首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
沿海沿江城市地下开挖产生的工程渣土含泥量大、含水率高且较松散,主要运往渣土场进行堆填处置。由于产量巨大而处置场地有限,许多渣土场在运营过程中存在堆填速度快、缺乏排水设施、超高超库容堆填等问题,容易引发堆填体失稳事故。目前对于非饱和工程渣土堆体在快速堆填过程中的失稳机制认识尚不清晰,尤其是对这一过程中的高饱和度工程渣土强度增长规律缺乏足够的认识。以深圳红坳渣土场填料——花岗岩风化料(CDG)填土为研究对象,对不同初始饱和度土样进行三轴不排水不排气等向压缩和剪切试验,结果表明:非饱和CDG填土不排水抗剪强度随围压增大呈非线性增长,增长速率与试样初始饱和度密切相关;当土样压缩后的饱和度超过0.7,不排水强度随围压的增长速率显著降低。基于有效固结应力法的原理,结合Hilf孔压公式和修正剑桥模型,提出了一种工程渣土不排水抗剪强度估算方法,并通过与试验结果对比验证了该方法对初始饱和度高于0.6的CDG填土的适用性。利用该方法确定的不排水强度cu与正应力σn的关系可应用于高饱和度工程渣土快速堆填中的稳定性分析。  相似文献   

2.

A stability analysis of a laterally confined slope model, lying on an inclined bedding plane, was presented to evaluate the lateral shear resistance by considering the loading paths and failure envelopes. Two slope models were prepared on a bedding plane by compaction, one with and one without lateral confinement. The compacted models are related to the geological conditions at shallow depths where brittle deformation can occur and an excavation can induce horizontal field stress that significantly influences the stability of the slope. Three distinct loading paths, controlled by either tilting the angles or increasing the surcharge loads, were applied to achieve the failure of the slope models. Rankine’s passive earth pressure due to compaction was reduced by the shear strength reduction ratio. The shear strength reduction ratio was estimated through the least-squares fitting method based on the results of model tests at failure when the loading paths intersected the failure envelope. Provided that the effect of lateral confinement in a rock mass can be described by the shear strength reduction ratio, the proposed equations will be beneficial for slope stability analyses of laterally confined slopes on bedding planes. A case study of an undercut pit wall in an open-pit mine was demonstrated by showing that the unknown shear strength reduction ratio can be back-analyzed from the rainfall-induced landslide case. Therefore, the design of other undercut slopes with different geometries and groundwater conditions in the rock mass, which have undergone the same geological process as the back-analyzed case, is possible.

  相似文献   

3.
三峡库区新城区迁建多采用就地后靠方式,工程扰动叠加强降雨往往诱发滑坡失稳。基于重庆巫山江东小区金鸡岭滑坡,对其影响因素和成因机制进行探讨。工程扰动不仅是传统认为的后缘加载、前缘削脚作用,更重要的是坡体表层土方堆填阻断了滑坡体地表水泄流通道,使地表水向地下水转化。强降雨作用下滑坡体内地下水位明显升高,导致金鸡岭滑坡2018年8月1日前后发生较大变形。采取降水井抽排地下水等应急处置后,滑坡变形明显趋缓,可见工程扰动导致的地下水升高是该滑坡诱发的关键因素。数值模拟表明,工程扰动后稳定系数明显降低,对应堆填区渗流场变化明显,渗流加剧,孔隙水压力、水力梯度、总水头上升,结合达西定律与有效应力原理可知渗透力增加,抗剪强度削弱,诱发滑坡变形。  相似文献   

4.
在分析矿区地形地貌、地层岩性、水文地质条件和影响排土场稳定因素的基础上,结合区内2#排场的监测资料,采用FLAC3D模拟软件和刚体极限平衡法中的毕肖普条分法,对排土场边坡变形、破坏的主要影响因素进行了分析,揭示了其滑坡机理;对3#排土场的稳定性做出预测,认为排土场边坡变形破坏模式是上部排弃物沿圆弧滑面剪切滑移与下部沿粉土、粉质粘土平面滑移的圆弧—平面组合滑移形式;基底土层的内摩擦角对排土场允许排高较为敏感,是决定允许排高的内在因素,基底粉质粘土的极限承载力是决定排土场允许排高的外在因素;基底土体极限承载力所决定的排土场的允许排高为90.60~91.60m。提出了填沟压脚、降低第一排台阶高度和基底排水等措施来满足排土场边坡稳定的要求。  相似文献   

