首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
天山山区近40a夏季降水变化及与南北疆的比较   总被引:9,自引:0,他引:9  
袁玉江  何清  穆桂金 《冰川冻土》2003,25(3):331-335
利用新疆1959-1998年的降水资料,分析了天山山区近40a来夏季降水变化特征,并与南疆、北疆进行了比较.结果表明:天山山区近40a来的夏季降水在干湿阶段、最干最湿年份、降水变化的周期方面均与南北疆有别;天山山区夏季降水空间上的同步性变化比南疆及北疆弱一些;天山山区近40a来夏季降水年代际变化与北疆较为相近.新疆近40a来夏季降水最多的年代是90年代,天山山区偏多12%,南疆偏多25%,北疆偏多21%.  相似文献   

2.
1961-2004年新疆气候突变分析   总被引:38,自引:6,他引:32  
李珍  姜逢清 《冰川冻土》2007,29(3):351-359
利用1961-2004年新疆53个气象台站逐日平均最高气温、平均最低气温和降水数据,采用Mann-Kendall法分别对北疆、天山山区和南疆气温、日较差和降水年序列进行了突变分析,同时利用滑动t检验和Yamamoto法对突变点的真伪做了验证.结果表明:1961-2004年北疆、天山山区和南疆年平均最低气温上升速率均明显高于年平均最高气温,年平均日较差均呈显著下降趋势,年降水量均有增加趋势.北疆年均最低气温、年平均日较差及年降水量分别在1988年、1979年和1984年发生了突变;天山山区年均最低气温、年平均日较差及年降水量分别在1985年、1983年和1992年发生了突变;南疆年平均最高气温、年均最低气温及年平均日较差分别在1993年、1991年和1981年发生了突变.20世纪80年代中期以来北疆、天山山区、南疆均进入增温多雨时期.这些结果对进一步研究和预测新疆气候有着重要意义,为研究全国甚至全球气候变化提供重要依据,同时也为决策者提供决策依据.  相似文献   

3.
利用新疆1961-2010年资料完整的89个气象观测站的雷暴观测资料, 应用数理统计、线性趋势分析等方法, 对新疆雷暴的时空分布和变化特征进行了分析.结果表明: 新疆雷暴分布地域性强, 年雷暴日数山区多于平原, 北部多于南部, 西部多于东部, 天山西段及其两侧是呈带状分布的年雷暴日数分别在46~84 d、25~35 d之间的多雷区和中雷区, 其中, 伊犁河谷的昭苏是新疆年雷暴日数最多的地方, 达83.7 d;雷暴季节性显著, 主要集中在夏季, 占全年的77%, 寒冷的冬季很少出现;月雷暴日数呈现单峰型分布, 7月达到最大值, 全疆平均雷暴日数为6.1 d;雷暴初日普遍出现在2-4月, 雷暴终日出现在9-12月.1961-2010年新疆及其北疆、天山山区、南疆各分区年平均雷暴日数均显著减少, 减少速率分别为1.28、1.53、1.90、0.82 d·(10a)-1;空间分布表现为1961-2010年全疆大部分地区呈减少趋势, 北疆减少趋势大于南疆, 仅天山山区及其两侧以及南疆西部的个别地方呈弱的增加趋势;年代际变化趋势总体表现为逐年代减少;春、夏、秋季雷暴日数均呈现减少趋势, 夏季减少趋势最明显, 其空间分布与年雷暴日数相似;新疆及其各分区月雷暴日数以减少趋势为主.  相似文献   

4.
新疆40a来气温、降水和沙尘天气变化   总被引:67,自引:10,他引:57  
何清  杨青  李红军 《冰川冻土》2003,25(4):423-427
根据1961-2001年新疆代表北疆的8个气象站、天山山区的8个气象站、南疆的8个气象站的实测资料, 分析了40 a来新疆气温、降水、沙尘暴、扬沙、浮尘年代际变化特征.结果显示: 40 a来新疆气温呈明显上升趋势, 后10 a(1991-2000年)比前30 a平均气温升高, 北疆偏高0.8℃, 南疆和天山山区均偏高0.℃; 降水变化的总趋势是增湿明显, 后10 a与前30 a相比降水增加, 南疆偏多20.4%, 北疆偏多11.3%, 天山山区偏多9.8%; 南疆与北疆各类沙尘天气年际变化趋势基本相似, 80年代以来呈减少趋势; 南疆沙尘暴、扬沙、浮尘总日数之和与同期的温度、降水在春季有相对较好的线性相关关系.  相似文献   

