首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The  相似文献   

2.
The Mesoarchaean Tasiusarsuaq terrane of southern West Greenland consists of Tonalite–trondhjemite–granodiorite gneisses and, locally, polymetamorphic mafic and ultramafic rocks. The terrane experienced medium‐pressure granulite facies conditions during M1A in the Neoarchean, resulting in the development of two‐pyroxene melanosome assemblages in mafic granulites containing garnet‐bearing leucosome. Reworking of these rocks during retrogression introduced garnet to the melanosome in the form of overgrowths, coronas and grain necklaces that separate the mafic minerals from plagioclase. NCFMASHTO pseudosection modelling constrains the peak metamorphism during M1A to ~850 °C and 7.5 kbar at fluid‐saturated conditions. Following M1A, the rocks retained their M1A H2O content and became fluid‐undersaturated as they underwent near‐isobaric cooling to ~700 °C and 6.5–7 kbar, prior to reworking during M1B. These low H2O contents allowed for the formation of garnet overgrowths and coronas during M1B. The stability of garnet is greatly increased to lower pressure and temperature in fluid‐absent, fluid‐undersaturated mafic rocks, indicating that fluid and melt loss during initial granulite facies metamorphism is essential for the introduction of garnet, and the formation of garnet coronas, during retrogression. The occurrence of garnet coronas is consistent with, but not unique to, near‐isobaric cooling paths.  相似文献   

3.
The Madurai Block, southern India, lies between the Palghat-Cauvery and the Achankovil shear zones. The Karur area represents a portion of the granulite-facies terrain of the Madurai block. High-pressure (HP) and ultrahigh-temperature (UHT) mafic granulites have been found as enclaves within the gneisses. The peak assemblage (M1) consists of garnet, orthopyroxene, clinopyroxene, quartz, and plagioclase. Garnet breaking down during isothermal decompression is indicated by the development of pyroxene+plagioclase symplectites, which characterize the M2 stage of metamorphism. Late stage hornblende-plagioclase symplectites rimming garnet is related to the decompression-cooling M3 stage of metamorphism. Peak metamorphism M1 occurs at ~12 kbar pressure and temperatures in excess of 1,000°C. This was followed by a retrograde M2 stage when the mafic granulites suffered isothermal decompression to 6 kbar to 7 kbar at 800–900°C. At the terminal retrograde stage M3 solid-melt back reaction took place at 4.5–5.5 kbar and 650–700°C. The proposed clockwise P-T path implies that rocks from the study area could have resulted from thickened continental crust undergoing decompression. The SHRIMP data presented here from the Karur area provide evidence for a Neoproterozoic (521?±?8 Ma) metamorphic event in the Madurai block. The formation of symplectic assemblages during near isothermal decompression can be attributed to tectonic activity coinciding with the Pan-African phase of a global orogeny.  相似文献   

4.
The Palghat Cauvery Shear Zone (CSZ) is a major shear zone that possibly extends into different fragments of Gondwanaland. In the present study mafic granulites occurring on either side of the CSZ in Namakkal area, southern India are examined. Textural features recorded in the mafic granulites are crucial in elucidating the metamorphic history of the southern granulite terrane (SGT). In the mafic granulites occurring to the south of CSZ, evidence of garnet breaking down during near isothermal decompression (ITD) is indicated by the development of orthopyroxene + plagioclase moats in between quartz and garnet. The presence of comparatively small elongated second generation garnet embedded in pyroxenes from the mafic granulites occurring to the north of CSZ is indicative of the garnet formation via reaction between pyroxenes and plagioclase, which occurred during isobaric cooling (IBC). Rocks occurring to the south of CSZ have recorded comparatively higher temperature and pressure (849‡C and 9.6kbar) than those occurring to the north of the CSZ (731‡C and 8.6kbar) using conventional geothermobarometry. The rocks occurring to the north of CSZ have suffered more complex metamorphic histories in comparison to the southern part. Integrating the results of the present field and metamorphic studies with the earlier investigations and available geochronological data we suggest that the CSZ could represent a suture zone between two different continental blocks that underwent distinct metamorphic evolution.  相似文献   

