首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
Coda wave attenuation is estimated for Qeshm Island which is located in the southeastern part of Zagros. For this purpose, the aftershocks of Qeshm earthquake in November 27, 2005, recorded within an epicentral distance less than 100 km, have been used. More than 829 earthquakes were recorded by a local temporary network consisting of 16 short period stations installed after a week after the main shock for ~10 weeks. The coda quality factor, Q c, was estimated using the single-backscattering model in frequency bands of 0.5–24 Hz. In this research, lateral and vertical variations of coda Q in Qeshm Island are explored. In Qeshm Island, absence of significant lateral variation of coda Q is observed. To investigate the attenuation variation with depth, the coda Q value was calculated for coda time windows with different lengths (5, 10, 15, 20, 25, and 30 s). It is observed that coda Q increases with depth. However, in our study area, the rate of increase of coda Q with depth is not uniform. Beneath Qeshm Island, the rate of increase of coda Q is greater at depths less than ~40 km compared with those of larger depths. This is indicating the existence of a low attenuation anomalous structure under the ~40-km depth which may be correlated with the Moho depth in this region. The average frequency relation for this region is Q c = 36 ± 1.2f 0.94 ± 0.039 at a 5 s-lapse time window length and Q c = 110 ± 1.8f 0.88 ± 0.09 at a 30-s lapse time window length.  相似文献   

2.
Understanding the changes in permeability of soil, when soil is subjected to high confining pressure and flow pressure, which may alter the textural and geomechanical characteristics of soil, is of great importance to many geo-engineering activities such as, construction of high-rise buildings near the coast or the water bodies, earthen dams, pavement subgrades, reservoir, and shallow repositories. It is now possible to evaluate the changes in permeability of soil samples under varying conditions of confining pressure and flow pressure using flexible wall permeameter (FWP). In the present study, investigation was carried out on a cylindrical sample of granular soil employing FWP under varied conditions of confining pressure (σ3)—50–300 kPa, which can simulate the stress conditions equivalent to depth of about 20 m under the earth’s crust, and a flow pressure (fp)—20–120 kPa, which is mainly present near the small earthen embankment dams, landfill liners, and slurry walls near the soft granular soil with high groundwater table. The obtained results indicate a linear relationship between hydraulic conductivity (k) with effective confining pressure (σeff.), k, decreasing linearly with an incremental change in σeff.. Further, k increases significantly with an increase in fp corresponding to each σeff., and q increases significantly with increase in the fp corresponding to each (σ3). It was also observed that corresponding to the low fp of 20 kPa, the reduction in k is nonlinear with σ3. The percentage reduction in k is observed to be 9, 13, and 27% corresponding to σ3 of 50–100, 100–200, and 200-300 kPa, respectively.  相似文献   

3.
Onorato  Miguel  Suret  Pierre 《Natural Hazards》2016,84(2):541-548
Here we discuss some of the progresses that have been made in the last 20 years in the field of oceanic rogue waves, focusing on the role played by leading order equations such as the nonlinear Schrödinger and the Korteweg-De Vries equations. For such equations, it is possible, as shown in Onorato et al. (Origin of heavy tail statistics in equations of the nonlinear Schrödinger type: an exact result, 2016. arXiv:1601.04317), to derive a very simple relation in which the variation of the third (for the KdV) and fourth (for the NLS) moment of the probability density function of the wave field can be related to the variation of the spectral bandwidth. These relations give some new perspectives on the formation of rogue waves in a random sea state.  相似文献   