5.
1961—2017年基于地面观测的新疆积雪时空变化研究   总被引:4,自引:4,他引:0  
选取新疆89个气象站1961—2017年逐日积雪深度观测资料, 分析近60 a新疆冬季最大积雪深度及积雪日数的时空变化特征。结果表明: 新疆冬季最大积雪深度以天山为界, 天山以北多于南部, 北疆北部和伊犁河谷最大达60 ~ 100 cm, 天山山区及天山北坡30 ~ 60 cm, 南疆大部地区不足20 cm; 新疆北部最大雪深多出现在1996年以后, 也是新疆气候由暖干转为暖湿的阶段。近60 a新疆区域尤其是北疆、 天山山区冬季最大积雪深度呈显著增加趋势, 南疆略有增加; 89个气象站中87.6%呈增加趋势, 20个显著增加, 主要分布在天山以北地区。分析不同积雪深度出现的日数, 新疆区域、 北疆地区、 天山山区≤10 cm积雪约占积雪总日数的48% ~ 58%, 10 ~ 20 cm积雪占24% ~ 32%, 20 ~ 30 cm积雪占12% ~ 15%, >30 cm积雪约占5%左右; 南疆地区以≤5 cm积雪为主。新疆区域、 北疆地区以及天山山区积雪日数总体呈减少趋势, 其中≤10 cm积雪日数减少, 尤其北疆显著减少, >20 cm积雪日数显著增加, 南疆变化不明显; 空间变化趋势分布基本与区域变化一致。  相似文献   

6.
胡列群  李帅  梁凤超 《冰川冻土》2013,35(4):793-800
利用新疆91个气象台站1960-2011年的观测资料, 对南北疆及天山山区冬春年(10月-翌年5月)的积雪日数、最大积雪深度、积雪初始、终止日期等因子进行了统计分析, 并通过Kringing插值计算了新疆区域平均最大积雪深度的空间分布.结果表明: 新疆冬春季积雪主要分布在天山以北, 厚度可达30 cm以上, 天山以南积雪比较浅薄, 大部分在10 cm以下;50 a来, 南北疆及天山山区的积雪深度均呈小幅增长(天山山区增幅最大), 积雪日数呈略微降低趋势, 积雪初始、终止日期无明显变化. 天山山区的积雪变化与北疆有较高的相关性, 它们积雪深度和积雪日数的相关系数分别达0.708和0.614, 南疆积雪变化与它们几乎没有相关性;积雪深度与冬春年降水量的变化均有很好的一致性, 尤其在北疆,二者相关系数高达0.702, 但与平均温度呈低的负相关;积雪日数与冬春年降水量变化没有明显相关关系, 但均与气温呈较好的负相关, 在北疆二者的相关系数达-0.742.  相似文献   

7.
新疆降水在气候转型中的信号反应   总被引:53,自引:21,他引:32  
韩萍  薛燕  苏宏超 《冰川冻土》2003,25(2):179-182
针对气候转型科学问题的提出,根据新疆61处国家水文气象观测站点的资料,通过5a滑动平均、模比系数差积曲线、线性趋势等方法对新疆降水分析计算.结果显示,近50a来新疆年降水量总体呈增加的变化趋势,全疆年降水量平均增幅0.67mm·a-1,天山山区增幅最大,达1.0~2.8mm·a-1.由减少转为增加变化的时间大多出现于1987年前后,以此为界,从1987年起气候转向暖湿的强劲信号不仅反映在新疆的天山西部地区,而且在全疆也有所反映,且南疆强于北疆,西部多于东部.  相似文献   

