首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李旭冰  黄晓东  刘爱利 《冰川冻土》2022,44(3):1091-1099
目前,被动微波数据是积雪深度反演的主要数据源,受其较粗空间分辨率的影响,反演雪深存在较大的不确定性。激光雷达由于其较高的测高精度,在雪深监测方面具有一定的潜力,基于星载激光雷达ICESat-2数据对北疆地区2018年10月至2019年9月积雪季的雪深进行了提取。由于很难获取ICESat-2轨迹点的雪深观测资料,因此首先利用地面雪深观测数据对目前流行的被动微波雪深反演产品进行验证,获取精度可靠的雪深产品并与发展的ICESat-2监测雪深数据产品进行对比。结果表明:AMSR2雪深产品在北疆地区误差较大,整体存在高估现象,中国雪深长时间序列雪深产品精度相对可靠,以作为对比ICESat-2模拟雪深的参考数据;ICESat-2雪深与中国雪深长时间序列雪深产品在空间上以及变化趋势方面吻合度较高,但ICESat-2雪深变化更加连续,说明ICESat-2激光雷达数据不但可以提取区域积雪的深度,对积雪深度的空间变化也比被动微波数据更加敏感,可以获取更加详细的积雪深度空间变化细节,为精细化的积雪深度空间分布提供数据支撑。  相似文献   

2.
基于AMSR2被动微波积雪参量高精度反演方法研究   总被引:2,自引:2,他引:0  
以新疆为研究区域建立了被动微波遥感积雪深度高精度反演模型,采用高空间和时间分辨率AM SR2被动微波遥感数据(2012年11月-2015年3月逐日数据),结合研究区域海拔高度、坡度、坡向、沙漠,荒漠和地表粗糙度等地形、地貌特征,考虑冰川、水体、林地等地表覆盖类型和不同季节的新雪、干雪和湿雪等积雪属性的微波辐射特征,以决策树阈值法为基础,通过采集样本分类建立起多种雪深判识阈值,在此基础上建立AMSR2高精度积雪深度反演综合模型,分类分析不稳定积雪和冰川信息,从而实现雪深在60 cm以内的积雪深度AMSR2反演的主要原理、思路及方法,并对模型的反演结果跟台站实测或者野外观测积雪值以时间和空间角度进行检验.结果表明:该综合模型能够定量判识研究区域复杂地形地貌条件下的1~60 cm积雪厚度,检验的复相关系数为0.74~0.88,均方根误差为2.92~6.14 cm,平均绝对偏差指数为3~4 cm,雪深误差5 cm的精度为91%~94%,雪深误差2.5cm的精度为81%~87%.  相似文献   

3.
雪深、雪水当量是积雪研究中重要参数,其在流域水量平衡和融雪径流预报以及雪灾监测与评价中起着重要作用。Chang等(1987)以辐射传输理论和米氏散射为理论基础,假定积雪密度和颗粒大小为常数,利用实测雪深数据和SMMR的亮温数据,通过统计回归方法,建立了雪深与18 GHz和37 GHz水平极化的亮温梯度之间的关系,发展了SMMR半经验的反演雪深的算法。后在此基础上又发展了针对SSM/I的半经验反演雪深算法。2002年发射的装载于Aqua卫星上的AMSR E是新一代的被动微波辐射计,性能较以往星载被动微波辐射计有较大提高,采用了改进后的SSM/I的半经验算法作为其估算全球雪水当量的反演算法。 将AMSR E的雪水当量产品与气象台站观测的雪水当量进行比较,发现在新疆地区和青藏高原地区雪水当量的RMSE分别达到31.8 mm和21 mm。本研究旨在建立基于AMSR E亮温数据,适用于中国西部地区的雪深和雪水当量反演算法。首先收集整理了2003年新疆地区的雪深、雪水当量数据和AMSR E亮温数据,去除错误样本,利用统计回归的方法,建立了新疆的反演雪深、雪水当量的半经验算法,算法中加入积雪覆盖度参数,较以往的算法有所改进,与气象台站观测数据比较,结果也表明新疆地区建立的经验算法较AMSR E的雪水当量算法有较大改进,RMSE为15.7 mm。但青藏高原地区因海拔高,地形复杂,大部分地区积雪较浅,空间分布不均和冻土存在等诸多因素运用同样的方法建立反演算法,结果不甚理想,以后的研究将重点消除这些干扰因素。  相似文献   

