首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of hand-picked vitrinite samples from the Lower Kittanning Seam, Pennsylvania have been examined using quantitative pyrolysis-gas chromatography. These vitrinites ranged in rank from 0.59 to 1.71% reflectance, a rank range from high volatile C bituminous to low volatile bituminous. High molecular weight pyrolysis products included alkyl aromatic and phenolic compounds. Attempts have been made to correlate the pyrolysis product composition to rank parameters including vitrinite reflectance, volatile matter yield, carbon content, atomic H/C ratio and Rock-Eval determined Tmax. Total yield of phenols was found to be strongly and inversely rank related. A clear relationship between C8 alkyl-benzene yield and rank was not found for the sample set.  相似文献   

2.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

3.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

4.
The quantitative maceral study of the Queen seam from Mailaram coalfield of Godavari valley has displayed alternate coal bands rich in vitrinite/liptinite or inertinite. The random vitrinite reflectance (Ro max. %) of these coals, from top part ranges from 0.50 to 0.64%. However, the bottom part of the seam has indicated lower reflectance, between 0.49 and 0.52%. Thus, the Queen seam, in general, has attained high volatile bituminous C rank. The study indicates that the depositional site has been a slowly sinking basin that witnessed alternate dry (oxidizing) and wet (reducing) spells. This subsequently caused fluctuation in water table of the basin and the formation of oxic and anaoxic moor condition, where accumulated vegetal resource transformed into mixed and fusic coal types in due course of time. Being high in liptinite and vitrinite contents and low mineral matter, the Queen seam of Mailaram coalfield has high economic potential.  相似文献   

5.
The coal of the Miocene Bukit Asam deposit in south Sumatra is mostly sub-bituminous in rank, consistent with regional trends due to burial processes. However, effects associated with Plio–Pleistocene igneous intrusions have produced coal with vitrinite reflectance up to at least 4.17% (anthracite) in different parts of the deposit. The un-metamorphosed to slightly metamorphosed coals, with Rvmax values of 0.45–0.65%, contain a mineral assemblage made up almost entirely of well-ordered kaolinite and quartz. The more strongly heat-affected coals, with Rvmax values of more than 1.0%, are dominated by irregularly and regularly interstratified illite/smectite, poorly crystallized kaolinite and paragonite (Na mica), with chlorite in some of the anthracite materials. Kaolinite is abundant in the partings of the lower-rank coals, but is absent from the partings in the higher-rank areas, even at similar horizons in the same coal seam. Regularly interstratified illite/smectite, which is totally absent from the partings in the lower-rank coals, dominates the mineralogy in the partings associated with the higher-rank coal beds. A number of reactions involving the alteration of silicate minerals appear to have occurred in both the coal and the associated non-coal lithologies during the thermal metamorphism generated by the intrusions. The most prominent involve the disappearance of kaolinite, the appearance of irregularly interstratified illite/smectite, and the formation of regular I/S, paragonite and chlorite. Although regular I/S is identified in all of the non-coal partings associated with the higher-rank coals, illite/smectite with an ordered structure is only recognised in the coal samples collected from near the bases of the seams. The I/S in the coal samples adjacent to the floor of the highest rank seam also appears to have a greater proportion of illitic components. The availability of sodium and other non-mineral inorganic elements in the original coal to interact with the kaolinite, under different thermal and geochemical conditions, appears to be the significant factor in the formation of these new minerals, and distinguishes the mineralogical changes at Bukit Asam from those developed more generally with rank increases due to burial, and from the effects of intrusions into coals that were already at higher rank levels.  相似文献   

6.
The maceral and microlithotype composition of selected coals has been investigated with respect to the grinding properties, specifically Hardgrove grindability index (HGI), of the coals. The study expands upon previous investigations of HGI and coal petrology by adding the dimension of the amount and composition of the microlithotypes. Coal samples, both lithotypes and whole channels, were selected from restricted rank ranges based on vitrinite maximum reflectance: 0.75–0.80% Rmax, 0.85–0.90% Rmax and 0.95–1.00% Rmax. In this manner, the influence of petrographic composition can be isolated from the influence of rank. Previous investigations of high volatile bituminous coals demonstrated that, while rank is an important factor in coal grindability, the amount of liptinite and liptinite-rich microlithotypes is a more influential factor. In this study, we provide further quantitative evidence for the influence of microlithotypes on HGI and, ultimately, on pulverizer performance.  相似文献   

