首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 716 毫秒
1.
气候变暖对长江源径流变化的影响分析   总被引:4,自引:4,他引:0  
在气候变暖背景下, 20世纪60年代以来, 长江源区气温年和四季增温显著, 蒸发量、 径流量总体呈增加趋势; 进入21世纪后, 源区降水量呈增加趋势。沱沱河作为长江源区的主要径流, 以此为代表研究长江源区气候变暖对径流的影响具有重要的现实意义。利用1981 - 2015年沱沱河水文站径流量资料、 沱沱河同期气象站降水量、 气温、 蒸发量的实测资料, 分析了长江源区沱沱河降水、 气温、 蒸发量变化对径流量的影响。结果显示: 在全球变暖背景下, 近35 a来沱沱河流域年及四季平均气温、 平均最高气温、 最低气温均呈显著增加趋势; 年及春、 夏、 秋季降水量增加而冬季降水量减少; 春、 冬季蒸发量呈增加趋势, 年及夏、 秋季蒸发量呈减少趋势。沱沱河流域降水量是影响径流量大小的最主要的气候因子, 夏季降水量的增多与夏季径流量的增多关系密切, 年平均最低气温升高导致的冰川和积雪融水对径流量的影响次之, 蒸发量对径流量的影响明显低于前两者。  相似文献   

2.
陆胤昊  叶柏生  李翀 《冰川冻土》2014,36(2):394-402
选取位于我国东北多年冻土区南缘的海拉尔河流域作为研究对象,根据海拉尔河水文站1958-2008年的逐月实测径流量资料,用径流量的年内年际变化、各季占年径流量的百分比、年内不均匀系数、集中度以及降水量-径流量双累积曲线等不同指标,分析研究了海拉尔河上游径流量年际变化和年内分配的规律.研究表明:近50 a来海拉尔河径流量总体上呈递减趋势,并且径流量的递减与面上降水量的递减总体上一致;春、秋季节径流量均呈现出下降趋势,冬季径流量呈增加趋势. 冬季径流量增加可能是冬季积雪增多以及流域多年冻土退化,积雪对冻结的抑制有利于冬季的产流,从而使冬季产流增加所致. 径流量年内分配不均匀程度增加,秋季径流量比重显著下降,水资源年内分布集中程度增加,这一现象可能是由于夏季风的减弱所致. 通过运用双累积曲线法,研究区降水与径流的关系在1980年前后发生了明显变化,产流表现为增加趋势,但1999年后产流能力显著下降.  相似文献   

3.
秦鹏  赵成义  盛钰  董义阳 《水文》2016,36(2):85-91
基于1960~2013年渭干河流域逐月径流量观测资料及逐日气象数据,采用Kruskal-Wallis阶段转换检验、R/S分析、集合模态分解分析(EEMD)等方法研究了近54年渭干河流域径流量的年内、年际变化特征及其影响因素。结果表明:(1)近54年渭干河流域Cv、Cr较大,径流量年内分配不均衡,径流量夏季秋季春季冬季,未来这种趋势会更加明显。(2)径流年际变化特征可分为三个阶段,1960~1976年的枯水期、1976~1993年的平水期和1994~2013的丰水期。(3)径流量总体呈现增加趋势,其中夏季增长最为显著,其次是春秋季,冬季径流量有轻微减少。未来近期内,渭干河径流量还会继续保持增加。(4)流域气温和降水量亦呈增加趋势,突变点在1970s末和1990s初,与径流变化特征吻合,两者呈正相关关系。其中夏季径流量变化主要受降水影响,秋冬季径流量变化主要受气温影响。  相似文献   

4.
甘肃河西走廊地区气候暖湿转型后的最新事实   总被引:5,自引:1,他引:4  
林纾  李红英  党冰  陆登荣 《冰川冻土》2014,36(5):1111-1121
应用1981-2011年甘肃省河西走廊地区19台站逐日降水资料, 研究了该区域年和四季降水量、雨日、降水强度的气候变化特征. 结果表明: 整个河西走廊秋季及酒泉市东部到张掖市冬季降水呈显著增加; 夏季雨日显著减少, 秋季雨日显著增加; 秋季降水强度普遍增强. 与1990年代相比, 2000年代秋季、春季和冬季降水量占年降水量的比重分别提高了9.4%、3.9%和1.8%, 仍有暖湿化倾向, 其中, 秋季暖湿化显著, 而夏季降水比重却减少了15.3%, 有暖干化趋势. 2000年代降水量、雨日和降水强度极端气候事件明显增加: 从季节看, 秋季发生频率最高, 约占同季全部极端事件的80%左右, 其次是夏季和冬季, 各占60%, 春季和年各占50%; 从要素看, 雨日发生频率最高, 占全部极端事件的近70%, 降水量次之, 占60%, 雨强占50%. 与1990年代相比, 2000年代500 hPa、200 hPa和700 hPa 高度场、相对湿度及比湿有明显的年代际变化, 对秋季降水有利而对夏季降水不利.  相似文献   