4.
积雪被动微波遥感研究进展   总被引:16,自引:3,他引:13  
李新  车涛 《冰川冻土》2007,29(3):487-496
积雪是冰冻圈中最活跃的要素之一,被动微波遥感具有高时间分辨率且能够迅速覆盖全球,在积雪时空变化监测中作用突出.总结分析了积雪被动微波遥感的主要模型,并对其方法、特点和适用性进行了较详细评述,重点介绍了NASA算法在雪深和雪水当量反演中的应用、反演结果的不确定性以及对它的改进.讨论新兴的积雪数据同化方法,介绍了同化被动微波观测以改进雪深和雪水当量反演精度的研究案例.评述了我国积雪被动微波遥感的进展,并且对未来可能的研究方向做出展望.  相似文献   

5.
土壤含水量是水文、农业和气象等领域的关键参数,而微波遥感是目前监测土壤含水量最有效的手段之一。本文利用主动微波与被动微波数据,结合其他多源遥感数据,运用随机森林算法分别在主动微波数据分辨率尺度和被动微波数据分辨率尺度下完成主被动微波数据的土壤含水量联合反演。首先对被动微波尺度的地表覆盖类型与归一化植被指数(NDVI)参数进行空间分辨率优化,再利用回归ReliefF方法对两种尺度所用的输入变量的重要性进行评估,并对输入变量进行优选,最后对比主被动微波数据土壤含水量联合反演和单独利用主动/被动微波数据进行反演的精度,分析主被动微波联合反演方法的有效性。结果表明:在主动微波尺度,主被动微波联合反演的精度相比单独利用主动微波数据反演的精度有所提升,相关系数r由0.691升至0.744,RMSE由0.084 8 cm3/cm3降至0.079 6 cm3/cm3;在被动微波尺度,主被动微波联合反演的精度反而比单独利用被动微波数据反演的精度更低,相关系数r由0.944变为0.939,RMSE由0.043 5 cm...  相似文献   

6.
基于AMSR-E的北疆地区积雪深度反演   总被引:3,自引:3,他引:0  
利用北疆地区2007/2008-2009/2010年度积雪季(12月至次年2月)的AMSR-E降轨19 GHz与37 GHz波段的水平极化亮温数据, 结合北疆地区45个气象台站的实测雪深数据, 建立了北疆地区基于AMSR-E亮度温度数据的雪深反演模型, 并对模型的精度进行评价. 结果显示: 雪深在3~10 cm时, 模型反演的雪深值负向平均误差为-5.1 cm, RMSE值为6.1 cm; 雪深在11~30 cm时, 模型反演雪深值的平均误差仅为2.6 cm, RMSE、 正向平均误差、 绝对平均误差均较小; 雪深大于30 cm时, 模型反演的各项误差较大. 用合成方法反演北疆地区2006/2007-2010/2011年度5个积雪季的平均雪深分布和最大雪深分布, 结果显示北疆地区积雪主要分布于北部阿尔泰山和南部天山一带, 其中阿勒泰地区所占比重最大, 中部的准噶尔盆地腹地、 克拉玛依地区雪层较浅.  相似文献   

7.
青藏高原因其复杂的地形地势和和积雪分布使得多种雪深算法未达到理想的精度。基于新一代被动微波数据AMSR2(Advanced Microwave Scanning Radiometer 2), 应用随机森林算法(Random Forest, RF)将亮温(Brightness Temperature, BT)和亮温差(Brightness Temperature Difference, BTD)作为参数输入, 并将高程和纬度参数引入雪深反演模型中, 经过模拟退火算法进行有效反演因子筛选, 构建了基于随机森林算法的青藏高原雪深反演模型。结果表明: 与AMSR2全球雪深产品相比, 随机森林算法的拟合优度(R2)由0.41提升至0.60, 均方根误差(Root Mean Square Error, RMSE)由7.36 cm降至4.88 cm, 偏差(BIAS)由3.24 cm减小至-0.16 cm, 随机森林雪深反演模型在青藏高原的精度更高; 青藏高原平均海拔超过4 000 m, 当海拔大于青藏高原平均海拔时, 随机森林算法的反演效果最差, 但RMSE仅为3.78 cm, BIAS仅为-0.09 cm; 高原南部(25° ~ 30° N)因其复杂的地势和相对较少的气象站点使得反演效果较差, RMSE为5.94 cm, BIAS为-0.39 cm; 青藏高原的主要土地覆盖类型为草地, 随机森林算法在草地的RMSE约为3 cm, BIAS接近0 cm。  相似文献   