4.
This paper presents revision of the Neogene chronostratigraphic framework of the Huanghekou area in the Bohai Bay Basin, northern China, on the basis of integration of palaeomagnetic data and Neogene seismic stratigraphy. The modern Lake Dongting was selected for analyses of bottom sediments, water depth and elemental composition. Four elements, namely Al, V, Ni and Ga with R 2 value larger than 0.7, were chosen to establish a quantitative relationship (F P) between elemental composition and water depth of bottom sediments. A water depth of ~2.4 m was identified as an accumulation depth of Candoniella albicans, which is used to derive environmental variable (Φ) of formula F P. Candoniella albicans is also found within the Neogene well W10 in the Huanghekou area. Considering 2.4 m as D value in formula F p and measured element values at different depths of W10, Φ values were obtained at different depths. The quantitative palaeowater depths of each drilling well were estimated for the first time in this area by considering elemental composition of chip samples of four drilling wells in the Huanghekou area, which are directly iterated to the F F. Palaeowater depth reconstruction of the Neogene in the Huanghekou area indicates an initial deepening trend and a later shallowing trend during the evolution, with average and deepest bathymetry at ~2.3 and ~4.8 m, respectively. Frequent fluctuations of palaeowater depth control the sand dispersal pattern in a shallow delta during the lower part of the Lower Member of Minghuazhen Formation.  相似文献   

5.
A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+.  相似文献   

6.
The stress regime in a Rotliegend reservoir of the Northeast German Basin   总被引:2,自引:0,他引:2  
In-situ stresses have significant impact, either positive or negative, on the short and long term behaviour of fractured reservoirs. The knowledge of the stress conditions are therefore important for planning and utilization of man-made geothermal reservoirs. The geothermal field Groß Schönebeck (40 km north of Berlin/Germany) belongs to the key sites in the northeastern German Basin. We present a stress state determination for this Lower Permian (Rotliegend) reservoir by an integrated approach of 3D structural modelling, 3D fault mapping, stress ratio definition based on frictional constraints, and slip-tendency analysis. The results indicate stress ratios of the minimum horizontal stress S hmin being equal or increasing 0.55 times the amount of the vertical stress S V (S hmin ≥ 0.55S V ) and of the maximum horizontal stress S Hmax ≤ 0.78–1.00S V in stress regimes from normal to strike slip faulting. Thus, acting stresses in the 4,100-m deep reservoir are S V  = 100 MPa, S hmin = 55 MPa and S Hmax = 78?100 MPa. Values from hydraulic fracturing support these results. Various fault sets of the reservoir are characterized in terms of their potential to conduct geothermal fluids based on their slip and dilatation tendency. This combined approach can be adopted to any other geothermal site investigation.  相似文献   

7.
This paper examines the influence of porous media deformation on water-table wave dispersion in an unconfined aquifer using a numerical model which couples Richards’ equation to the poro-elastic model. The study was motivated by the findings of Shoushtari et al. (J Hydrol 533:412–440, 2016) who were unable to reproduce the observed wave dispersion in their sand flume data with either numerical Richards’ equation models (assuming rigid porous media) or existing analytic solutions. The water-table wave dispersion is quantified via the complex wave number extracted from the predicted amplitude and phase profiles. A sensitivity analysis was performed to establish the influence of the main parameters in the poro-elastic model, namely Young’s modulus (E) and Poisson’s ratio (ν). For a short oscillation period (T?=?16.4 s), the phase lag increase rate (k i) is sensitive to the chosen values of E and ν, demonstrating an inverse relationship with both parameters. Changes in the amplitude decay rate (k r), however, were negligible. For a longer oscillation period (T?=?908.6 s), variations in the values of E and ν resulted in only small changes in both k r and k i. In both the short and long period cases, the poro-elastic model is unable to reproduce the observed wave dispersion in the existing laboratory data. Hence porous media deformation cannot explain the additional energy dissipation in the laboratory data. Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P (2016) The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling. J Hydrol 533:412–440.  相似文献   

8.
Unlike the studies in small parcels by systematic measurements, the spatial variability of soil properties is expected to increase in those over relatively large areas or scales. Spatial variability of soil hydraulic conductivity (K h) is of significance for the environmental processes, such as soil erosion, plant growth, transport of the plant nutrients in a soil profile and ground water levels. However, its variability is not much and sufficiently known at basin scale. A study of testing the performance of cokriging of K h compared with that of kriging was conducted in the catchment area of Sarayköy II Irrigation Dam in Cank?r?, Turkey. A total of 300 soil surface samples (0–10 cm) were collected from the catchment with irregular intervals. Of the selected soil properties, because the water-stable aggregates (WSA) indicated the highest relationship with the hydraulic conductivity by the Pearson correlation analysis, it is used as an auxiliary variable to predict K h by the cokriging procedure. In addition, the sampling density was reduced randomly to n = 175, n = 150, n = 75 and n = 50 for K h to determine if the superiority of cokriging over kriging would exist. Statistically, the results showed that all reduced K h was as good as the complete K h when its auxiliary relations with WSA were used in cokriging. Particularly, the results of the “Relative Reduction in MSE” (RMSE) revealed that the reduced data set of n = 75 produced the most accurate map than the others. In this basin-scaled study, there was a clear superiority of the cokriging procedure by the reduction in data although a very undulating topography and topographically different aspects, two different land uses with non-uniform vegetation density, different parent materials and soil textures were present in the area. Hence, using the statistically significant auxiliary relationship between K h and WSA might bring about a very useful data set for watershed hydrological researches.  相似文献   