8.
1961-2016年新疆单站不同等级冷空气过程气候特征及变化   总被引:4,自引:4,他引:0  
利用新疆1961年1月-2016年12月资料完整的89个国家气象观测站的日最低气温资料,根据中国气象局2017年发布的行业标准《冷空气过程监测指标》(QX/393-2017)的单站冷空气等级,计算近56 a来新疆各单站不同等级冷空气过程的发生频次、降温幅度、持续天数,应用线性趋势、EOF分解等分析方法,对新疆各单站不同等级冷空气过程的时空分布特征进行分析。结果表明:新疆单站不同等级冷空气年平均频次和年累计天数均表现为中等强度冷空气最多、寒潮次多、强冷空气最少,空间分布都呈现为北疆多、南疆少的分布特征;中等强度冷空气和强冷空气区域平均的年平均频次和年累计天数的年际变化均呈不显著减少趋势,寒潮均呈显著减少趋势,而空间分布上不是整体呈减少趋势,甚至个别地区呈显著增加趋势;中等强度冷空气和强冷空气在秋季前期和春季后期发生较多,寒潮则在冬季发生较多;中等强度以上冷空气年累计降温呈现北疆大、南疆小的分布特征,区域平均的年累计降温呈显著减小趋势;新疆年寒潮频次和年累计降温第一模态的方差贡献率分别为33%、39%,远远大于其它模态,第一模态(即主模态)的空间分布二者均表现为整个新疆为一致的正值,说明其变化趋势在全疆具有一致性的特征,另外北疆特征值较大,南疆特征值较小,说明北疆更容易出现异常,南疆不易出现异常。  相似文献   

9.
赵旋  李耀辉  齐冬梅 《冰川冻土》2013,35(4):959-967
基于1961-2007年四川地区119测站逐日降水资料, 利用EOF、REOF分析、趋势分析、M-K突变检验以及Morlet小波分析等方法, 研究了四川地区夏季降水的变化趋势、空间分布特征以及时间变化规律. 结果表明: 近47 a来四川夏季降水呈减少趋势, 在1962、1982年和21世纪初发生突变, 存在22 a和6~8 a的周期.四川夏季降水可分为4个区域: 一区(盆地东部)和四区(川西高原)夏季降水量长期变化呈增多趋势, 二区(盆地中西部)长期变化呈减少趋势, 三区(川西南山)变化趋势较为稳定, 呈小幅度增多趋势. 4个区域的夏季降水周期各有特点, 最长存在的周期为23 a左右, 其次还有16 a、14 a、12 a、8 a、6 a的周期变化.  相似文献   

10.
对中国天山北坡三工河流域山地、绿洲、荒漠不同下垫面区域1961-2007年气象资料序列进行了分析, 结果表明: 近50 a平原绿洲区平均温度以0.3 ℃·(10a)~(-1) 趋势上升;流域山区增温趋势较慢, 平均每10 a以0.17 ℃的趋势增温, 但本世纪初增温速率加快, 绿洲区和山区分别增加0.7 ℃和 0.5 ℃. 流域CO_2浓度和CH_4浓度持续上升, 且高于全球平均水平.原绿洲区1987-2007年比1961-1986年平均降水量偏多35%;山区降水量平均每10 a增加速率和绿洲区基本一致, 但波动较大, 20世纪80年代降水增加较显著, 90年代降水量减少到70年代水平, 本世纪初降水量显著增加. 气候变化序列用Mann-Kendall方法检验认为, 山区温度和降水没有达到突变水平, 平原绿洲区降水在1984年发生了由低向高的突变, 温度在1995年发生了由低向高的突变. 夏季荒漠空气相对湿度、太阳辐射量均小于绿洲, 但温度却始终高于绿洲, 绿洲"湿岛效应"和"冷岛效应"特征明显. 荒漠-绿洲温差有3 h、 20 h的主要周期, 温差突变一般发生在凌晨.  相似文献   