8.
为实现4D(时间+空间)多目标、高精度的积雪监测,本次试验研究采用单台相机延时拍摄结合运动结构重建算法(Structure from motion,SfM),分别获取了祁连山黑河上游站裸露山坡坡面尺度单次降雪的雪深、逐日积雪空间分布和面积,以及祁连山八一冰川1.5m×1.5m的斑块尺度全年雪深及雪面特征数据。坡面尺度积雪观测研究表明:本方法可以准确获取积雪分布信息,但其雪深空间分布获取精度较差。斑块尺度雪深监测研究表明:本方法能够很好地获取连续的雪面特征信息和雪深,且获取雪深与SR50观测雪深的绝对误差小于3.4cm。在不同季节,本方法对积雪监测能力略有差异:春季快速积累期雪面纹理少,照片组对齐并获取点云数据和DEM数据的成功率较低,而冬季和消融季雪面纹理丰富,相应的对齐成功率比例和精度较高。本研究表明基于单台相机的4D摄影测量方法能够实现小范围、连续、高精度、多目标的积雪监测,未来应用前景广泛。  相似文献   

9.
以天山山区为研究区,利用MODIS 8d最大积雪合成数据MOD10A2,分析天山山区积雪的时间变化和空间变化情况以及不同高程带的积雪覆盖率的变化情况;结合SSM/I亮温数据和站点观测数据建立的雪深反演模型并反演研究区的雪深,根据研究区的地势起伏情况,提取特殊地形进行分析其雪深变化情况,进一步分析整个天山山区的积雪深度的时空特征,并对结果进行验证,并且对不同高程带的积雪深度进行分析.研究结果表明:1)天山山区积雪面积分布的趋势表现为自西向东、自北向南减少,总体是呈波动中减少的趋势,到了2012年天山山区年最大积雪面积为37.69×104 km2.2)积雪覆盖率与高程呈正比,在高山区可达70%以上.积雪深度分布呈自西向东、由北向南减少,深度最大的是在天山北部的博格达峰、河源峰附近,可以达到80 cm以上,最小在哈密地区的托木尔提峰附近积雪深度仅在10 cm左右.积雪深度与海拔呈正相关,最大雪深出现在4500 m以上的高山区.3)对雪深反演结果的精度评价表明,模型在10~30 cm雪深范围内,反演平均误差为-2.47 cm;在雪深<10 cm或>30 cm的局部地区存在较大偏差.  相似文献   

10.
东北地区MODIS和AMSR-E积雪产品验证及对比   总被引:3,自引:0,他引:3  
通过2002-2008年6个积雪季节的Terra-Aqua/MODIS积雪产品(MOD10A2、MOD10C2)和Aqua/AMSR-E雪水当量产品,分析了东北地区积雪覆盖面积的变化特征,以研究区气象站点观测的积雪数据为真实值来验证两种产品积雪信息的精度,探讨了云覆盖、土地利用类型和雪深对积雪覆盖精度的影响.结果表明:云的存在对微波数据积雪识别的影响较小,在积雪量较多的12月至次年的2月随云量百分比的变化,MOD10A2积雪覆盖面积比例大体出现负变化.因此,在有云情况下AMSR-E数据反演积雪精度最好.对比草地、耕地、林地和居民地4种土地覆盖类型对监测积雪覆盖精度的影响,发现林地对其影响最大,在林区3种积雪产品的积雪识别精度分别为55.8%、81.2%、85.4%;雪深对AMSR-E积雪产品识别精度影响较小,总体精度为97.8%;积雪深度对MOD10A2积雪产品识别精度影响较大,总体精度为57.3%.MOD10A2、MOD10C2和AMSR-E 3种积雪产品的总体反演精度分别为69.3%、76.6%、76.3%.有必要开发适用于东北地区的积雪覆盖算法,提高估算精度,为能量平衡估算、气候模型、农业生产、土壤墒情监测服务.  相似文献   

