首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
魏文寿 《沉积学报》1998,16(1):152-156
重点探讨了古尔班通古特沙漠不同类型沙漠区(流动沙漠和固定沙漠区)表层沙粒度组成特征及其与热量传输和含水率的相互关系。实地测量和采样分析结果表明:不同类型沙漠区的粒度结构组成与沙层热量传输、水份迁移和沙面蒸散直接相关,并且对地表的感热和潜热以及沙漠对气候的反馈起到了重要作用。同时,沙漠表层粒度与水热传输变化过程,直接影响沙漠区植物成活率与生长,并对沙漠气候与环境变化产生重要影响。  相似文献   

2.
青藏铁路沿线地表和路基表面热力学模式(Ⅲ):参数化方案   总被引:2,自引:1,他引:1  
以物理过程分析为基础,根据野外实测资料设计了青藏铁路沿线地表和路基表面热力学模式中的大气辐射参数化方案,对直接太阳辐射、大气散射辐射、大气向下长波辐射参数进行处理,得到了较好的结果.在无云大气条件下,对直接太阳辐射透过率和大气散射辐射以太阳天顶角进行参数化;对大气向下长波辐射以大气等效辐射率及气温进行参数化;在云天条件下,基于晴阴比的云量参数化和基于气候资料的云天系数参数化都各有较好的效果.对土壤热通量的参数化方法和拖曳系数的取值问题进行了讨论,更完善的方法还有待于与实验测量工作相结合.  相似文献   

3.
2009/2010年黄河源区高寒草甸下垫面能量平衡特征分析   总被引:1,自引:1,他引:0  
以青藏高原黄河源玛多为实验区, 基于TRM-ZS1气象生态环境监测仪2009年11月1日至2010年10月31日辐射及能量通量观测数据, 采用波文比能量平衡法, 进行了该区域潜热和感热通量的估算, 分析了黄河源区高寒草甸下垫面辐射收支, 潜热、 感热和土壤热通量在不同季节的分配, 对该区域冬季地面加热场强度的变化进行了研究.结果表明: 该区域总辐射、 净辐射较强, 总辐射平均日积分值为18.06 MJ·m-2·d-1, 净辐射平均日积分值5.95 MJ·m-2·d-1, 曾观测到高达979.5 W·m-2的净辐射通量.全年地表平均反射率为0.30, 接近于荒漠和半荒漠下垫面的反射率.植物生长季土壤湿度和冬、 春季地面积雪是影响该区域地表反射率的两个最主要因素.该区域感热通量年积分值为742.68 MJ·m-2·a-1, 潜热通量年积分值为1 388.58 MJ·m2·a-1, 全年中地表以潜热方式传递热量为主.分季节分析, 冬季感热潜热强度相当, 春季以感热为主, 夏秋季则以潜热为主.土壤热通量年积分值为38.06 MJ·m-2·a-1, 全年热通量在热量平衡中约占1.8%, 但季节分配不平衡, 在冬季, 有|G|>H+LE, 土壤热通量是热平衡最大的分量.该区域地表全年向大气释放热量, 地表对大气而言是热源.  相似文献   

4.
朱叶飞 《江苏地质》2008,32(4):297-304
地表温度和长波净辐射是地表能量平衡中两个重要的能量项。首先对单窗算法应用于山区的可行性进行了分析,然后依据DEM和大气温度、湿度轮廓线对地表气温和湿度进行空间上的插值。在计算出每个像元上的气温值和湿度值基础上求算出单窗算法所需要的两个主要的大气参数分布图——大气平均作用温度分布图和大气透过率分布图,从而将单窗算法推广应用于地形起伏悬殊的山区,以计算各个高程上的地表温度。通过建立基于DEM的山地热辐射传输模型,计算每个像元来自于周围地形的热辐射分量,引用大气向下长波辐射公式计算其分量,并依据长波辐射平衡方程计算山区各个像元的长波净辐射。  相似文献   