5.
Abstract Regionally distributed pelitic granulites in the Wilson Lake region contain the assemblage sapphirine + hypersthene + sillimanite + quartz. Geochronology and geobarometry suggest it developed in early Proterozoic rocks at temperatures approaching 900°C and pressures above 10 kbar. Vein-like metasomatized rocks around a suite of mafic to ultramafic intrusions, emplaced near the peak of metamorphism about 1700 Ma ago, contain sapphirine, but these assemblages developed at temperatures near 750°C and pressures of 4.5 kbar. Both types of assemblage occur as relics in amphibolite-grade (biotite–sillimanite) migmatites.
P–T determinations indicate rapid isothermal uplift of 20 km accompanied by mafic intrusion and hydration. The metamorphic history and tectonic setting suggest exposure of deep continental crust by thrusting during continental collision, followed by essentially isothermal decompression.  相似文献   

6.
The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high‐grade tonalitic–trondhjemitic–granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P–T estimates using TWQ thermobarometry are: 900–950 °C and 8.0–8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700–800 °C and 6.0–7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550–650 °C and 5.3–6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P–T estimates define a clockwise P–T path involving near‐isothermal decompression for the Fuping Complex, similar to the P–T path estimated for the metapelitic gneisses. The inferred P–T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P–T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti‐clockwise P–T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P–T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma.  相似文献   

7.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

8.
Paleoproterozoic granulite facies rocks are widely distributed in the North China Craton (NCC). The Huai'an terrane, located within the northern segment of the Trans-North China Orogen (TNCO), a major Paleoproterozoic collisional belt in the central NCC expose mafic and pelitic granulites as well as TTG (tonalite-trondhjemite-granodiorite) gneisses. Here we investigate the pelitic granulites from this complex and identify four distinct mineral assemblages corresponding to different metamorphic stages. The prograde metamorphism (M1) is recorded by relict biotite and the compositional profile of Xca (grt) isopleths. The Pmax (M2) is distinguished by the Xca (grt) isopleths, which corresponds to the kyanite stable area with an inclusion mineral assemblage of Grt-c–(Ky)-Qz-Rt-Kfs-liq suggesting that the pressures were higher than 12 kbar with a temperature below 900 °C. However, kyanite is absent in thin sections suggesting its consumption during later stages. The Tmax metamorphism (M3) is characterized by the assemblage: Grt-m-Qz-Pl-Rt-Kfs-Sil-liq in the garnet mantle and also reflected in the compositional profile. Two-feldspar geothermometry yields a P-T range of 940 °C–950 °C and 9.5–10.5 kbar, indicating ultra-high temperature (UHT) metamorphic overprinting. The subsequent retrograde metamorphic stage (M4) is characterized by Grt-r-Bt-Sil-Kfs-Pl-Qz ± Rt ± Ilm with symplectites of Bt-Sil-Qz in the garnet rim suggesting garnet breakdown with P-T conditions estimated as 770 °C–840 °C and 6.5–8 kbar. The pelitic granulites show a clockwise path, with P-T estimates higher than those in estimated in previous studies using conventional techniques.LA-ICP-MS U–Pb analysis of metamorphic zircon grains yield two groups of ages at 1972.9 ± 8.1 Ma and 1873.3 ± 9.9 Ma. We suggest that the protoliths of the Manjinggou HP-UHT granulites were deep subducted where they experienced HP metamorphism associated with the collision of the Ordos and Yinshan blocks at ca. 1.97 Ga. Subsequently, the UHT metamorphic overprint occurred during the assembly of the unified Western and Eastern Blocks of the NCC along the TNCO at ca. 1.87 Ga.  相似文献   