5.
朱元甲  贺拿  钟卫  孔纪名 《岩土力学》2020,41(12):4035-4044
为研究间歇型降雨作用下缓倾堆积层斜坡的变形破坏特征,以樱桃沟滑坡为例,进行了降雨作用下斜坡变形破坏的物理模拟研究。试验结果表明:前期降雨作用下坡体变形特征表现为前缘滑移沉陷、中部滑移、后缘沉陷、坡体裂缝生成,且前缘裂缝扩张明显,后期降雨作用下坡脚区域首先发生滑塌,然后依次向后缘传递发生逐阶滑塌破坏;降雨入渗易在基岩面上储存,形成暂态地下水位、高孔隙水压力区域和坡向渗流场,基岩面附近土体饱水时间长,软化程度高,抗剪强度弱化显著,边坡易沿基覆界面土层发生滑坡;坡体滑动易发生在降雨间歇期,触发特征表现为雨后坡体暂态饱和区水分和坡表积水持续下渗,导致地下水位上升滞后于降雨,造成坡体内浮托力、渗透力和孔隙水压力增大,有效应力降低,诱发滑坡。  相似文献   

6.
《Engineering Geology》2002,63(1-2):169-185
Heavy rainfall from 26 to 31 August 1998 triggered many landslides in Nishigo Village of southern Fukushima Prefecture, Japan. The Hiegaesi landslide, a long-runout landslide with travel angle of 11°, which occurred in loamy volcanic-ash/pumice layer and was deposited in a nearby rice paddy, was investigated. In an observation pit dug in the middle part of the landslide deposit, the sliding zone just above the deflected rice plants was observed, and it was confirmed that grain crushing occurred in the sliding zone. The triggering and sliding mechanisms of this landslide then were investigated by ring-shear tests in laboratory. For the triggering mechanism, one saturated naturally drained test (test A: torque-controlled test) and one saturated undrained test (test B: speed-controlled test) were conducted on the samples taken from the source area of the landslide. Even in the naturally drained test opening the upper drain valve of the shear box, a temporary liquefaction occurred. In the undrained test, excess pore-pressure was generated along with shearing, and “sliding-surface liquefaction” phenomenon was observed. The effective stress and shear resistance finally decreased to near zero. These results can explain the observed phenomenon of small friction resistance like a flow of liquid when the sliding mass slid out of the source area. For the sliding mechanism of the landslide in the rice paddy, saturated undrained test (test C: speed-controlled test) was performed on soil sample above the deflected rice plants. The apparent friction angle obtained in this test was 8°. In addition, the residual friction angle measured after test B and test C was the same value of 41°. Combining with the observation on the shear zone in the ring-shear box after test C, it is concluded that, during the sliding in rice paddy, the undrained shear strength of the soil layer itself mainly influenced the high mobility of the landslide, probably because the friction between rice plants and soils is greater than the undrained shear strength inside the soil mass.  相似文献   

7.
This paper presents the failure process of the external waste dump of the South Field Mine, the major open pit mine in Greece. The waste materials of the mine were deposited in three phases, forming an average inclination slope 10% and a total height of 110 m from the ground surface. The failure occurred when the third phase of the deposit was initiated. The high moisture content of the waste materials and their deposition over a spring, choking its flow, had as a result the development of high pore water pressure in clayey and marly materials in the base of the deposit. As a consequence, a large scale slope failure incident occurred. The landslide involved the mobilization of waste material in the order of 40 Mm3, while the material that moved outside the boundaries of the waste dump was in the order of 2.5 Mm3. The stability of the waste dump was investigated using the limit equilibrium analysis and different types of models.Limit equilibrium analyses were performed using different methods and considering the clay layer of small shear resistance that exists in the base of the deposit. They do not indicate activation of failure mechanism, only that there is a combination of high pore water pressure that developed in the deposit because the covering of the spring with the clayey materials of the dump.  相似文献   

8.
刘吉福 《岩土力学》2006,27(Z2):865-869
虽然真空联合堆载预压法具有许多优点,但是它也有一些负面效应。首先,由于真空卸除后地基土的不排水抗剪强度降低可能导致路基失稳,这种情况尤其可能出现在填土在很多时间内快速填筑完毕且真空马上卸除的时候。其次,由于真空卸除后地基土压缩模量降低可能导致工后沉降增大,特别是当真空卸除后马上施工路面的情况下容易出现上述情况。真空联合堆载预压法的其他负面效应如周围地面沉降和开裂在其他文献中已有报道。  相似文献   