5.
全球气候变暖对西北地区秋季降水的影响   总被引:93,自引:11,他引:82  
分析了在全球气候变暖背景下,西北地区秋季降水的时空变化特征和主要影响因素,发现秋季降水量的均值突变现象在四季中最为明显,西北地区东部和西部降水在年代际尺度上具有相反的变化趋势.El Nino年秋季,新疆脊偏强,印缅槽偏弱,西北地区东部降水偏少;La Nina年秋季降水形势相反.CO2倍增情况下的数值试验表明,西北地区西部夏季降水增加明显,而秋季不明显;西北地区东部夏季降水呈减少趋势,而秋季降水增加明显.  相似文献   

6.
宝鸡峡灌区水文要素变化特征分析   总被引:1,自引:1,他引:0  
朱红艳 《水文》2011,31(5):92-96
选取宝鸡峡灌区降水、蒸发及径流资料,应用变差系数,累积距平法和Kendall秩次相关检验等分析方法分析各要素的变化趋势,绘制灌区气象要素空间分异性等值线图,并探究灌区主要灌溉水源历史演变过程及规律。结果表明:灌区降水,蒸发,林家村水文站年径流量年内分配都不均匀。年蒸发量有增加趋势,但趋势不显著;年降水量表现为减少的趋势;林家村水文站的年径流量减少十分显著。  相似文献   

7.
1936—2017年北极勒拿河流域气候变化及其对径流的影响   总被引:2,自引:2,他引:0  
胡弟弟  康世昌  许民 《冰川冻土》2020,42(1):216-223
北极河流径流的变化会影响海冰热力过程和海洋温盐环流。基于全球降水气候学中心(GPCC)及俄罗斯水文气象部提供的1936—2017年间的气温、 降水和径流数据, 分析了北极勒拿河(Lena River)流域近80年来的气候和径流变化特征, 并探究了气候变化对径流的影响。通过分析得出: 研究期内勒拿河流域气温上升0.18 ℃·(10a)-1, 降水量增加率为4.7 mm·(10a)-1, 径流增加399 m3·s-1·(10a)-1。各个季节的径流均呈增加趋势, 其中春季径流增加最为明显, 冬季次之。春季径流的增加主要是由春季气温升高所致的积雪加速消融造成的, 其次是春季降水的补给。夏、 秋季径流增加的主要原因是降水的贡献, 气温升高加剧蒸发反而使径流减少。冬季径流的增加, 是由于气温升高导致冻土退化或活动层厚度增加, 促进更多冻结水进入径流过程, 致使径流增加。  相似文献   

8.
气候变化背景下长江源区径流变化特征及其成因分析   总被引:6,自引:5,他引:1  
利用1960-2011年历年逐月长江上游通天河流域直门达水文站观测的流量资料、 长江源区气象台站观测资料以及NCEP/NCAR逐月再分析资料, 研究分析了长江源区径流变化特征及其气候归因. 结果表明: 2005年之前, 长江源区年及夏、 秋、 冬季的平均流量呈持续下降趋势, 2005年以后, 长江源区年及四季的平均流量均呈显著增加趋势. 其中, 以夏季平均流量的增幅最为明显, 年平均流量有4 a左右及12 a左右的变化周期. 高原夏季风、 长江源区夏季7、 8月地面感热、 流域降水量、 蒸发量、 气温及冰川和积雪融水均对长江源区流量变化有明显影响. 2005年以后, 长江源区年及四季的降水量呈明显的增加趋势, 而蒸发量呈明显的减少趋势. 同时, 温度急剧上升导致的冰川和积雪融水增多, 是2005年以来长江源区流量急剧增加的重要原因.  相似文献   

9.
《地下水》2017,(4)
通过对哈密气象站1951-2015年降水量和蒸发量资料进行分析,给出该区域降水、蒸发的分布特征及年内、年际变化。结果表明:哈密市降水量呈明显增加趋势,速率为2.6 mm/10a,特别是1987年以后降水量增加更加明显,较1986年以前平均增加11.4 mm,增幅33.5%;蒸发量呈明显下降趋势,平均下降速率为168.7 mm/10 a,1987年后较1986年前平均减少586 mm,减幅为19.6%。  相似文献   