9.
The St. Leonhard Granulite Massif, Lower Austria, is one of the small occurrences of high-pressure granulite found in the Gföhl unit at the highest tectono-stratigraphic level of the Moldanubian zone. Although predominantly composed of extremely deformed acidic, garnet+kyanite-bearing rocks, thin conformable layers of intermediate garnet+clinopyroxene-bearing granulites are seen. Pressure-temperature estimates for the peak metamorphic assemblage of garnet+clinopyroxene+ternary feldspar+quartz in these rocks are 15-19 kbar, 950-1050°C. A close coherence between results obtained from a combination of independent geothermobarometers and those derived from an internally consistent thermobarometric method indicate the retention of high-pressure/temperature equilibrium mineral compositions, even though there is a wealth of petrographic evidence for significant post-peak metamorphic decompression. Pressure-temperature estimates for the orthopyroxene-bearing, intermediate-pressure decompression stage, obtained from discrete reaction textures, are 8-12 kbar and 800-900°C. Post-decompressive cooling from 800 to 500°C, at ca. 5-8 kbar, is recorded by the final amphibolite-facies, biotite-bearing assemblage, together with petrological constraints from the enclosing acid granulites.  相似文献   

10.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

11.
High‐pressure basic granulites are widely distributed as enclaves and sheet‐like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P–T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low‐Ca core of growth‐zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750–870 °C and 11–14.5 kbar (M2) is defined by high‐Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770–830 °C and 8.5–10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500–650 °C and 5.5–8 kbar (M4). These results help define a sequential P–T path containing prograde, near‐isothermal decompression (ITD) and near‐isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P–T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high‐pressures (6–14.5 kbar) of the four metamorphic stages and the geometry of the P–T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper‐plate might be the tectonically overlying Khondalite series, which was subjected to medium‐ to low‐pressure (MP/LP: 7–4 kbar) granulite facies metamorphism with a clockwise P–T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90–1.85 Ga in a collisional environment created by the assembly process of the North China craton.  相似文献   

12.
Garnet-bearing metapelites and amphibolites are exposed in the south and middle parts of the Zanhuang complex, which is located in the central segment of the nearly NS-striking Trans-North China Orogen. These rocks preserve three metamorphic mineral assemblages forming at the prograde, peak and post-peak decompression stages. The prograde metamorphic stage (M1) is represented by mineral inclusions within garnet porphyroblasts, the peak metamorphic stage (M2) is represented by garnet rims and matrix minerals, whereas the retrograde stage (M3) is represented by amphibole + plagioclase symplectite rimming garnet porphyroblasts in the amphibolites and biotite + plagioclase symplectite rimming garnet porphyroblasts in the metapelites. All garnet porphyroblasts in the metapelites preserve prograde chemical zoning except for the ubiquitous, quite narrow zones from the underwent post-peak decompression. It has been determined through thermobarometric computation that the metamorphic conditions are 650–710°C at 8.2−9.2 kbar for the M1 (inclusion) assemblages, >810°C at >12.5 kbar for the metamorphic peak M2 (matrix) assemblages, and 660–680°C at 4.4–4.5 kbar for the retrograde M3 (symplectite) assemblages. These rocks are thus determined to have undergone metamorphism with clockwise PT paths involving nearly isothermal decompression (ITD) segments, which is inferred to be related to the amalgamation of the Eastern and Western Blocks to form the coherent basement of the North China Craton along the Trans-North China Orogen in the late Paleoproterozoic (1.88–1.85 Ga).  相似文献   