7.
《Organic Geochemistry》1999,30(8):985-1010
The Buller Coalfield (South Island, New Zealand) is an inverted late Paleogene Basin that contains middle Eocene bituminous coals which exhibit considerable variation in both coal rank (across-basin), and coal type (in-seam). Twenty-two fractionated bitumen extracts of Brunner Coal Measures coal samples from 12 drillholes were analyzed by GC and GC–MS to characterize the effect of coal rank and type on conventional hydrocarbon maturity indices at the beginning and end of the oil window (0.56–1.26% Romax).The Carbon Preference Index, pristane/phytane and isoprenoid/n-alkane ratios evolve throughout the high volatile bituminous B rank stage, while other biomarker ratios [18α(H)-22,29,30-trisnorneohopane/17α(H)-22,29,30-trisnorhopane (Ts/Tm), 18α(H),21β(H)-30-norneohopane (C29 Ts)/17α(H),21β(H)-30-norhopane and C30 diahopane/hopane] do not show appreciable change in value until medium volatile bituminous rank. Various aromatic based ratios appear to be more effective in delineating rank throughout the entire oil window; in particular the Methylphenanthrene Index and vitrinite reflectance are positively correlated over the entire bituminous rank range. However, subtle changes in depositional conditions (variable coal type) complicate these rank estimates. Within a given coal seam, variation in CPI, isoprenoid/n-alkane and hopane/sterane ratios appear to be related to the hydrogen content of the coal, while the homohopane index and the oleanane/hopane ratio covary with sulfur content. As with depressed vitrinite reflectance values, MPI is similarly lowered in the perhydrous samples. The mechanisms that control these hydrocarbon parameters during deposition and diagenesis are complex and convoluted, however, changes in bacterial activity and community (with marine incursion) appear to play an important role. Due to these anomalies, none of the hydrocarbon maturity indices calculated can be singularly used to constrain coal rank.  相似文献   

8.
The study of coal succession from bore hole No. Q-448 of Yellendu area of the Godavari valley coalfield, Andhra Pradesh reveals that the coals of Queen seam are high volatile bituminous C in rank and have vitrinite reflectance (Ro max %) varying between of 0.52 and 0.62%. The petrographic constitution however, suggests that the depositional site appears to be a slowly sinking and tectonically controlled basin, having received continuous supply of vegetal matter rich resource at regular intervals. The formation of inertinite rich coal suggests, oxidising enviornment of deposition. The dominence of vitrinite and liptinite constituents in these coals postulates the existence of alternating cold and humid spells. The present study indicates that these coals originated under an alternate oxic and anoxic moor condition.  相似文献   

9.
Immature vitrinite samples from a Miocene lignite seam of western Germany (H/C = 1.14, O/C = 0.41) and alginite concentrates from a Tasmanite deposit of Australia (H/C = 1.60, O/C = 0.10) were pyrolyzed in a stream of argon at heating rates of 0.1 and 2.0°C/min up to temperatures varying from 200 to 670°C. The solid maceral residues were subjected to elemental and microscopical analysis and studied by IR and 13C CP/MAS NMR spectroscopy with respect to structural modifications.The maximum pyrolytic weight loss amounts to 60% of the initial organic matter in the case of vitrinite and to 85% for alginite, the onset of degradation reactions being shifted to higher temperatures with increasing rate of heating. Both infrared and NMR spectra of the vitrinite samples indicate a rapid decomposition of the cellulose component upon heating whereas lignin related structures such as aromatic ether linkages remain remarkably stable. The main hydrocarbon release from vitrinite occurs at very early evolution stages (Tmax = 296°C, Rm = 0.20% at 0.1°C/min; Tmax = 337°C, Rm = 0.23 at 2.0°C/min). Hydrocarbon generation from alginite requires higher temperatures (Tmax = 388 and 438°C) and is completed within a distinctly narrower temperature range.The pronounced increase of vitrinite reflectance between 350 and 670°C seems to be associated with a rather time-consuming reorganization of the residual organic material. The concomitant growth of polyaromatic units is illustrated by the increasing intensity ratio of the aromatic ring stretching vibration bands at 1600 and 1500 cm−1. These reactions are moreover marked by increasing loss of phenolic oxygen and by increasing conversion of aliphatic carbon into fixed aromatic carbon.  相似文献   

10.
Basin modelling has been used to improve understanding of the origin and temporal evolution of coal seam gas in the Hunter Coalfield of the Sydney Basin. Burial history models were produced based on data from seven boreholes located in the southern, eastern, central and western areas of the coalfield. Mean random vitrinite reflectance (Rv,r) data, derived from measurements of mean maximum reflectance (Rv,max), were used for calibration of the models. A qualitative sensitivity analysis of one model shows that varying the paleoheat flow has a greater influence on calculated Rv,r than varying the eroded overburden thickness.