10.
基于分布式水文模型的长江上游水资源时空变异性分析   总被引:2,自引:1,他引:2  
许继军  杨大文  刘志雨  雷志栋 《水文》2007,27(3):10-15,28
本文首先分析了长江流域内154个气象站降水量和26个干支流水文站流量在1950~2000年期间的变化趋势。为定量分析长江上游地区降水量时空变化对水资源量的影响,构建了基于物理机理的分布式水文模型,模拟再现了天然河道条件下的水文过程。有别于传统的河道径流性水资源评价方法,本文尝试用径流深的空间变化来探讨水资源分布及演变态势。并以渠江罗渡溪水文站为个案,剖析了90年代秋季流量大幅减少的主要缘由。结果表明:受降水在时空分布上存在变异的影响,长江上游局部地区夏季径流深比率呈增加趋势,而秋季则相反;导致嘉陵江渠江水系秋季流量减少的主要原因是降雨,其次才是人为因素。  相似文献   

11.
长江源沱沱河区45a来的气候变化特征   总被引:11,自引:3,他引:8  
利用1959—2003年长江源区沱沱河气象站气温、降水、积雪等地面观测资料,对年代际的气候变化特征及其影响进行了分析.结果表明:该区域45 a来夏季增温比较明显.20世纪90年代四季平均气温、平均最高和平均最低气温比最冷的80(或60)年代偏高0.6~1.2℃;降水量(含积雪量)冬季呈增加的趋势,夏季呈减少的趋势,秋、春季降水量增加而积雪量减少;年大风日数80—90年代较60—70年代偏多.80年代是夏季温度升高、降水减少、大风日数增多的暖干气候背景,90年代以来继续加剧,并逐步扩展到春、秋季节,使得该区域的草场退化、冰川和冻土消融加快、湿地资源减少、生态环境恶化.  相似文献   

12.
松花江流域年降水和四季降水变化特征分析   总被引:2,自引:2,他引:0  
利用松花江流域35个气象站1960~2010年的降水资料,采用协克里格插值法、线性倾向估计方法以及M-K秩次相关法等,分析了流域年降水和四季降水的时空变化特征。结果表明:(1)流域年降水由东部向西部递减,51年来流域大部分地区年降水呈不显著减少趋势。(2)流域春季降水呈不显著增加趋势,夏季呈不显著减少趋势,秋季呈不显著减少趋势,冬季降水呈显著增加趋势。(3)流域四季降水在二松源头地区一带较大,流域西部地区降水较少,松花江中下游两侧地区居中。(4)春季,流域大部分地区降水增加,但不显著。夏季,大部分地区降水减少,但不显著。秋季,全流域降水呈不显著减少趋势。冬季,全流域呈增加趋势,且绝大部分地区显著增加。(5)嫩江流域、松花江流域年降水-径流关系发生显著变化的时间是1974年、1980年和1999年。  相似文献   

13.
王荣军  刘时银  王睿  宋苗 《冰川冻土》2016,38(5):1353-1361
依据天山北坡军塘湖河近30年的径流数据及降水数据,运用Kendall秩相关系数、R/S分析、降水-径流深累积双曲线等多种方法,探讨了军塘湖河流径流的年内、年际、季节变化特征及其影响因子.结果表明:军塘湖河径流年内分配不均衡,主要集中于春季;径流的年代际变化呈现明显的上升趋势,递增率为0.0015 m3·s-1·a-1,Hurst指数为0.6326;年内不同季节表现出不同的变化趋势,其中春、秋两季表现出递减趋势,而夏、冬两季表现出递增的趋势.近年来,受到人为因素和自然要素的影响,径流在径流-降水累积曲线中表现出一定的偏移,人为因素对径流的影响贡献率最大达25.68%,而降水对径流的贡献率为74.32%.由此,降水是影响军塘湖河径流变化的主要因素,而人为影响为次要因素.  相似文献   

14.
基于SPEI指数的兰州干旱特征与气候指数的关系   总被引:2,自引:0,他引:2  
基于1961~2012年逐日气象及同期4个气候因子资料系列,采用标准化降水蒸散发指数(SPEI)定量描述兰州地区干旱状况,利用M-K检验分析了该地干旱变化趋势,采用皮尔逊相关系数法以及交叉小波变换法研究了SPEI与北大西洋涛动(NAO)、北极振荡(AO)、太平洋十年涛动(PDO)以及厄尔尼诺-南方涛动(ENSO)四个气候因子之间的关系。研究结果表明:干旱指数SPEI在月、春、夏、秋及年尺度上均呈显著下降趋势、冬季增长趋势不显著,未来兰州春、夏和秋季缺水有加重趋势,冬季有变湿润倾向;SPEI与PDO、ENSO在秋季呈显著负相关;ENSO主要影响干旱短周期的年际变化;干旱与PDO和AO呈滞后的负相关关系,两指数主要影响较长周期干旱的年际和年代际变化。  相似文献   