13.
The Wuhe Complex in the Bengbu area of the Jiao–Liao–Ji Belt, southeast North China Craton, contains garnet-bearing mafic granulites that have undergone high-pressure (HP) and ultrahigh-temperature (UHT) metamorphism. These granulites also experienced partial melting and occur as lenses within marbles. Petrographic observations and quantitative phase equilibria modeling reveal clockwise PT paths, involving an inferred HP stage followed by decompressional, medium-pressure, granulite-facies metamorphism and subsequent cooling. The HP assemblage of garnet + clinopyroxene + plagioclase + K-feldspar ± amphibole ± quartz ± rutile indicates PT conditions of 840–980 °C and 12–17 kbar. This was followed by post-peak, near-isothermal decompression with the development of orthopyroxene + clinopyroxene + plagioclase + K-feldspar + garnet + amphibole + ilmenite at 850–960 °C and 7–10 kbar, resulting in the development of orthopyroxene rims on resorbed garnet. Pyroxene and ternary feldspar thermometry yielded high temperatures of ~1150 °C and 1055–1087 °C at 10 kbar, respectively, which constrain the minimum crystallization temperatures of the igneous protoliths. The host and lamellae of the pyroxene and ternary feldspar are relict magmatic minerals/textures that survived metamorphism due to the silica-undersaturated bulk-rock conditions. Zr-in-rutile thermometry yielded temperatures of ~935 °C and 800 °C, with the former being consistent with the predicted peak metamorphic temperatures. Small amounts of melts (up to 5%) were generated during decompression of the Bengbu mafic granulites. The generated partial melts were mainly (quartz) monzonite at 900–920 °C, and the silica contents of the melts were controlled by the quartz stability field in PT pseudosections. The partial melts were enriched in Na and strongly depleted in Fe–Mg at the peak pressure of ~14 kbar and 920 °C, and later evolved to Fe–Mg-rich and high-K compositions during decompression. The melt compositions in the studied rocks are similar when the pressures reached ~9 kbar. The modal proportion of amphibole increased as the melt H2O content decreased at lower pressures, indicating that the limited H2O remaining in the host rocks was consumed to produce amphibole. U–Pb geochronology of zircon containing inclusions of clinopyroxene, plagioclase, and apatite constrains the timing of metamorphism to 1930–1840 Ma, as is the case for HP granulites from Shandong, Liaoning, and southern Jilin in the central and northeastern Jiao–Liao–Ji Belt. The Wuhe HP–UHT mafic granulites were ultimately sourced from upwelling asthenosphere-derived magma at ~2.1 Ga, which intruded and crystallized at shallower depths. The igneous protoliths were then buried to middle–lower crustal levels and experienced HP–UHT granulite-facies metamorphism and partial melting at 1.95–1.90 Ga related to continental subduction and overthickening. The HP–UHT mafic granulites were rapidly exhumed at ~1.85 Ga and generated small volumes of (quartz) monzonite during decompression. The newly discovered Paleoproterozoic HP–UHT mafic granulites associated with partial melting suggest that the continent materials were deeply subducted to the lower crustal levels and that additional heating was not involved. The finding of the HP–UHT granulites, together with the widespread distributions of the granulite-facies metamorphic rocks and the determination of the clockwise PTt paths, reveal that the Paleoproterozoic Jiao–Liao–Ji orogenic belt extends at least 1000 km, starting from southern Jilin, passing through the southeastern Liaoning and Jiaobei terranes, and elongating to the Bengbu area in Anhui.  相似文献   

