首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
碎屑流沉积是中国东部中、新生代陆相断陷湖盆陡坡带冲积扇砂砾岩扇体油气藏中最重要的油气储层。本文在济阳坳陷东营凹陷北部陡坡带永安冲积扇砂砾岩体大量岩心观察基础上,论述了断陷湖盆陡坡带碎屑流沉积物的沉积特征,提出了碎屑流沉积单元垂向序列的三种形式,探讨了单期冲积扇层序完整序列模式和储集特征,对陆相盆地冲积扇沉积学和冲积扇油藏研究具有一定理论和实践意义。  相似文献   

2.
陆相断陷湖盆陡坡带同沉积断裂对沉积充填过程具有明显的控制作用。东营凹陷北部陡坡带在古近纪沉积期断裂活动明显,主要受两条主断裂带控制,陈南断裂控制盆地演化,胜北断裂控制沉积体系的发育;碎屑物质主要来源于陈家庄凸起、滨县凸起和青坨子凸起;受断裂构造背景及物源控制,北部陡坡断裂带主要由冲积扇、扇三角洲、近岸水下扇、三角洲、滑塌浊积扇等5种沉积类型充填;时间和空间上,陡坡断裂带具有冲积扇→近岸水下扇→扇三角洲→近源滑塌浊积扇→湖泊的典型时空演化和充填模式;陡坡断裂带砂砾岩体由于具有物性好、近油源、构造活动强烈等特点,是油气聚集的有利场所。  相似文献   

3.
本文在分析断陷湖盆陡坡带不同构造部位的可容空间变化规律及其沉积响应特征的基础上,探讨了断陷湖盆陡坡带参照井选取的可容空间机理,并阐明了参照井的选择原则;根据参照井处的沉积相迁移特征及体系域叠置样式,建立了在参照井的背景下,Ⅰ型与Ⅱ型陆相层序划分及其层序界面判识的标准,以及低水位体系域(LST)、水进体系域(TST)、高水位体系域(HST)及水退体系域(RST)的识别模式。本文以泌阳断陷双河~赵凹地区下第三系核三上段为例,采用泌207井为参照井,对研究区目的层段开展了断陷湖盆陡坡带陆相层序地层学的尝试性研究,并编制了研究区目的层段的陆相层序地层等时框架模式。研究结果表明,采用选取参照井的办法,可以有效地解决断陷湖盆陡坡带陆相层序地层分析中的“沉积滨线坡折”问题。  相似文献   

4.
泌阳断陷湖盆古湖泊演化模式初探   总被引:2,自引:0,他引:2  
胡受权 《矿物岩石》1998,18(1):47-53
泌阳断陷湖盆沉积充填史划分为三个阶段:初始断陷充填阶段、主断陷充填阶段及坳陷充填阶段,并对应着三个盆地充填序列及其相应的构造层序。其中第二阶段包括强烈断陷充填亚阶段、稳定断陷充填亚阶段及断陷萎缩充填亚阶段,其沉积速率有由大到小的变化规律。早第三纪泌阳断陷湖盆经历了四个演化历程:山前洪水洼地→硫酸盐型滨浅湖→正常湖泊→碳酸盐型或硫酸盐型滨浅湖;相应地,湖盆南部边缘(陡坡带)和北部边缘(缓坡带)沉积楔状体演变过程分别为:冲积扇→陡坡型扇三角洲→缓坡型扇三角洲→冲积扇和冲积扇→三角洲→冲积扇。随着硫酸盐类矿物沉淀的增多,泌阳断陷湖盆最终走向消亡。  相似文献   

5.
为探讨陆相断陷湖盆陡坡带构造活动控制下水下粗碎屑岩沉积特征、搬运机制及其演化规律,以滦平断陷盆地陡坡带下白垩统西瓜园组为研究对象,采用无人机倾斜摄影、实测剖面、砾石定向性定量表征等技术方法,从沉积背景、岩相类型、沉积单元及相序特征等方面开展野外露头解剖工作.滦平盆地西瓜园组沉积时期,近岸水下扇沉积于构造沉降速率大、湖平面上升、深水、古地貌陡峭环境,洪水携带粗碎屑沉积沿陡坡带入湖,底部发育与地震活动相关的砾质碎屑流,伴随发育滑动—滑塌沉积,上部发育高密度浊流.随着沉积物不断供给,斜坡坡度逐渐减小;随着粗碎屑沉积搬运距离不断增加,砂砾质碎屑流中砾石表现出明显定向性,高密度浊流所占厚度比例增加;末端以低密度浊流为主.扇三角洲沉积于构造沉降速率相对较低、水深相对较浅、古地貌相对平缓的环境,发育相对成熟的供源体系,汇水系统长度较长,扇三角洲前缘粗碎屑岩由碎屑流向高密度浊流、牵引流、低密度浊流转换.   相似文献   