5.
夏季草原与戈壁地表能量分析   总被引:1,自引:0,他引:1  
利用野外试验资料,比较分析了夏季祁连山区草原和河西走廊张掖戈壁地表能量特征,并探讨了环境因素与地表能量特征的关系。结果表明,在夏季典型晴天,山区草原的净辐射、潜热通量大于戈壁,而感热、土壤热通量小于戈壁;山区草原净辐射、潜热通量的日变化大于戈壁;而感热、土壤热通量的日变化小于戈壁。在山区草原,晴天潜热通量是土壤热通量的三倍多,感热通量与土壤热通量差异很小,净辐射主要用于蒸发、蒸腾;在戈壁,晴天土壤热通量和感热通量是潜热通量的近两倍,净辐射主要用于加热地表,并通过地表加热下层土壤和地面大气。两地均存在能量不平衡现象,草原感热、潜热、土壤热通量之和小于净辐射,戈壁感热、潜热、土壤热通量之和大于净辐射,戈壁能量不平衡大于草原。导致山区草原和戈壁地表净辐射特征差异的主要因素是太阳辐射,导致山区草原和戈壁地表能量分量特征差异的主要因素是陆面植被和水分,根本因素是陆面水分。   相似文献   

6.
科奇喀尔冰川夏季表碛区热量平衡参数的估算分析   总被引:8,自引:8,他引:0  
利用能量平衡原理、热传导理论和通量传输理论建立了一个热量平衡参数的估算模型,对西天山的科奇喀尔冰川夏季消融区中部表碛区的热量平衡参数进行估算与分析.结果表明:净辐射是表碛面热量收支的主要热源,吸收的热量主要以潜热和感热的形式向大气输送水汽和热量,剩余部分用于表碛增温耗热.与消融区上部的冰面和表碛面相比,在消融区中部表碛面热量收入中感热输送减小,同时向上的地热输送增加.热平衡支出项中,感热交换、蒸发耗热和地热通量的比例分别为39.1%、39.9%和21%,其中感热通量与蒸发耗热的比例比消融区上部有所提高,蒸发耗热的增加比较显著.在总的热量支出中,平均只有7.8%的热量可以用于表碛下部的增温和向深层传导.  相似文献   

7.
基于CLM模式的青藏高原土壤冻融过程陆面特征研究   总被引:3,自引:3,他引:0  
使用位于青藏高原东部若尔盖站的观测数据驱动CLM3.5模式,设计一组去除模式中冻融过程的"退化试验",进行为期一年的模拟研究。通过对比原试验与敏感性试验模拟结果,初步分析冻融过程在土壤温度变化、各能量通量分配中的作用,得到以下结论:(1)冻融过程是土壤温度变化的"缓冲器",冻结过程向周围环境释放能量减缓了土壤降温的速率,使土壤温度不至降得太低,而消融过程从周围环境吸收能量减缓了土壤升温的速率,使土壤温度不至升高太多;(2)冻融过程改变了地表辐射通量,土壤冻结改变了地表反照率,改变了向上短波辐射,且由于冻结过程减缓了地表温度的下降,改变了地表向上长波辐射,进而改变了净辐射通量;(3)冻融过程显著地改变了陆面能量的分配,通过相变能量的释放和吸收增大了地气间能量的传输,显著地增大了地表土壤热通量,且通过改变地表温度和地表蒸发,改变了感热及潜热通量。在冻结过程及完全冻结阶段,感热及潜热通量均增大,但在消融过程阶段,感热及潜热通量均减小。冻融过程对土壤热通量及感热通量的影响在冻结过程及完全冻结阶段更为显著,而对潜热的影响则是在消融过程阶段更为显著。  相似文献   

8.
评估两类模式对陆面状态的模拟和估算   总被引:1,自引:0,他引:1  
针对夏季土壤变干过程,利用观测系统模拟试验,比较离线的陆面模式(LSM)和耦合大气边界层的陆面模式(SCM)对土壤温度、湿度和地表热通量等陆面状态的模拟,然后借助数据同化方法,评估2类模式对陆面状态的估算能力.结果显示:2类模式除对地表长波辐射和感热通量的模拟差别较大外,对其余量则较小;只同化表层土壤湿度观测时,LSM对土壤湿度和感热通量的估算好于SCM,对土壤温度的估算则相反,而对潜热通量估算的差距很小;同时同化表层土壤温度、湿度观测会使地表热通量的估算差距增大;最后对2类模式不同表现的可能原因进行分析讨论.上述数值模拟和同化结果:当用某一类模式的模拟结果或同化产品为另一类不同模式提供初边界条件时必须注意它们之间的差异,避免出现输入量引起的模式状态量间的动力不协调现象.  相似文献   