15.
黄河源区气候变化的季节特征与区域差异研究   总被引:7,自引:5,他引:2  
基于黄河源区有关气象台站的观测数据,对该区黄河沿水文站以上、黄河沿水文站-吉迈水文站区间、吉迈水文站-玛曲水文站区间、玛曲水文站-唐乃亥水文站区间各区域及整个黄河源区1960-2014年期间气温、降水的季节变化特征及其区域差异进行了分析。结果表明:黄河源区气温变化与全球气温变化有着较好的一致性,各区年平均气温与各季气温的年际变化均呈波动状上升态势并明显高于过去50a全球与我国气温的升幅,且各气温系列升幅差异不大;而各区年平均气温与各季气温的年代际变化的上升态势较年际变化的更为显著,但不同区域各季气温升幅差异较大。各区气温均在1996年后出现一个跃动,跃动后各气温系列均值较跃动前有较大幅度的上升。由于区域地理环境的影响,黄河源区降水量的变化比较复杂,各区各季降水量的变化具有较大的差异。近50余年来,总体上整个河源区平均降水量的年际变化呈不明显的增长态势。其中河源区的上半部分,即黄河沿以上、黄河沿-吉迈之间等海拔较高的区域年降水量增长比较显著,而源区的下半部分,即吉迈-玛曲、玛曲-唐乃亥之间的区域,年降水呈减少态势,并且对全区平均降水量与产流量贡献最大的吉迈-玛曲之间的区域,年降水量的减少非常显著。各区冬春季和夏季降水量普遍呈增长态势,秋季是河源区各季节中降水唯一减少的季节,其中吉迈-玛曲之间的区间秋季降水量的减少最为显著。各区域各季降水量的年代际变化较其年际变化差异更大,但近十余年来大部分区域各季降水普遍偏多。各区域降水系列亦有突变发生,但突变时间并不像气温系列那样一致;年降水量与夏季降水量的突变大都发生在2005年,秋季降水量突变大都发生在1986年,春季和冬季降水量突变的时间杂乱无序;突变前后系列均值有增有减,且幅度大小不等。  相似文献   

16.
气候变暖背景下干旱区水文、水资源的变化仍是影响区域水资源利用和洪水灾害防治的关键科学问题。基于1957—2019年长序列的水文、气象资料,系统分析了昆仑山北麓车尔臣河流域的水文变化特征及其对气候变化的响应。总体上,车尔臣河流域的水文过程的显著变化发生在1990s末期,变化前后年径流量约增加了54.67%,所有季节径流的增加共同造成了年径流的增加,其中夏季径流的增加对年径流增加的贡献最大,其次依次为秋季、春季和冬季。降水增加(第一控制因素)和气温升高(第二控制因素)共同造成了车尔臣河流域水文过程的变化。具体到径流年内变化,降水是春夏季径流变化的主控因素,而秋冬季径流变化的主控因素是气温。径流增加为中下游提供更多水资源的同时,也导致年际间水文洪涝和干旱事件发生的频率增加、强度增强。冰冻圈在该地区水文循环中起着重要的作用,但其对水文过程的影响仍不明确,加强阿尔金高山区的冰川、多年冻土监测将为进一步预估水文对气候变化的响应提供基础数据支撑。  相似文献   

17.
Based on monthly meteorological data from 11 stations(1959-2015)in Qinghai Basin(QHB) and its surrounding area, we analyzed monthly average temperature(Tmean), average maximum(TXam), minimum temperature(TNam) and precipitation variation characteristics as well as the influence of atmospheric oscillation on these parameters using Mann-Kendall trend analysis, mutation analysis, continuous Morlet wavelet transform, Pearson correlation analysis and R/S analysis method. In addition, the future trend of climate change in the regional scale was also discussed. We found that the temperature and precipitation increment were obvious in the region, especially the Tmean in autumn, winter, TXam and TNam in summer and winter precipitation showing significant increase. Temperature and precipitation experienced abrupt changes around 1986 and 2002, respectively. The period of oscillation of each temperature indices was similar featuring 2~3 years,8~10 years short- cycle and 30~32 years middle- cycle, while that for the precipitation featured 3~4 years,6~7 years short- cycle and 30~32 years middle- cycle. The East Asian Summer Monsoon Index(EASMI) anomaly is an important factor for the anomaly of autumn temperature and summer precipitation in QHB, while the Indian Summer Monsoon Index(ISMI) mainly affects the spring temperature and precipitation in the research area. The effects of Arctic Oscillation Index (AO) were relatively strong on temperature variation, especially in autumn and winter, and AO had significant effect on the precipitation in spring, summer and winter, too. The North Atlantic Oscillation Index (NAO) and ENSO have weak influence on the study area, NAO mainly affects summer and winter precipitation, while ENSO mainly affects autumn precipitation. The Hurst index of Tmean and annual precipitation in QHB are higher than 0.5, indicating that the temperature and precipitation in the study area will continue to be the positive trend in the future period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号