11.
针对2000年前北半球较高时空分辨率和高精度的历史积雪范围数据缺失问题,利用NOAA-AVHRR地表反射率数据,以Landsat-5 TM生成的积雪范围影像作为参考真值,优化基于多指标的多级决策树积雪识别算法的阈值,并结合云雪混淆区分技术,生成了北半球AVHRR 1981—1999年L1级逐日积雪范围数据集。此外,针对AVHRR在高纬度地区数据完全缺失和低纬度地区数据部分缺失问题,利用微波雪深数据集进行填充,生成了北半球L2级逐日积雪范围数据集。最后,利用北半球1981—1999年间2 546个气象台站记录的雪深数据和939景Landsat-5 TM参考积雪范围影像作为验证数据,对AVHRR积雪范围数据集进行了精度验证。结果表明:L1级和L2级数据集的总体精度分别为81.8%和82.2%,用户精度分别为83.7%和83.8%,生产者精度分别为81.7%和84.2%,说明算法精度较高,错分误差和漏分误差均比较均衡。进一步利用Landsat-5 TM参考积雪范围影像对L2级数据集进行面上精度评估,发现L2级数据集的总体精度为90.3%,用户精度为90.2%,生产者精度为99.1%,L2级数据集精度较高。生成的北半球历史数据集可为全球积雪变化研究提供有效数据补充。  相似文献   

12.
在被动微波雪水当量反演中,积雪物理参数随时间的变化特征影响着反演精度,为理解积雪随时间演化的特征及其对微波辐射亮温的影响,本研究选用2009—2013年北欧积雪实验(Nordic Snow Radar Experiment, NoSREx)积雪地面观测和微波辐射测量数据,通过雪深和温度把雪期分为积累期(10月—次年2月)、稳定期(2—4月)和消融期(4—5月),发现各个雪期的积雪演化特征为:雪颗粒形状在积累期前期以融态颗粒(Melt Forms, MF)为主,积累期后期和稳定期以圆形颗粒、片状颗粒、深霜为主,消融期以MF为主;整个雪季底层雪粒径从小变大再变小的过程,粒径最大值出现在稳定期的2至3月,约为2.5~4.0 mm,均出现在近地表雪层,而表层粒径较小且较为稳定。通过雪深和微波亮度差(18~37 GHz)的关系分析,表明亮温差在不同雪期对于雪深的依赖关系不同,在积累期和稳定期,雪深变化与亮温差变化具有明显的正相关;在消融期由于积雪融化的影响,其相关性较差;基于多层积雪微波辐射模型(MEMLS)构建了一维微波辐射模拟环境,模拟表明MEMLS模型在3个雪期的垂直极化10.65 GHz和18.7 GHz模拟结果较37 GHz和90 GHz更好;10.65 GHz V极化在入射角为50°且稳定期时,微波亮温模拟均方根误差(RMSE结果最小,为2.49 K。3个雪期90 GHz模拟结果水平极化优于垂直极化,由于受表层积雪变化影响,90 GHz模拟结果较不稳定,尤其是消融期时,RMSE最小也达到了42.7 K。本研究有助于理解积雪随时间演化的特征及其对微波辐射模拟的影响,表明在被动微波雪水当量反演算法中,针对不同积雪期需要考虑积雪演化动态过程。  相似文献   

13.
青藏高原Soumi-NPP和MODIS积雪范围产品的对比分析   总被引:1,自引:1,他引:0  
Soumi-NPP(Soumi Polar-orbiting Partnership)卫星作为接替服役超期的Terra、Aqua卫星,其积雪范围产品在青藏高原的精度尚未被评价。以Soumi-NPP积雪范围产品为研究对象,利用气象台站点数据并结合更高分辨率的Landsat-8 OLI数据,评价该产品的精度,并与MODIS(Moderate Resolution Imaging Spectroradiometer)积雪范围产品进行对比分析。结果表明:使用气象台站进行数据验证时,NPP、MOD与MYD三种积雪范围产品的总精度均较高,但三者积雪漏分误差都较大,其中MYD的漏分误差最大,为64.2%;当雪深小于5 cm时,三种积雪范围产品的积雪分类精度都较低,雪深大于等于5 cm时,NPP积雪范围产品的积雪分类精度最高,为82.3%,MOD与MYD的精度分别为77.1%和69.4%;利用Landsat-8 OLI数据验证时,Soumi-NPP积雪范围产品的Kappa系数最高,其均值为0.707,为高度一致性。而MOD10A1与MYD10A1的Kappa系数较低,分别为0.476与0.557,为中等一致性;Soumi-NPP积雪范围产品的Kappa系数大多在0.6以上,精度比较稳定,而MODIS积雪范围产品的Kappa系数波动较大,精度稳定性较差。Soumi-NPP积雪范围产品相较于MODIS积雪范围产品,其精度有了较大的提升,为准确监测青藏高原积雪范围提供了一个更优的选择。  相似文献   