11.
中国天山地区降水对全球气候变化的响应   总被引:7,自引:6,他引:1  
天山地区的降水变化及其对全球气候变化的响应是近年来研究的热点。利用中国天山地区40个气象站1951-2014年的月降水数据,运用线性倾向估计、相关分析等气候诊断方法,分析了该区域的降水变化,探讨了主要气候指数与降水同步变化的相关关系。结果表明:年降水呈现出"西多东少,北多南少,高山多外围少"的特征,年降水变化率为6.0 mm·(10a)-1。SASMI与年降水表现为显著正相关,PDO、PNA和AO与年降水表现为弱正相关,且有局限性。在枯水期,SASMI与天山北坡及部分中高山地带的降水表现为弱正相关,而在西天山南坡表现为弱负相关,ENSO与中、西天山南北坡的中低山带的降水变化相关性较高。在丰水期,SASMI与天山南坡和高山区降水变化相关性较高,PDO与中、西天山南北坡的低山带部分站点的降水变化相关性较高。  相似文献   

12.
新疆43a来夏季0℃层高度变化和突变分析   总被引:17,自引:4,他引:13  
张广兴  杨莲梅  杨青 《冰川冻土》2005,27(3):376-380
采用1960-2002年新疆11个探空站逐日观测资料,按气候特点和径流情况把新疆划分为阿尔泰山西坡,天山北坡,天山南坡,昆仑山北坡,北疆西部5个区域,分析了43a来新疆夏季0℃层平均高度变化趋势和空间分布差异.结果表明:新疆夏季0℃层平均高度43a来总体呈上升趋势,20世纪60年代经历了一个明显下降的阶段,70年代变化相对平缓,80年代初开始上升,90年代初以后上升明显,表现为突升,但均未发生显著气候突变.新疆除了昆仑山北坡0℃层下降外,其余均为明显升高;升幅从南向北、从西向东增加.尽管各地变化不尽相同,但80年代初至今的上升趋势和90年代初期开始的涌升现象较为一致.0℃层高度的上升意味着高空中低层大气气温在升高,说明新疆近年来不仅近地面气温在升高,高空同样气温在变暖.  相似文献   

13.
利用新疆89个地面站逐日积雪深度观测资料,研究探讨了1961—2017年新疆区域积雪期、积雪初日、积雪终日的时空变化规律,分析了北疆和天山山区积雪期的年代际和周期变化特征及其与气温、降水的关系。结果表明:新疆各地积雪期、积雪初日和终日存在明显的差异,积雪期以天山为界北多南少;从空间分布看,天山山区和新疆北部阿勒泰、塔城和伊犁河谷的大部地区是新疆积雪最丰富的地区,也是积雪期相对较长的区域。近57年来,北疆和天山山区78%气象站积雪期呈减少趋势,其中塔城地区和阿勒泰东部以及中天山一带的部分地区减少显著;67%气象站积雪初日推迟,显著推迟区域与积雪期显著减少的区域基本一致;积雪终日变化趋势不明显。北疆和天山山区积雪期存在2~3 a的短周期、14~15 a的长周期;积雪初日分别以12 a、15 a长周期振荡为主,但3~5 a短周期振荡出现的时段有所差异,两个区域积雪终日周期信号均较弱。北疆和天山山区积雪期、积雪初日和终日受气温的影响大于降水,其中积雪初日、终日出现的早晚与其所处季节的平均气温显著相关。  相似文献   

14.
天山天格尔山南北坡降水特征研究   总被引:10,自引:5,他引:5  
对新疆天山天格尔山南北坡乌拉斯台河和乌鲁木齐河流域及其山前平原不同高度气象(水文)站近40a降水实测资料的统计分析,研究天山天格尔山南北坡不同坡向及高度的降水特征.结果表明:山区降水远大于山前平原,南北坡降水均呈现为增加趋势,冬季和夏季降水的增加趋势明显;山前平原区降水的年际变化幅度大于山区;冬、春季降水变率大于夏、秋季,南坡降水变率远大于北坡,冬、春季表现地尤为突出.年际降水的减少趋势出现在乌鲁木齐河流域中山峡谷地带的英雄桥水文站,其春季3月份的降水量减少趋势非常显著;乌鲁木齐河源大西沟气象站4~5月和6~8月月降水呈明显的反相关变化.  相似文献   