6.
晋中盆地是位于汾渭地堑系中部的新生代陆内断陷沉积盆地,研究晋中盆地第四纪的沉积序列对于进一步认识该盆地区域构造和区域气候环境变化具有重要意义。为查明晋中盆地第四纪沉积序列结构、研究揭示晋中盆地第四纪沉积环境及演化,通过构造岩相学方法,对晋中盆地地表和钻孔内第四纪沉积物和沉积环境进行了研究。结果表明:晋中盆地清徐地区地表第四纪沉积序列结构为盆地内部沱阳组河床相和河漫滩相-盆地边缘汾河组河流相—盆山过渡带峙峪组河流相、汾河组冲积扇相及马兰组风积相-基岩山地(盆地外围)二叠系浅海相。钻孔岩芯内第四纪沉积序列结构为下更新统浅湖相和滨湖相—中更新统浅湖相和河流相—上更新统河流相和冲积扇相—全新统冲积扇相。研究认为晋中新生代陆内断陷盆地内沉积序列和演化结构为早更新世陆相湖盆沉积环境—中更新世萎缩湖泊环境—晚更新世强烈萎缩的湖泊和河流环境—全新世再度沉降的陆相湖盆;陆相湖盆从中心向山地沉积环境分带为湖泊沉积环境—河流和湖泊沉积环境—冲积扇沉积环境(盆地边缘出山口区)。盆山过渡带地区上更新世沉积物错位现象与同沉积活动断裂有关,断裂活动性揭示了晋中盆地阶梯式断陷成盆的动力学机制。这些研究成果为区域气候环境变化和晋中盆地区域构造研究提供了新证据,也为太原市城市群建设中工程场址的选择提了供参考。   相似文献   

7.
田景春 《矿物岩石》2001,21(3):56-63
本文以胜利油区东营箕状断陷湖盆北部陡坡带沙河街组为研究对象,系统研究和总结了冲积扇、三角洲、扇三角洲、近岸水下扇和浊积扇等5类砂体的沉积学特征及地球物理特征。讨论了各类砂体的时空演化与展布规律。进而论述箕状断陷湖盆陡坡带砂体发育的控制因素。  相似文献   

8.
断陷盆地陡坡带砂砾岩扇体地震反射特征--以东营凹陷为例   总被引:10,自引:0,他引:10  
针对陆相断陷盆地陡坡带发育的砂砾岩扇体油气藏具有成因类型多、形态各异、岩性变化大、地震识别和描述困难的特点,主要从陡坡带砂砾岩扇体的类型和沉积特征研究入手,分析了大量的实际地震资料,总结出了陡坡带冲积扇、近岸水下扇、扇三角洲和近源浊积扇4种类型砂砾岩扇体的地震相特征及地震波传播速度、振幅、频率、相干性等地震属性特征;根据其地震特征建立的地震识别模式在东营凹陷陡坡带砂砾岩扇体的油气藏勘探中取得了良好的应用效果.  相似文献   

9.
《地学前缘》2017,(6):370-380
逆断层正牵引构造广泛发育于挤压盆地边缘,伴随逆断层的幕式活动而生成,并影响山前冲积扇沉积过程与沉积构型。为进一步认识这种特殊的凸起构造对冲积扇沉积过程及其内部构型的控制作用,利用水槽实验对正牵引构造发育背景下的冲积扇沉积过程进行模拟与观测。研究表明,携带大量沉积物的碎屑流冲出供水槽后很快受到正牵引构造的阻挡,大量的粗粒沉积物快速卸载在正牵引构造的迎水面,形成一个砂砾坝,同时水流被分成两股分支水流。由于较粗粒的沉积物快速在迎水面卸载,砂砾坝迎着水流逐步向物源方向生长,形成逆向(生长)砂砾坝。分支水流绕过正牵引构造后形成两个新的次级物源,在次级物源持续供给下,形成两个由多期碎屑流朵体复合而成的次级扇。受控于正牵引构造的阻挡,冲积扇表面不同位置的沉积物卸载过程差异较大,相较于正常冲积扇沉积体,砂砾坝沉积物偏粗、分选更差,而次级扇沉积物粒度偏细、分选更好;正牵引构造凸起幅度高低也会影响冲积扇沉积构型,凸起幅度越高,正牵引构造对水流的阻挡作用越强、越持久,逆向砂砾坝和次级扇的规模越大、空间结构也越复杂。正牵引构造完全被沉积物覆盖后,扇面沉积特征与一般冲积扇无异。受控于正牵引构造的冲积扇与一般冲积扇的内部构型存在较大差异,在顺物源剖面上前者依次发育碎屑流朵体、逆向砂砾坝及次级扇,而后者则整体以碎屑流朵体为主;在由近端至远端的切物源剖面上,前者依次以碎屑流朵体主控、逆向砂砾坝主控及次级扇主控,而后者则均以碎屑流朵体主控为主。  相似文献   

10.
箕状断陷湖盆陡坡带砂体特征、演化及控制因素   总被引:5,自引:1,他引:5  
《矿物岩石》2001,21(3):56-63
本文以胜利油区东营箕状断陷湖盆北部陡坡带沙河街组为研究对象,系统研究和总结了冲积扇、三角洲、扇三角洲、近岸水下扇和浊积扇等5类砂体的沉积学特征及地球物理特征.讨论了各类砂体的时空演化与展布规律.进而论述箕状断陷湖盆陡坡带砂体发育的控制因素.  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

15.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

16.
17.
18.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

19.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号