9.
利用兰州大学半干旱气候与环境观测站(简称SACOL站)2008年夏季晴天的湍流、 辐射、 土壤温度和通量梯度观测资料, 确定了晴天土壤热参数, 并结合土壤热流量板测量的温度积分法把实际测量通量推算到地表; 讨论了典型黄土高原沟壑区土壤热量储存对地表能量闭合率的影响; 建立了计算地表土壤热通量的模型. 结果表明: 黄土高原典型沟壑区夏季晴天平均土壤热容量为1.23×106 J5m-35K-1; 能量平衡方程中, 以5 cm 埋深处HFP01SC热流量板观测值 (G5) 表示土壤热通量时, SACOL站地表能量闭合率为75.7%. 采用温度积分法, 将HFP01SC的直接测量结果校正到地表(Gs)后, 地表能量闭合率可以达到81.8%; 0~5 cm土壤层的热量储存对能量平衡的贡献为6.1%. 模型计算得土壤热通量(Gm)与Gs之间的线性回归斜率为0.973(显著性水平为0.1‰). (H+LE)与(Rn-Gm)进行线性回归, 得到地表能量闭合率为81.7%. 表明模型与温度积分法计算计算土壤热通量非常接近, 但通过参数化方法计算时仅需要知道Rn即可.  相似文献   

10.
土壤热通量是地表能量平衡的重要分量,其估算方案在研究地表能量平衡研究中必不可少。利用青藏公路沿线5个站点0~20 cm的实测土壤层温、湿度及5 cm土壤热通量资料,以翁笃鸣气候学计算方案为基础建立了优化的5 cm土壤热通量计算方案。通过唐古拉和西大滩两个独立站点的检验结果表明,优化方案的结果相对于原方案有较大的改善,唐古拉和西大滩5 cm土壤热通量均方根误差值分别减小了3.2 W·m-2和4.8 W·m-2,而相对误差分别减小了61.9%和36.1%,即新方案能够较好地估算出青藏公路沿线多年冻土区5 cm土壤热通量。使用优化方案模拟了青藏公路沿线11个站点5 cm土壤热通量变化,结果显示,近十年青藏公路沿线土壤热通量呈现出增大的趋势,其中,5 cm土壤热通量增大了近1.0 W·m-2,而且各观测场的年平均土壤热通量值均大于0.0 W·m-2,表明就年尺度而言,热量有盈余,盈余热量用于加热下层土壤,引起活动层厚度增加,平均状况下土壤热通量每增大1.0 W·m-2,活动层厚度增大约21.0 cm。  相似文献   

11.
基于2005—2016年青藏高原多年冻土区唐古拉和西大滩站的气象、涡动通量以及活动层资料,利用涡动相关法、气象梯度法和SHAW模型等方法探究了气候变化背景下高原多年冻土区地表能量通量变化规律及其对活动层的影响。结果表明:2005—2016年唐古拉和西大滩气温、地气温差有所升高,年降水量、10 cm土壤含水量及风速有所下降。2005年以来唐古拉和西大滩净辐射(Rn )与感热(H)呈增加趋势,潜热(LE)呈减小趋势,地表土壤热通量(G)变化较小。唐古拉和西大滩地表能量通量季节变化明显,但受海拔、纬度、坡向、土壤冻融过程、降水、下垫面状况等因素的影响,地表能量通量存在区域差异。研究时段内,唐古拉和西大滩地表冻结指数与土壤热通量呈负相关;融化指数、活动层厚度与土壤热通量呈正相关,融化期间土壤热通量积累量与融化深度的变化呈线性增加关系。  相似文献   

12.
土壤中热量传输计算的研究进展与展望   总被引:11,自引:2,他引:9  
张立杰  江灏  李磊 《冰川冻土》2004,26(5):569-575
土壤中热量传输计算的研究分为土壤热通量计算方法和土壤导温率计算方法两方面的成果. 目前已有土壤热通量的计算方法, 在土壤表层可以得到较好结果, 但在土壤深层的适用性无法确定. 多孔介质模型和考虑水的渗流造成的影响, 是多年冻土区土壤导温率的计算方法的研究方面新的进展. 为研究青藏铁路沿线冻土演化趋势找到合适的土壤热量传输计算方案, 应是今后工作的一个重点.  相似文献   