9.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

10.
This study aimed to develop a low-cost and effective clay liner material for solid waste landfills in Sri Lanka. A locally available clayey soil and its admixtures with 5 and 10% bentonite were examined for this purpose. Laboratory experiments to determine soil plasticity and swell index were carried out on the tested samples. Hydraulic conductivity (k) tests were carried out in the laboratory using water and an aqueous solution of CaCl2 on unconsolidated samples prepared by either dry or slurry packing and pre-consolidated samples with five different consolidation pressures (p) from 10 to 200 kPa. Measured liquid limits for tested admixtures increased with increasing bentonite contents and correlated well with measured values of the swell index. The difference in permeant solutions had little effect on measured k values for both unconsolidated and pre-consolidated samples. The hydraulic conductivities were highly affected by changing p, i.e., the k values decreased on two orders of magnitude as p increased from 10 to 200 kPa. The Kozeny–Carman equation, a theoretical permeability model that expresses the k-porosity relationship, was applied to measured data including reported values. Results showed the Kozeny–Carman equation captured well the porosity-dependent k values for tested soils and their admixtures with bentonite under a wide range of void ratios, suggesting that the Kozeny–Carman equation is a useful tool to estimate the magnitude of k values for differently compacted soil and its bentonite admixtures.  相似文献   

11.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

12.
Vertical plate anchors provide an economical solution to safely resist the large horizontal forces experienced by the foundation of different structures such as bulkheads, sheet piles, retaining walls and so forth. This paper develops a multivariate adaptive regression spline (MARS) model-based approach for the determination of horizontal pullout capacity (P u ) of vertical plate anchors buried in cohesionless soil by utilizing experimental results reported by different researchers. Based on the collection of forty different pullout experimental test results reported in the literature for anchors buried in loose to dense cohesionless soil with an embedment ratio ranges from 1 to 5, a predictive approach for P u of vertical plate anchors has been developed in terms of non-dimensional pullout coefficient (M γq ). The capability of the proposed MARS model for estimating the values of M γq is examined by comparing the results obtained in the present study with those methods available in the literature. Using different statistical error measure criteria, this study indicates that the present approach is efficient in estimating the horizontal pullout capacity of vertical plate anchors as compared to other methods. The sensitivity analysis indicates that the embedment ratio (H/h, where H = embedment depth of anchor, and h = height of anchor) and internal friction angle (?) of soil mass are the two most important parameters for the evaluation of non-dimensional pullout coefficient (M γq ) using the proposed MARS model.  相似文献   

13.
Hydraulic Conductivity of Fly Ash-Amended Mine Tailings   总被引:1,自引:1,他引:0  
The objective of this study was to evaluate the effect of fly ash addition on hydraulic conductivity (k) of mine tailings. Mine tailings used in this study were categorized as synthetic tailings and natural tailings; two synthetic tailings were developed via blending commercially-available soils and natural tailings were collected from a garnet mine located in the U.S. Two fly ashes were used that had sufficient calcium oxide (CaO) content (17 and 18.9 %) to generate pozzolanic activity. Hydraulic conductivity was measured on pure tailings and fly ash-amended tailings in flexible-wall permeameters. Fly ash was added to mine tailings to constitute 10 % dry mass of the mixture, and specimens were cured for 7 and 28 days. The influence of fly ash-amendment on k of mine tailings was attributed to (1) molding water content and (2) plasticity of the mine tailings. Tailings that classified as low-plasticity silts with clay contents less than 15 % exhibited a decrease in k when amended with fly ash and prepared wet of optimum water content (w opt ). Tailings that classified as low-plasticity clay exhibited a one-order magnitude increase in k with addition of fly ash for materials prepared dry or near w opt . The decrease in k for silty tailings was attributed to formation of cementitious bonds that obstructed flow paths, whereas the increase in k for clayey tailings was attributed to agglomeration of clay particles and an overall increase in average pore size. The results also indicated that the effect of curing time on k is more pronounced during the early stages of curing (≤7 days), as there was negligible difference between k for 7 and 28-days cured specimens.  相似文献   