14.
The Mahneshan Metamorphic Complex (MMC) is one of the Precambrian terrains exposed in the northwest of Iran. The MMC underwent two main phases of deformation (D1 and D2) and at least two metamorphic events (M1 and M2). Critical metamorphic mineral assemblages in the metapelitic rocks testify to regional metamorphism under amphibolite‐facies conditions. The dominant metamorphic mineral assemblage in metapelitic rocks (M1) is muscovite, biotite I, Garnet I, staurolite, Andalusite I and sillimanite. Peak metamorphism took place at 600–620°C and ∼7 kbar, corresponding to a depth of ca. 24 km. This was followed by decompression during exhumation of the crustal rocks up to the surface. The decrease of temperature and pressure during exhumation produced retrograde metamorphic assemblages (M2). Secondary phases such as garnet II biotite II, Andalusite II constrain the temperature and pressure of M2 retrograde metamorphism to 520–560°C and 2.5–3.5 kbar, respectively. The geothermal gradient obtained for the peak of metamorphism is 33°C km−1, which indicates that peak metamorphism was of Barrovian type and occurred under medium‐pressure conditions. The MMC followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal relaxation following tectonic thickening. The bulk chemistry of the MMC metapelites shows that their protoliths were deposited at an active continental margin. Together with the presence of palaeo‐suture zones and ophiolitic rocks around the high‐grade metamorphic rocks of the MMC, these features suggest that the Iranian Precambrian basement formed by an island‐arc type cratonization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract Metapelitic and charnockitic granulites exposed around Chilka Lake in the northern sector of the Eastern Ghats, India, preserve a multi-stage P—T record. A high-T decompression from above 10 kbar to 8 kbar around 1100°C has been determined from Mg-rich metapelites (XMg>0.60) with quartz-cordierite-orthopyroxene-sillimanite and cordierite—orthopyroxene—sapphirine—spinel assemblages. Between this and a second decompression to 6.0 kbar, isobaric cooling from 830 to 670°C at 8 kbar is evident. These changes are registered by the rim compositions of orthopyroxene and garnet in charnockites and metapelites with an orthopyroxene—quartz—garnet—plagioclase—cordierite assemblage, and are further supported by the garnet + quartz ± orthopyroxene + cordierite and biotite-producing reactions in sapphirine-bearing metapelites. Another indication of isobaric cooling from 800 to 650°C at 6.0 kbar is evident from rim compositions of orthopyroxene and garnet in patchy charnockites. Two sets of P—T values are obtained from metapelites with a quartz—plagioclase—garnet—sillimanite—cordierite assemblage: garnet and plagioclase cores yield 6.2 kbar, 700°C and the rims 5 kbar, 650°C, suggesting a third decompression. The earliest deformation (F1) structures are preserved in the larger charnockite bodies and the metapelites which retain the high P—T record. The effects of post-crystalline F2 deformation are observed in garnet megacrysts formed during or prior to F1 in some metapelites. Fold styles indicate a compressional regime during F1 and an extensional regime during F2. These lines of evidence and two phases of cooling at different pressures point to a discontinuity after the first cooling, and imply reworking. Two segments of the present P—T path replicate parts of the P—T paths suggested for four other granulite terranes in the Eastern Ghats, and the sense of all the paths is the same. This, plus the signature of three phases of deformation identified in the Eastern Ghats, suggests that the Chilka Lake granulites could epitomize the metamorphic evolution of the Eastern Ghats.  相似文献   

16.
We present results of study of mineral assemblages and PT-conditions of metamorphism of mafic garnet–two-pyroxene and two-pyroxene granulites in the Early Precambrian metamorphic complex of the Angara–Kan terrane as well as the U–Pb age and trace-element and Lu–Hf isotope compositions of zircon from these rocks and the zircon/garnet REE distribution coefficients. The temperatures of metamorphism of two-pyroxene granulites are estimated as 800–870 to ~ 900 °C. Mafic garnet–two-pyroxene granulites contain garnet coronas formed at 750–860 °C and 8–9.5 kbar. The formation of the garnet coronas proceeded probably at the retrograde stage during cooling and was controlled by the rock composition. The age (1.92–1.94 Ga) of zircon cores, which retain the REE pattern typical of magmatic zircon, can be taken as the minimum age of protolith for the mafic granulites. The metamorphic zircon generation in the mafic granulites is represented by multifaceted or soccerball crystals and rims depleted in Y, MREE, and HREE compared to the cores. The age of metamorphic zircon in the garnet–two-pyroxene (~ 1.77 Ga) and two-pyroxene granulites (~ 1.85 and 1.78 Ga) indicates two episodes of high-temperature metamorphism. The presence of one generation (1.77 Ga) of metamorphic zircon in the garnet–two-pyroxene granulites and, on the contrary, the predominance of 1.85 Ga zircon in the two-pyroxene granulites with single garnet grains suggest that the formation of the garnet coronas proceeded at the second stage of metamorphism. The agreement between the zircon/garnet HREE distribution coefficients and the experimentally determined values at 800 °C suggests the simultaneous formation of ~ 1.77 Ga metamorphic zircon and garnet. Zircon formation by dissolution/reprecipitation or recrystallization in a closed system without exchange with the rock matrix is confirmed by the close ranges of 176Hf/177Hf values for the core and rims. The positive εHf values (up to + 6.2) for the zircon cores suggest that the protolith of mafic granulites are derived from depleted-mantle source. The first stage of metamorphism of the mafic granulites and paragneisses of the Kan complex (1.85–1.89 Ga) ended with the formation of collisional granitoids (1.84 Ga). The second stage (~ 1.77 Ga) corresponds to the intrusion of the second phase of subalkalic leucogranites of the Taraka pluton and charnockites (1.73–1.75 Ga).  相似文献   