13.
青藏高原地表辐射变化影响多年冻土地表能量收支平衡、热工计算温度场边界条件以及冻土热稳定性。降雨变化是影响地表辐射的重要因素,以青藏高原北麓河地区的地表辐射资料和浅层地表水热监测数据为基础,分析了降雨对多年冻土区地表辐射特征的影响。研究表明:受降雨影响,辐射分量具有明显的日变化和年际变化特征,短波辐射被严重削弱,地面长波辐射削弱程度较低,而太阳长波辐射增强。小雨作用后,太阳短波、地面短波、地面长波辐射日积分量分别减少24.6%、37.9%、4.2%,太阳长波增加了4.3%;中雨作用后,太阳短波、地面短波、地面长波辐射日积分量分别减少32.2%、43.4%、1.7%,太阳长波增加了11.6%;大雨作用后,太阳短波、地面短波、地面长波辐射日积分量分别减少56.3%、65.5%、4.4%,太阳长波增加了10.7%;降雨作用后地表反照率减小,且呈不对称“U”形变化,地表净辐射增加,长期时间尺度上降雨对净辐射影响不明显;降雨对辐射特征的影响程度与降雨强度呈正相关且地表辐射对降雨变化的响应有滞后效应。在暖湿化背景下,冻土热工计算中应考虑降雨对多年冻土区地表能量平衡和水热边界的影响。  相似文献   

14.
不同下垫面对多年冻土浅层热状况的影响分析   总被引:1,自引:1,他引:0  
庞强强  李述训  张文纲 《冰川冻土》2009,31(6):1003-1010
近年来在气候变化和人类活动影响下, 青藏高原地表状况发生了大规模的改变, 并引发了多年冻土的退化, 给寒区环境与工程产生一系列不良影响. 而多年冻土作为地气系统相互作用的产物, 其变化主要取决于地气系统能量交换的方向. 应用青藏高原实地观测资料, 对不同地表状况下多年冻土浅层热状况进行了分析. 结果表明: 下垫面的改变对多年冻土区能量平衡状况产生明显影响. 在天然状态下地表能量收支基本保持平衡, 冻土变化也比较缓慢;而在下垫面改变特别是天然地表遭破坏后, 原有的能量平衡发生改变, 从而引起多年冻土的变化. 覆盖度较高的植被暖季能够阻止部分热量进入土层, 降低地表温度;而在冷季则能减少土层热量散发, 有助于保持地表温度. 植被的存在有利于保持多年冻土的稳定. 黑色薄膜覆盖能够增加地表吸收的太阳辐射, 并减少地表蒸发耗热, 造成地表吸热量大于放热量. 透明薄膜的"温室效应"可以有效地防止地表长波辐射的散发, 减少表层土壤热量的消耗, 从而引起地表温度的显著升高.  相似文献   

15.
以湄公河流域为研究区,采用区域气候模式RegCM3为模拟工具,以根系层土壤含水量为代表性指标,对A1B情景下未来研究区月尺度农业干旱进行了预估。基于地表能量平衡原理,系统分析了降水、蒸发、地表温度和根系层土壤含水量等农业干旱主要影响因素与区域气候模式模拟的大气环流、地表感热通量、地表潜热通量、地表净通量之间的联系和变化规律,从气陆间能量和水汽通量平衡角度,对农业干旱发生机理进行了识别。预估结果表明:从年内各月地表净通量和地表温度变化来看,未来春末(6月)和秋末(10月)湄公河流域温度增加明显,且土壤含水量减少也较为明显;同时,这两个时段蒸发旺盛和降水减少的趋势,有可能导致流域局部地区(尤其是非灌溉农业区)农业干旱的发生。  相似文献   

16.
高原地表的感热和潜热通量在亚洲季风系统中有很重要的作用。由于高原地域辽阔,且自然环境较严酷,不利于建立完善的地面观测系统。因此,卫星遥感观测就成为测算高原整体感热和潜热通量的有效工具。地面场地的观测结果作为地表通量的真实值,对于卫星遥感测算是非常重要的。它也为构建陆面—大气模型提供了科学依据,是卫星资料的资料同化系统中的重要组成部分。 计算场地热量通量有几种不同的处理方法。最简单的方法利用有效的观测和试验的参数,可以给出稳定连续的估计。愈精确的Bowen比或者廓线的观测能给出愈精确的信息。综合了湍流测量及辐射测量、土壤热通量的观测结果的估计对陆面—大气相互作用进行了详细的描述,以适应模式的发展。从1998年开始,这些方法联合应用到青藏高原;场地通量观测方面的成果以及目前对其理解将在本文中做一概述。  相似文献   