14.
MODIS逐日积雪产品去云算法研究   总被引:11,自引:7,他引:4  
由于积雪和云的反射特性, 使用光学遥感监测积雪受到天气的严重干扰, 对研究区云量的分析表明, 无论是MOD10A1还是MYD10A1, 云都是影响该产品对研究区积雪进行实时监测的最大影响因素. 综合不同去云方法, 利用MODIS逐日积雪产品和被动微波数据AMSR-E雪水当量产品, 生成了MODIS逐日无云积雪图像, 并利用研究区85个地面气象观测台站提供的雪深数据对合成的单日无云积雪产品进行验证. 结果表明: 当积雪深度>3 cm时, 新产品的积雪分类精度达到91.7%, 该产品对实时监测青藏高原积雪动态变化具有重要的使用价值.  相似文献   

15.
积雪资料的可靠程度在反映积雪变化、预估后期气候变化时非常重要, 利用青藏高原74个气象台站资料与被动微波遥感资料进行对比分析. 结果表明: 两种积雪资料在高原南部边缘、高原东部唐古拉山与念青唐古拉山东部均表现为高值区, 在柴达木盆地、高原腹地及沿雅鲁藏布江一线表现为一致的少雪区,在青海南部和藏东南地区差异较大.遥感资料的积雪深度和积雪日数变化敏感区与台站观测资料存在差异.在积雪的显著季节性特征及气候尺度上的年际变化特征方面, 遥感资料与台站资料具有很好的一致性, 但遥感资料在刻画积雪季节内波动特征方面欠佳, 且年平均积雪深度和积雪日数遥感数据偏大.对AMSR-E逐日积雪资料进行评价发现, 高原腹地总精度大于高原边缘地区, 海拔3 000 m以下的反演精度较高, 雪深在9~10 cm时的反演精度较高.  相似文献   

16.
基于重轨InSAR的积雪深度反演方法   总被引:1,自引:0,他引:1  
利用合成孔径雷达(Synthetic Aperture Radar,SAR)反演积雪深度是流域尺度积雪遥感监测的热点之一, SAR的干涉测量(Interferometic SAR, InSAR)扩展了其在积雪研究中的应用. 微波能够穿透干雪,并在雪-空气界面发生折射,导致传播路径变化;根据InSAR原理,降雪前后的SAR像对会形成由于干雪覆盖导致的干涉相位差. 基于此,提出了基于重轨InSAR技术的积雪深度反演方法:首先,结合气象、水文、野外观测数据,判断积雪状态,以选择最佳干涉像对(无雪和干雪覆盖);然后,优化干涉处理过程,利用差分原理,获得由于干雪覆盖导致的相位差;最后,基于雪深与相位差的几何关系,反演积雪深度,并探讨反演结果精度的影响因素. 以新疆玛纳斯河流域山前平原为研究区,利用Envisat ASAR数据,实现积雪深度的反演. 结果表明:2009年2月份研究区大部分地区雪深为20 cm左右,与野外观测结果相符;与同时期HJ-1光学影像比较,所获得的积雪覆盖范围吻合. 同时指出,失相干和输入参数(入射角、雪密度)误差是反演结果误差的主要来源.  相似文献   