The differences between the constructed models are significant enough to provide plausible explanations for regional gas distribution in the Hunter Coalfield. Coals in the south of the coalfield appear to have the greatest potential for thermogenic gas generation. Modelling has shown that areas that have low gas contents and decreased permeability have been uplifted more, and buried less, compared with areas that have high gas contents. Burial history modelling shows noticeable variations in the extent of burial and uplift, and, consequently, in thermal maturities and potential for thermogenic gas generation; together with the assessment of other coal and gas property data, it appears that present-day gas contents may partially reflect coal ranks and adsorption capacities, with late-stage biogenic gas generation replenishing CH4 volumes that were lost following uplift during the Late Cretaceous.  相似文献   

11.
The Early Cretaceous coal deposits of the Khasyn coalfield are intruded by Palaeogene diabase dikes. The coal has vitrinite reflectance values of 2.0–2.5% Ro, and characteristics of normal anthracite at some distance from the dikes, but at direct contact with the dike two morphological coal varieties occur: coal inclusions in the diabase dike and dispersed carbonaceous matter within the dike rock. Both types of coaly matter have properties typical of anthracites: strong anisotropy, altered internal structure and high vitrinite reflectance values ranging from 3.8 to 5.5% Ro. The X-ray diffraction measurements of the interplanar spacing d(002) and the crystallite sizes Lc and La show rather similar values for coal inclusions in the dike and dispersed carbonaceous matter. The additional reflection at 3.37 Å, corresponding to semi-graphite admixture, occurs in the coal and carbonaceous matter inside the dike and is absent in the natural coal outside the dike.  相似文献   

12.
Petrographic investigations of serial ply samples from five high- to medium-volatile bituminous coal seams from Australia (4) and Canada (1) reveal substantial in-seam variations in the reflectance and monochromatic microfluorescence intensities of the maceral subgroup telovitrinite. The variations consist of one case of reflectance enhancement and fluorescence suppression, and four cases of reflectance suppression and fluorescence enhancement. The single case of reflectance enhancement and fluorescence suppression is due to the oxidation of the vitrinite nuclei at the sequence boundary between the Bayswater and Upper Wynn seams in New South Wales. The four cases of reflectance suppression and fluorescence enhancement result from the syn- and epigenetic absorption by the vitrinite nuclei of hydrogen donated by, presumably, anaerobic bacteria-generated lipids. Two of the coals are marine-influenced: the Liskeard Seam from the Bowen Basin by combined syngenetic and epigenetic effects, and the Greta Seam from the Sydney Basin mainly by epigenetic contact with sea water. For both coals, the results are strong vitrinite reflectance suppression and fluorescence enhancement. The remaining two coals, the Bulli Seam from the Sydney Basin and a coal seam from the Gates Formation in British Columbia, show moderate epigenetic effects on the optical properties of telovitrinite by fresh-water. In the Bulli Seam which was studied in two adjacent localities, the reflectance suppression and fluorescence enhancement of telovitrinite are stronger under sandstone roof than under shale roof. In some cases, the epigenetic effects are superimposed on syngenetic telovitrinite reflectance and fluorescence variations resulting from the cogeneration and mixing of different telovitrinite precursors, for example, autochthonous roots and hypautochthonous or allochthonous shoots. A measure of the degree of dispersal and mixing is the coefficient of variation of telovitrinite reflectance and/or fluorescence. This coefficient correlates well with detrital minerals and dispersed macerals, e.g., inertodetrinite and, to a lesser extent, sporinite. Some comments are made on slitted so-called pseudovitrinite which is regarded as a telovitrinite that was subjected to very weak post-coalification desiccation and possibly oxidation without losing much of its thermoplastic properties.  相似文献   

13.
Two samples from the upper and lower horizons of the Irati oil shale of the Paraná Basin, Brazil were sampled in a single borehole, and analysed using organic petrography and geochemistry. The results are interpreted in terms of the kerogen type, maturity and depositional environment of the two horizons.Organic petrography shows the oil-shales to be composed of a mineral groundmass, mainly clay minerals, carbonate and pyrite, associated, and sometimes impregnated, with fluorescing organic material and disseminated phytoclasts. Humic material is fairly rare and mostly present as very small particles. The liptinitic particles are mostly alginite (A and B), sporinite and more rarely resinite. Reflectance measurements (upper seam = 0.34% R0; lower seam = 0.40% R0) indicate an equivalent rank of lignite/sub-bituminous coal (ASTM), i.e. immature with respect to oil and gas generation. Different organic geochemical methods (Rock-Eval pyrolysis, solvent extraction, GC and GC-MS) demonstrate both samples to be immature, rich oil-shales (100–114 kg/ton) containing Type I kerogen, of a dominantly bacterially-degraded algal origin deposited in a lacustrine environment. The presence of Botryococcus suggests deposition under fresh/brackish water conditions.A tentative interpretation of the extract and vitrinite reflectance data suggests a maximum paleo-burial of between 1.3 and 2.8 km for the analysed section of the Irati Formation.  相似文献   