17.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

18.
Some granulites from the Amessmessa area (south In Ouzzal unit, Hoggar) contain the peak assemblage gedrite+garnet+sillimanite+quartz that was used to estimate the P–T conditions of metamorphism. The rocks developed symplectites and corona textures by the breakdown of the primary paragenesis to orthopyroxene, cordierite and spinel. The successive parageneses formed in separate microdomains according to a clockwise P–T path. Geothermometry, geobarometry and phase diagram calculations indicate that the textures formed by decompression and cooling from 7–9 kbar and 850–900°C to 3.5–4.5 kbar and 700–800°C. This P–T evolution is consistent with low to medium aH2O, between 0.4 and 0.7, and is similar to the metamorphic conditions deduced in Al–Mg granulites from the north of In Ouzzal.  相似文献   

19.
Mafic garnet-bearing granulites from Sostrene Island, 150 km southwest of Davis Station on the coast of Prydz Bay, East Antarctica, exhibit two-stage symplectic coronas on garnet, formed after peak metamorphic conditions (M1). An outer corona of Opx (Mg66) + Pl (An94–97) + minor Hbl mantles a finer-grained inner corona of Opx (Mg67) + Pl (An95–96) + Spl (Mg36). Both symplectites contain minor ilmenite–magnetite intergrowths. The finer-grained symplectite also occurs along a fracture cleavage in the garnet. The outer corona originated during a second metamorphic event (M2) via the reaction Grt + Cpx (Hbl) + SiO2= Opx + Pl (1), whereas the inner corona formed later in response to decompression and minor deformation, resulting in the fracture cleavage in the garnet, according to the reaction Grt = Opx + Pl + Spl (2). The grossular content of the garent (XGrs= 0.168) is almost exactly that which is required for the stoichiometric breakdown by reaction (2) (calculated XGrs= 0.167). The mafic rocks are silica undersaturated, and the SiO2 for reaction (1) was most probably derived externally from the surrounding felsic gneisses. Preferred P–T estimates for M1 based on garnet core (Prp40Alm42Grs17Sps1)–matrix Opx–Cpx–Hbl pairs are c. 10 kbar at 980°C. The fine-grained symplectite formed post-peak M2 at c. 7 kbar and 850°C. The enclosing felsic gneisses yield pressure estimates of between 5 and 7 kbar, which compare with conditions of c. 6 kbar and 775°C in the nearby Bolingen Islands. These lower P–T estimates are considered to be representative of the widespread 1100-Ma metamorphic event recognized in outcrops along the Prydz Bay coast. The high-P, high-T estimates derived from the garnet relics provide evidence for an earlier, possibly Archaean, high-grade metamorphic event.  相似文献   

20.
A suite of metapelites, charnockites, calc-silicate rocks, quartzo-feldspathic gneisses and mafic granulites is exposed at Garbham, a part of the Eastern Ghats granulite belt of India. Reaction textures and mineral compositional data have been used to determine the P–T–X evolutionary history of the granulites. In metapelites and charnockites, dehydration melting reactions involving biotite produced quartzofeldspathic segregations during peak metamorphism. However, migration of melt from the site of generation was limited. Subsequent to peak metamorphism at c . 860° C and 8 kbar, the complex evolved through nearly isothermal decompression to 530–650° C and 4–5 kbar. During this phase, coronal garnet grew in the calc-silicates, while garnet in the presence of quartz broke down in charnockite and mafic granulite. Fluid activities during metamorphism were internally buffered in different lithologies in the presence of a melt phase. The P–T path of the granulites at Garbham contrasts sharply with the other parts of the Eastern Ghats granulite belt where the rocks show dominantly near-isobaric cooling subsequent to peak metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号