17.
积雪面积比例(Fractional Snow Cover, FSC)数据能在亚像元尺度上定量的描述像元内积雪覆盖的程度,相比二值积雪面积数据可以更加精确地估计积雪覆盖的面积。基于机器学习的随机森林回归模型可以表示高维的非线性关系,可显著提高MODIS FSC的反演精度。采用随机森林回归模型结合光谱、环境信息构建了一个新的回归模型——光谱-环境随机森林回归(Spectral Environment Random Forest Regressor, SE-RFR)模型,用于MODIS数据反演中国区域的FSC。利用中国典型积雪区内由Landsat 8地表反射率数据获取的FSC数据作为参考值,对SE-RFR模型的反演精度进行评估。研究表明,利用“SE-RFR”获取的FSC数据RMSE、MAE分别为0.160、0.104,精度较高。此外,根据SE-RFR模型与未加入环境信息的随机森林回归(S-RFR)模型比较结果可知,加入环境信息的随机森林回归模型提高了FSC反演的精度,特别是在受环境信息影响较大的青藏高原地区,RMSE从0.200降低到0.181。最后,将SE-RFR模型与目前使用广泛的MODIS FSC反演模型FSC_NDSI、MODSCAG和SSEmod进行了比较,结果表明SE-RFR模型的RMSE与FSC_NDSI、MODSCAG和SSEmod模型的RMSE相比,平均RMSE分别提高了12.0%、8.3%和5.5%。总体来说,SE-RFR模型可以准确地提取MODIS FSC,对于区域乃至全球FSC产品制备具有广泛的应用前景。  相似文献   

18.
基于被动微波遥感的积雪深度和雪水当量反演研究进展   总被引:3,自引:2,他引:1  
积雪是冰冻圈重要组成要素之一,也是对天气和气候响应最为敏感的自然要素。被动微波能够穿透云层、积雪和大气进行全天候、全天时地工作,在估算积雪深度、雪水当量等积雪参数上有很大优势。综述了国内外基于被动微波遥感的积雪参数反演研究的进展,首先介绍了被动微波遥感监测积雪的基本理论,以及被动微波遥感数据;然后将当前的积雪深度和雪水当量反演算法总结为4类:(1)基于统计的线性反演算法;(2)基于微波积雪模型的反演算法;(3)基于先验知识的非线性反演算法;(4)数据融合与数据同化。随后介绍了常用的7种积雪数据产品,并讨论了影响积雪深度和雪水当量反演精度的几个因素,最后对未来积雪参数反演研究方向做出了展望。  相似文献   

19.
刘洵  金鑫  柯长青 《冰川冻土》2014,36(3):500-507
IMS雪冰产品由多种光学与微波传感器数据融合而成,提供北半球每日无云的积雪范围,在积雪遥感研究中具有广阔的前景. 以气象站实测雪深数据为真值,检验了2009-2010年IMS雪冰产品在中国三大稳定积雪区北疆、东北、青藏高原地区每月、积雪季以及全年的误判率、漏判率和总体准确率,并分析了IMS雪冰产品的准确率与雪深之间的关系. 结果显示:IMS雪冰产品的年总体准确率在三大积雪区均超过了92%,积雪季总体准确率均超过了88%,利用IMS雪冰产品监测积雪范围是可靠的. 然而,IMS雪冰产品精度具有区域差异性,北疆地区在1月和2月误判率偏高,青藏高原地区积雪季有严重的漏判现象. IMS雪冰产品的准确率在东北地区和北疆地区随着雪深的增加而升高,当东北地区雪深超过6 cm,北疆地区超过13 cm时,准确率接近100%,但是,青藏高原地区两者基本没有关系. 通过在青藏高原地区与同时相的4景MODIS积雪产品对比分析发现,实际上IMS雪冰产品相对地高估了积雪面积,青藏高原地区漏判率高其原因是IMS对零碎积雪的识别能力不足并且气象站分布不均匀.  相似文献   

20.
积雪是地表特征的重要参数,对辐射收支、气候和长期天气变化均有重要影响。雪本身又是一个重要的天气现象和水文气象参数,过量的降雪也会带来严重的雪灾,如牧区雪灾、雪崩和融雪洪水灾害等。因此对积雪的监测,尤其是对山区的积雪监测,具有多方面的意义。利用卫星遥感技术监测积雪已有50余年的历史,并已形成了系列业务产品。青藏高原平均海拔超过4 000 m,该地区的积雪具有重要的水文、气候和生态环境意义。由于地形复杂,人迹罕至,地面观测站点稀少,受较强太阳辐射的影响,积雪消融迅速、区域差异消融以及风吹雪等因素导致积雪分布破碎化严重,对使用遥感资料监测该地区的积雪造成的极大的困难和不确定性。随着国内外传感器技术的不断发展,光学和被动微波遥感数据的同步获取技术已经非常成熟,综合利用光学遥感数据高空间分辨率和被动微波数据不受云干扰的特点,结合机器学习、无人机等技术,将环境参数加入反演模型中,有助于提高青藏高原积雪参数反演精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号