14.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   

15.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

16.
The research work details the maceral organization of eleven coal seams intersected at a maximum depth of 446.45 m from Bhupalpalli area of the Mulug coal belt, in Warangal district of Godavari valley. Samples for petrographic study have been collected from ten coal seams intersected between 106 m and 299 m depth range from Bore-hole No. 618 which includes, IA and its underlying I, II, Index below II, IIIB, IIIA, III, IVA, IV and Index below IV respectively. However, the coal samples from the bottom most V seam were collected from Bore-hole No. 616 encountered between 445.65 m and 446.45 m. The study has revealed that V seam is marked by vitric type and seam IVA contains coal of fusic nature. The seams I, II, Index below II, IIIB, IIIA and IV, however, are represented by mixed type of coal. Whereas, the seams IA and III have the prevalence of vitric as well as mixed coal types. IA seam has witnessed alternate oxic and anoxic moor condition and also wet moor with intermittent moderate to high flooding. All the other seams have been deposited during alternate oxic and anoxic moor conditions. The coal seams of the study area have shown a wide range of variation in vitrinite reflectance (Ro mean %). The top of III, basal part of IV and the entire Index below IV have recorded high vitrinite reflectance (Ro mean %), which ranges between 0.66-0.67% thus they have reached high volatile bituminous B stage, all the other seams show lower reflectance and therefore have attained high volatile bituminous C rank.  相似文献   

17.
The coal seam No. 207 was a subject of palynological and petrographic studies. According to the results of the vitrinite random reflectance measurements supplemented by moisture and calorific value determinations, the rank of this coal is matching the boundary between sub-bituminous and bituminous coals. The aim was to reconstruct the environmental conditions during the biochemical stage of seam formation, as well as the facies development throughout the seam profile. The maceral (incident and fluorescence mode) and microlithotype compositions (incident light) supplemented by palynological analyses, show that there were two main facies developments. In the authors opinion, they correspond with a phase of ombrogenous, raised bog marked by the presence of crassidurite with Densosporites variabilis and a wet-forest swamp phase represented by vitrite and clarite with more diverse spore assemblage including densospores. Other minor but distinctive sediments, a cannel layer and a reeds facies, both occurring in the lower part of the seam. Above the tonstein horizon, a dry forest type of sedimentation is recognized.  相似文献   

18.
Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.  相似文献   

19.
The orientation of the optical indicating surface of vitrinite in reflected light has been determined following deformation at 350 and 500°C, confining pressures of 500 and 800 MPa and a strain rate of 10−5 s−1. High temperature and large strain have facilitated reorientation of the indicating surface, increase in anisotropy (bireflectance) and an increase in maximum vitrinite reflectance. In a specimen deformed at 500°C and 23% axial strain the maximum vitrinite reflectance has been reoriented more than 70° from close to parallel to σ1 in the undeformed state to perpendicular to σ1 following deformation. Orientation of the optical indicating surface of some of the deformed specimens suggests the orientation of the maximum reflectance is a composite product of the original orientation of the indicating surface and an orientation produced during deformation.  相似文献   

20.
A large collection of well-characterized coals, documented in the Center for Applied Energy Research's (CAER) database, was used to estimate the CO2 content of maceral concentrates from Kentucky and Illinois high volatile bituminous coals. The data showed no correlation between CO2 versus coal ranks and between CO2 versus maceral content. Subsequently, eight sets of low-ash density-gradient centrifugation (DGC) maceral concentrates from five coal beds were examined, spanning in the high volatile rank range. Heating value was not determined on the concentrates, but instead was calculated using the Mott–Spooner formula. There was a good correlation between predicted CO2 and maceral content for the individual iso-rank (based on vitrinite reflectance, analyzed on whole (parent) coal) sets. In general, the predicted CO2 increases from liptinite-rich through vitrinite-rich to inertinite-rich concentrates (note: no “concentrates” are absolutely monomaceral).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号