9.
2010年10月21—22日,陕西延炼厂区储油罐下方的斜坡发生缓慢滑移,造成了巨大的经济损失。滑坡发生前当地没有降雨或地震,为探究其形成过程,在边坡上取代表性土样进行土水特征曲线测试、配制不同含水率土样,进行常规三轴试验和直剪试验,以确定土体的非饱和渗透曲线和强度参数。建立边坡滑动前的有限元模型,进行非饱和渗透与非饱和强度的耦合分析,得到凝结水入渗过程中边坡的应力场,据此可得不同时间段的边坡稳定系数,揭示其破坏过程。结果表明,水蒸气凝结水在斜坡内长期滴渗,使得坡体地下水位缓慢上升,地下水位浸润潜在滑面前,稳定系数基本不变,待地下水位开始浸润边坡潜在滑面时,稳定系数开始迅速降低,最终导致斜坡破坏。  相似文献   

10.
边坡的变形破坏本质上有两方面的因素控制,(1)开挖或堆载引起斜坡内应力的重分布; (2)地表水渗入或地下水变动引起其抗剪强度的变化。大部分黄土路堑边坡位于地下水位以上,斜坡开挖以后,应力不再改变。 如果不是在人工灌溉区,其破坏大多可归结为降雨入渗引起的黄土抗剪强度的降低。对于非饱和黄土来讲,其孔隙水压力为负值,传统的Terzaghi有效应力原理不适用于Mohr-Coulomb抗剪强度公式,而Bishop的非饱和土有效应力公式中参数测定周期很长,技术还不是很成熟,目前在实际工程中应用还不现实。如何基于目前常规的测试方法,合理地确定边坡抗剪强度参数,是值得研究的问题。本文对局部发生滑坡的山西吉家塬黄土路堑51.6m高边坡,采用Bishop法反演边坡c、值; 取边坡上的黄土样,测了不同含水率试样的直接快剪强度参数。将试验结果与反演结果对比发现,含水量在接近土样塑限时的直接快剪试验结果与反演结果较为接近。塑限是土的一个状态界限指标,即固态到塑态含水量的界限值。土由固态进入塑态,土强度显著降低,此时最容易发生变形破坏,这符合土体稠度状态和强度变化的本质。因此建议在黄土边坡设计中,一般可取塑限含水量下的直接快剪强度指标作为边坡稳定性评价的指标。  相似文献   

11.
For prediction of rockfalls, the failure of rock joints is studied. Considering these failures as constitutive instabilities, a second‐order work criterion is used because it explains all divergence instabilities (flutter instabilities are excluded). The bifurcation domain and the loading directions of instabilities, which fulfill the criterion, are determined for any piecewise linear constitutive relation. The instability of rock joints appears to be ruled by coupling features of the behavior (e.g., dilatancy). Depending on the loading parameters, instabilities can lead to failure, even before the plastic limit criterion. Results for two given constitutive relations illustrate the approach. Some given loading paths are especially considered. Constant volume (undrained) shear and τ‐constant paths are stable or not depending on the link between the deviatoric stress and strain along undrained paths, as found for soils. Some unstable loading paths are illustrated. Along these paths, failure before the plastic limit criterion is possible. The corresponding failure rules are determined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Many geotechnical problems involve undrained behavior of clay and the capacity in undrained loading. Most constitutive models used today are effective stress based and only indirectly obtain values for the undrained shear strength. To match the design profiles of undrained shear strengths, in active (A), direct simple shear (D) and passive (P) modes of loading are complicated. This paper presents the elastoplastic constitutive model NGI‐ADP which is based on the undrained shear strength approach with direct input of shear strengths. Consequently, exact match with design undrained shear strengths profiles is obtained and the well‐known anisotropy of undrained shear strength and stiffness is accounted for in the constitutive model. A non‐linear stress path‐dependent hardening relationship is used, defined from direct input of failure strains in the three directions of shearing represented by triaxial compression, direct simple shear and triaxial extension. With its clear input parameters the model has significant advantages for design analysis of undrained problems. The constitutive model is implemented, into finite element codes, with an implicit integration scheme. Its performance is demonstrated by a finite element analysis of a bearing capacity problem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
复合加载情况下双层地基极限承载力研究   总被引:2,自引:0,他引:2  
张其一  栾茂田 《岩土力学》2009,30(4):1131-1136
在复合加载情况下精确求解层状非均质地基的极限承载力,具有很强的工程实用与理论参考价值。基于土体极限平衡理论与通用有限元软件ABAQUS,针对复合加载情况下上硬下软的双层不排水饱和软黏土地基的极限承载力,进行了大量的数值计算,得出了上层土临界深度Hcr的计算公式、竖向极限承载力Pv的计算公式以及复合加载情况下地基破坏时的破坏包络面方程。研究结果表明:上层土临界深度Hcr取决于土层间强度比Su1/Su2;竖向极限承载力Pv与破坏包络面取决于土层间强度比Su1/Su2、上层土深度H1与基础型式。  相似文献   