15.
The features of climate change and their effects on glacier snow melting in the past 50 years (1961–2010) in Xinjiang were studied. Regional climate data for 49 meteorological stations in the Tianshan Mountains and the northern and southern areas of Xinjiang were collected with the aid of techniques such as climatological statistical diagnosis, regional climate models, remote sensing, and geographic information system. The annual average temperature displayed a rising trend across the Tianshan mountainous area and both areas of Xinjiang. The trend was particularly apparent in winter and autumn with the rate of increase in the annual average minimum temperature being significantly higher than that of the maximum temperature. Rainfall also tended to increase in all three areas over the 50-year period, with the magnitude of change being highest in the mountainous area followed by northern Xinjiang and then southern Xinjiang. As a result of the rising temperatures, there was a negative material balance among the region's glaciers, of which the year 1982/1983 was the key year for the development of Tianshan mountain glacier snow. After this date, glacial ablation intensified with an annual change increase in average temperature of 1 °C, leading to a glacier material balance change of about 300 mm. To establish rainfall and temperature sequences for three regional climate change scenarios in the 2011–2050 period, we adopted the delta method using actual measurements during the 1961–2000 period against corrected data from rainfall and temperature simulations. All three scenarios indicated that temperatures will continue to increase, that the increase in rainfall may decrease in mountainous regions but will increase in the basin, and that the speed of glacial ablation in Xinjiang will continue to accelerate.  相似文献   

16.
以年极端洪水超标率来反映区域极端洪水, 分析了新疆区域极端洪水变化; 以年最大洪峰记录分析了天山山区主要河流极端洪水变化规律, 并用14站资料分析了天山山区气候变化特征, 讨论了天山主要河流极端洪水变化对区域气候变化的响应. 结果表明: 受气候变暖影响, 1957-2006年全疆极端洪水呈区域性加重趋势, 尤其南疆区域极端洪水明显加剧, 北疆区域也有加重趋势, 但相对较缓. 全疆及北疆、 南疆在20世纪90年代中期以来都处于洪水高发阶段. 近50 a来, 在新疆区域洪水呈加重趋势的变化背景下, 发源于天山南坡的托什干河和库玛拉克河年最大洪峰流量呈显著增加趋势, 发源于天山北坡的玛纳斯河与乌鲁木齐河年最大洪峰流量虽有增加, 但是变化趋势较缓. 以年最大洪峰流量发生转折年为界, 天山典型流域托什干河、 库玛拉克河、 玛纳斯河和乌鲁木齐河在20世纪90年代(或80年代)以来与前期相比, 呈现出相似的变化特征: 年最大洪峰流量明显增大, 年际间变化更加剧烈, 洪水年更频繁. 以年最大洪峰流量发生转折年份为界, 玛纳斯河、 托什干河和乌鲁木齐河后期的年最大洪峰集中日期较前期推迟2~9 d, 库玛拉克河却提前5 d. 玛纳斯河、 乌鲁木齐河和库玛拉克河后期的集中度较前期增加0.8%~8.3%, 托什干河减小1.1%. 1961-2010年, 新疆天山山区气温明显上升, 升温率为0.34 ℃·(10a)-1, 1997年以后明显增暖; 天山山区降水显著增加, 增加速率15.6 mm·(10a)-1, 同时极端降水强度增大、 频数增多. 近50 a来天山主要河流极端洪水变化与区域增温以及天山山区极端降水事件增多等有密切关系.  相似文献   

17.
中国西北气候由暖干向暖湿转型的特征和趋势探讨   总被引:341,自引:10,他引:341       下载免费PDF全文
由于全球显著变暖和水循环加快,使得中国西北主要是新疆地区于1987年气候发生突然变化,随着温度上升,降水量、冰川消融量和径流量连续多年增加,内陆湖泊水位显著上升,洪水灾害也迅猛增加,同时,植被有所改善,沙尘暴日数锐减,从而改变了19世纪末期至20世纪70年代的变暖变干趋势.以降水量增加超过蒸发量增加所导致的径流量增长及湖泊水位上升作为气候向暖湿转型的主要标准,西北地区目前的气候变化可分为3个区域,即1)显著转型区;2)轻度转型区;3)未转型区.作者初步认为,西北气候向暖湿转型可能是世纪性的,预期西北东部在21世纪上半期也会向暖湿转变,但预测有较大的不确定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号