17.
土壤热通量是地表能量平衡的重要分量,对其测算方法的研究对理解能量平衡过程具有十分重要的意义.利用2010年馆陶站土壤热通量等相关观测数据对多种测算土壤热通量的方法:实测土壤热通量和热储存量的结合方法(PlateCal)、热传导方程校正法(TDEC)、谐波分析法(HM)、平均土壤热电偶法(TCAV)、耦合热传导—对流法(ITCC)获取的地表土壤热通量进行了对比分析,并且采用最优方法计算馆陶站2008-2010年的地表土壤热通量,分析了该站土壤热通量日、季节变化特征.主要结论如下:①PlateCal和TDEC法分别为获取土壤热通量的最优观测与计算方法,而HM,TCAV和ITCC法计算结果均不理想;②PlateCal与TDEC法对地表土壤温度均不敏感,而HM法对地表土壤温度则比较敏感,各种地表土壤热通量的观测与计算方法均对土壤湿度敏感;③馆陶站冬小麦、玉米覆盖地表及地表裸露时期的地表土壤热通量均呈现典型的日、季节变化特征,与净辐射变化趋势一致;④考虑热储存后,可将馆陶站2010年各月地表能量闭合率提高4%~11%,对2008-2010年的年能量平衡闭合率提高3%~5%.  相似文献   

18.
地表土壤热通量是地表热量平衡中的一个重要分量,它的确定对于蒸发和湍流热通量的计算,高原冷热源及冰雪消融过程的研究等都有一定的意义。 地表热通量值可通过计算求得,但近年来,许多人利用热流板来直接测量。为了检验热流板测量值的可靠性,我们于1979年夏季在青海格尔木地区进行了试验性观测,现将主要结果分析讨论如下。  相似文献   

19.
为明确气候湿化背景下多年冻土活动层对降雨的水热响应机制,探讨了考虑降雨作用的不同土质地表能水平衡差异和活动层水热过程。基于土壤–地表–大气能量平衡的冻土水–汽–热耦合模型,以青藏高原北麓河地区2013年实测气象资料为模型驱动数据,定量分析了高原真实野外降雨条件下3种典型地表土质(砂土、亚砂土、粉质黏土)地表水分和能量平衡差异、活动层内部水分与能量输运分量变化过程和耦合机制。结果表明:随着土壤粒径增大,地表净辐射增大、蒸发潜热增大、感热通量减少、土壤热通量减小,不同土质地表蒸发潜热和地表感热通量差异最为显著,地表能量平衡差异在暖季较大、冷季较小;土壤粒径越大,水势梯度液态水和温度梯度水汽迁移越显著,但温度梯度水汽通量减小、水势梯度液态水通量增大;随着土壤粒径增大,土壤浅表层水分减少,25~75 cm水分略有增加;随着土壤粒径增大,土壤导热系数、降雨入渗对流传热和地表蒸发量增大、热传导通量减小,土体温度梯度降低,相同深度处土壤温度更高,活动层厚度增大,不利于多年冻土稳定。研究成果可为湿化背景下多年冻土的稳定性预测和保护提供参考。  相似文献   

20.
张乐乐  高黎明  陈克龙 《冰川冻土》2018,40(6):1216-1222
利用2014年5月至2015年11月青海湖流域瓦颜山湿地观测的辐射资料,综合分析了辐射相关因子的变化特征。结果表明:瓦颜山湿地总辐射和净辐射的最大值都出现在7月,最小值都出现在12月;大气长波辐射最大值出现在8月,最小值出现在12月;地面长波辐射最大值出现在7月,最小值出现在2月。阴天对总辐射和地面反射辐射削弱作用比较明显,对大气长波辐射增强作用明显,对地面长波辐射和净辐射的影响季节差异性很大。瓦颜山湿地地表反照率的年均值为0.26。在无积雪覆盖条件下,地表反照率在冻结期明显大于消融期,最大值出现在12月。夏季地表反照率均值为0.185,略小于下垫面同为草甸的青藏高原唐古拉站。在暖季,土壤水分也是影响高寒湿地地表反照率变化的重要因子,随着表层土壤含水量的增加,地表反照率随之减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号