14.
Ashland  Francis X. 《Landslides》2021,18(6):2159-2174

The potential for widespread landslides is generally increased when extraordinary wet periods occur during times of elevated subsurface hydrologic conditions. A series of storms in early 2018 in Pittsburgh, Pennsylvania, overlapped with a period of increased shallow soil moisture and rising bedrock groundwater levels resulting from seasonally diminished evapotranspiration and induced widespread landslides in the region. Most of the landslides were shallow slope failures in colluvium, landslide deposits, and/or fill. However, deep-seated landslide activity also occurred and corresponded with record cumulative precipitation from late February to April and bedrock groundwater levels rising to an annual high. Landslides blocked or damaged roads, adversely affected multiple houses, disrupted electrical service, crushed vehicles, and resulted in considerable economic losses. The initial landslides occurred during or immediately after a rare period of three successive days of heavy rain that began on February 14. Subsequent landslides between late February and April were induced by multiday storms with smaller rainfall totals. As shallow soil moisture at a monitoring site rose above a volumetric water content of 32%, the mean rainfall intensities necessary to induce slope failure in colluvium and other surficial deposits decreased. Deep-seated landslide movement occurred in the region mostly when the groundwater level in a bedrock observation well was shallower than 1.7 m. The availability of hydrologic and landslide movement monitoring data during this extraordinary series of storms highlighted the evolution of the landslide hazard with changing moisture conditions and yielded insights into potential hydrologic criteria for anticipating future widespread landslides in the region.

  相似文献   

15.
On August 27, 2014, a large-scale landslide occurred in Fuquan, Guizhou, China. This high-speed landslide caused considerable destruction; 23 people were killed, 22 were injured, and 77 houses were damaged. Field investigations, deformation monitoring, and numerical analyses have been performed to examine the characteristics and formation processes of this landslide. In the Xiaoba area, the slope showed a two-layered structure with a hard upper layer and a soft lower layer. Dolomite of the Dengying Formation in the slope front formed a locked segment controlling slope stability. Based on deformation and failure characteristics, the landslide is divided into sliding source area A and accumulation area B. The landslide is also divided into the following stages: bedding slip, tension cracking at the slope scarp, and the appearance of the locked section at the slope toe. Numerical calculations show that excavation led to maximum shear strain concentration along the interface of siltstone and slate in the middle of the slope, which became a potential sliding surface. Stress concentration and distribution of the plastic zone of the locked segment of the Dengying Formation dolomite occurred in the slope toe. Continuous rainfall caused the groundwater level to rise in the Xiaoba slope. The unfavorable geological structure was a determinant factor, and the combined effects of excavation and continuous rainfall were triggering factors that induced the landslide. The geomechanical mode for the Xiaoba landslide is sliding tension–shear failure.  相似文献   

16.
Analysis and research results show that the sliding plane of Jiudingshan landslide is along the weak intercalated layer (clay-filled) in the limestone and the sliding block is separated by the tension crack on the slope crest. The earlier study results show that for the rough, ups and downs structural plane, when i is greater than 2.0, the shear strength of the structural surface is intensely close to the strength of the filling. By the earlier theory, this failure must be through the clay filling. In this study, the failure is back-analyzed and the shear strength of the infilling is tested by the laboratory direct shear tests for which samples were retrieved in the field. The failure cannot be explained by the laboratory results of shear strength parameters. To simulate the field conditions, the real strength parameters of sliding surface are measured by the in situ shear tests for the weak intercalated layer. By the in situ tests, it is shown that the failure initiates along the contacts between the clay infilling and the limestone boundaries, but not through the clay itself. Though the contact surface is the interface of the clay–limestone, the cohesion is not 0 and it is not negligible too.  相似文献   