14.
This paper investigates, using the random field theory and Monte Carlo simulation, the effects of random field discretization on failure probability, p f, and failure mechanism of cohesive soil slope stability. The spatial sizes of the discretized elements in random field Δx, Δy in horizontal and vertical directions, respectively, are assigned a series of combinational values in order to model the discretization accuracy. The p f of deterministic critical slip surface (DCSS) and that of the slope system both are analyzed. The numerical simulation results have demonstrated that both the ratios of Δy/λ y (λ y  = scale of fluctuation in vertical direction) and Δx/λ x (λ x  = scale of fluctuation in horizontal direction) contribute in a similar manner to the accuracy of p f of DCSS. The effect of random field discretization on the p f can be negligible if both the ratios of Δx/λ x and Δy/λ y are no greater than 0.1. The normalized discrepancy tends to increase at a linear rate with Δy/λ y when Δx/λ x is larger than 0.1, and vice versa for p f of DCSS. The random field discretization tends to have more considerable influence on the p f of DCSS than on that of the slope system. The variation of p f versus λ x and λ y may exhibit opposite trends for the cases where the limit state functions of slope failure are defined on DCSS and on the slope system as well. Finally, the p f of slope system converges in a more rapid manner to that of DCSS than the failure mechanism does to DCSS as the spatial variability of soil property grows from significant to negligible.  相似文献   

15.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

16.
Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.  相似文献   

17.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

18.
Longitudinal wave velocities (V P ) in rocks were measured experimentally in dunite (olivinite) and serpentinite at a water pressure of 300 MPa and temperatures of 20–850°C. It is shown that the strong decrease in V P in dunite (by ~3 km/s) observed within the range of 400–800°C results from penetration of water into rock along microfractures and from the formation of hydrous minerals (mostly serpentine) along the boundaries of mineral grains as a result of water–olivine interaction. It is suggested that serpentinization or the formation of similar hydrous minerals in olivine-rich mantle rocks under the influence of deep fluids may result in the formation of zones of low-velocity elastic waves in the upper mantle at great depths (~100 km).  相似文献   

19.
Free internal gravity waves, which are typical of the shelf ocean zone are studied. A necessary condition for the existence of nonlinear wave disturbances quasi-periodic in time in a continuously stratified sea with variable depth H is found in the quasistatic and the “hard cap” approximation with respect to dissipative factors and latitudinal variation in the Coriolis parameter. The obtained assessment is equivalent to the condition obtained within the framework of linear theory for the case of the f-plane and a constant depth H.  相似文献   

20.
Local scour around piers is one of the main causes of bridge failures. In this study, three robust techniques, artificial neural networks (ANNs), M5-Tree, and Gene Expression Programming (GEP), were employed for prediction of scour depth around complex piers. The clear water condition was chosen for all experimental tests. The results indicated that pier diameter (b c) and foundation level (Y) are the main parameters for local scour. Furthermore, the minimum scour depth occurs in range of Y/b c = 1.1~1.3. In next step, to evaluate the mentioned techniques, a wide range of dataset was collected from the present study and literature. The radial base function (RBF) with R 2 = 0.945 and RMSE = 0.031 provides better prediction in comparison with conventional equations, M5-Tree (R 2 = 0.883, RMSE = 0.292) and the GEP techniques (R 2 = 0.811 and RMSE = 0.263). The equations developed by M5-Tree and GEP are more useful for practical purposes and can be easily employed to predict the depth of scour at complex piers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号