17.
A gigantic rapid landslide claiming over 1,000 fatalities was triggered by rainfalls and a small nearby earthquake in the Leyte Island, Philippines in 2006. The disaster presented the necessity of a new modeling technology for disaster risk preparedness which simulates initiation and motion. This paper presents a new computer simulation integrating the initiation process triggered by rainfalls and/or earthquakes and the development process to a rapid motion due to strength reduction and the entrainment of deposits in the runout path. This simulation model LS-RAPID was developed from the geotechnical model for the motion of landslides (Sassa 1988) and its improved simulation model (Sassa et al. 2004b) and new knowledge obtained from a new dynamic loading ring shear apparatus (Sassa et al. 2004a). The examination of performance of each process in a simple imaginary slope addressed that the simulation model well simulated the process of progressive failure, and development to a rapid landslide. The initiation process was compared to conventional limit equilibrium stability analyses by changing pore pressure ratio. The simulation model started to move in a smaller pore pressure ratio than the limit equilibrium stability analyses because of progressive failure. However, when a larger shear deformation is set as the threshold for the start of strength reduction, the onset of landslide motion by the simulation agrees with the cases where the factor of safety estimated by the limit equilibrium stability analyses equals to a unity. The field investigation and the undrained dynamic loading ring shear tests on the 2006 Leyte landslide suggested that this landslide was triggered by the combined effect of pore water pressure due to rains and a very small earthquake. The application of this simulation model could well reproduce the initiation and the rapid long runout motion of the Leyte landslide.  相似文献   

18.
Both the occurrence and behaviour of the Vaiont landslide have not been satisfactorily explained previously because of difficulties arising from the assumption that the failure surface was ‘chair’ shaped. It is now known that there was no ‘chair’, which means that the 1963 landslide could not have been a reactivated ancient landslide because the residual strength of the clay interbeds would have been insufficient for stability prior to 1963. Furthermore, the moderately translational geometry reduces the influence of reservoir-induced groundwater and hence of submergence. Standard stability analyses now show that prior to 1960, the average shear strength must have significantly exceeded the peak shear strength of the clay interbeds known to have formed the majority of the failure surface. Three-dimensional stability analyses confirm these results and show that at the time of the first significant movements in 1960, the rising reservoir level had a negligible effect on the Factor of Safety. According to these results, the Vaiont landslide was most likely initiated by pore water pressures associated with transient rainfall-induced ‘perched’ groundwater above the clay layers, in combination with a smaller than hitherto assumed effect of reservoir impounding, then developed by brittle crack propagation within the clay beds, thus displaying progressive failure. Further, very heavy rainfall accelerated the process, possibly due to reservoir-induced groundwater impeding drainage of the rainwater, until the limestone beds at the northeast margin failed. With the shear strength suddenly reduced to residual throughout, the entire mass was released and was able to accelerate as observed.  相似文献   

19.
Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading. The 3-D slope stability model assumed is that of a simple cylindrical failure surface. The probabilistic models evaluate the probability of failure under seismic loading considering the randomness of earthquake occurrence, and earthquake induced acceleration and uncertainties stemming from the discrepancies between laboratory-measured and in-situ values of shear strength parameters. The models also takes into consideration the spatial variabilities and correlations of soil properties. The probabilistic analysis and design approach is capable of obtaining the 2-D and 3-D static and dynamic safety factors, the probability of slope failure, the earthquake induced acceleration coefficient, the yield acceleration coefficient, the earthquake induced displacement, and the probability of allowable displacement exceedance taking into account the local site effect. The approach is applied to a well known landslide case: Congress Street Landslide in Chicago. A sensitivity analysis was conducted on the different parameters involved in the models by applying those models to the Congress Street landslide considering different levels of seismic hazard. Also, a sensitivity analysis was carried out to study the sensitivity of computed results to input parameters of undrained shear strength, and corrective factors. A comparison was made between the different models of failure. The parametric study revealed that the hypocentral distance and earthquake magnitude have major influence on the earthquake induced displacement, probability of failure and dynamic 2-D and 3-D safety factors.  相似文献   

20.
The occurrences of shallow landslides in residual soils of Penang hilly areas are common in rainy days. The failure mechanisms of a shallow landslide occurred at km 3.9 road in Tun-Sardon area of Penang Island have been simulated using two different methods of slope stability analysis. The results indicate that the failure was initiated locally inside the slope and then propagated further to induce total failure. The failure propagation was started from initial local failure zone and was driven by mobilized shear strength along the shear plane. The slope was marginally stable with an overall factor of safety of 1.32 before it failed to a rainfall event on September 6, 2008. It is found from back calculation that the rain infiltration raised the temporary water level and reduced the shearing strength of soil to a minimum level with increased pore water pressure to trigger the failure. This paper suggests further research on shallow landslide of Penang Island considering the direct rainfall infiltration effect in terms of groundwater pressure-head distribution inside the slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号