首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition and structure of aktashite from the Aktash deposit, Gorny Altai, Russia, have been studied by electron microprobe and X-ray structural analysis. On the basis of close compositions and crystal structures, the identity of aktashite from the Gal-Khaya and Aktash deposits has been demonstrated. Crystals of aktashite are of trigonal symmetry; the unit-cell dimensions are: a = 13.7500(4), c = 9.3600(3) Å, V = 532.54(8) Å3, space group R3, Z = 3 for the composition of Cu6Hg3As4S12, R = 0.043. The structure of aktashite as a framework of vertex-shared HgS4? and CuS4? tetrahedrons of the same orientation is intimately related to the sphalerite-type structure. The earlier identified uncommon cluster group [As4] has been verified and its parameters have been refined. It is shown that the structure may be represented as construction blocks (As4S12)12? packed according to the law of the distorted cubic I-cell.  相似文献   

2.
Semiempirical band structure calculations were performed on several skutterudite-type compounds by using the extended Hückel method. Starting with the molecular orbital calculations on isolated P4 and As4 rings, the reason for the band dispersions of the skutterudites was found to be the interactions between the nonmetal atoms. Both the intermolecular and the intramolecular interactions between the phosphorus atoms are stronger than those between the arsenic atoms. Hence, the dispersion of the bands in CoP3 is larger than that in CoAs3. The COOP (crystal orbital overlap population) integrals of the intramolecular P-P bonds reveal the relation between the valence electron count and the observed bond lengths. The P-P bonds in the skutterudite-type compounds like TP3 (T = Co, Rh, Ir) become stronger by reduction as in NiP3 and weaker by oxidation as in RT4X12 (X = P, As, Sb; R = alkaline earth or rare earth metals) because the bands near the Fermi level are bonding. The electronic reason for the geometric distortion of the Ge2Y2 (Y = S, Se) units of mixed skutterudites TGe1.5Y1.5 is caused by an electron pair gap on germanium, which corresponds to low electron density perpendicular to the ring plane on the germanium atoms. Received: 6 October 1998 / Revised, accepted: 18 June 1999  相似文献   

3.
The results of X-ray induced photoelectron spectroscopy (XPS) experiments on several phases of the ternary system Tl-Sb-S are reported. The binding energies of the inner S, Sb and Tl electrons increase with increasing quantities of Sb and decreasing amounts of Tl in these compounds. This is explained by the influences of the proportions of the bonded metals on the effective electron affinity of S. The higher proportions of the more electronegative element bonded to S cause the increase of its effective electron affinity. The results for Tl2S (carlinite), Tl3SbS3, TlSbS2 (weissbergite), TlAsS2 (lorandite) and Sb2S3 (antimonite) can be interpreted in this way. The results for Tl4S3 suggest a predominantly covalent character of bonding for both Tl(III) and Tl(I), which are present in this sulfide. From comparison with Tl3SbS4 it could be supposed that Tl(III)-S bond has a more covalent character than Sb(V)-S bond. The results for Tl3SbS4 are in agreement with crystal structure data and the results of Moessbauer spectroscopy. For AsS (realgar) the binding energies of the inner electrons of As and S significantly increase, showing that the electrons in molecular orbitals are less strongly bonded to individual atoms, as compared to pure elements. The results for the amorphous TlSb5S8 (corresponding in composition to parapierrotite) suggest that in amorphous compound the Tl-S bonding is stronger and the coordination of Tl more regular than in a crystalline one.  相似文献   

4.
Arsenic sulfide (AsS (am), As2S3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH∼2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As2S3 (am), orpiment, AsS (am), and realgar, respectively.Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ∼1.14 to 13 times and that pH values decrease by ∼0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase.Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As2S3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH∼8 and temperature 25 to 40°C, and pyrite activation energies are ∼52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As2S3 (am). Low activation energies of As2S3 (am) indicate that diffusion may be rate controlling.Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.  相似文献   

5.
The stoichiometry and stability of arsenic gaseous complexes were determined in the system As-H2O ± NaCl ± HCl ± H2S at temperatures up to 500°C and pressures up to 600 bar, from both measurements of As(III) and As(V) vapor-liquid and vapor-solid partitioning, and X-ray absorption fine structure (XAFS) spectroscopic study of As(III)-bearing aqueous fluids. Vapor-aqueous solution partitioning for As(III) was measured from 250 to 450°C at the saturated vapor pressure of the system (Psat) with a special titanium reactor that allows in situ sampling of the vapor phase. The values of partition coefficients for arsenious acid (H3AsO3) between an aqueous solution (pure H2O) and its saturated vapor (K = mAsvapor /mAsliquid) were found to be independent of As(III) solution concentrations (up to ∼1 to 2 mol As/kg) and equal to 0.012 ± 0.003, 0.063 ± 0.023, and 0.145 ± 0.020 at 250, 300, and 350°C, respectively. These results are interpreted by the formation, in the vapor phase, of As(OH)3(gas), similar to the aqueous As hydroxide complex dominant in the liquid phase. Arsenic chloride or sulfide gaseous complexes were found to be negligible in the presence of HCl or H2S (up to ∼0.5 mol/kg of vapor). XAFS spectroscopic measurements carried out on As(III)-H2O (±NaCl) solutions up to 500°C demonstrate that the As(OH)3 complex dominates As speciation both in dense H2O-NaCl fluids and low-density supercritical vapor. Vapor-liquid partition coefficients for As(III) measured in the H2O-NaCl system up to 450°C are consistent with the As speciation derived from these spectroscopic measurements and can be described by a simple relationship as a function of the vapor-to-liquid density ratio and temperature. Arsenic(III) partitioning between vapor and As-concentrated solutions (>2 mol As/kg) or As2O3 solid is consistent with the formation, in the vapor phase, of both As4O6 and As(OH)3. Arsenic(V) (arsenic acid, H3AsO4) vapor-liquid partitioning at 350°C for dilute aqueous solution was interpreted by the formation of AsO(OH)3 in the vapor phase.The results obtained were combined with the corresponding properties for the aqueous As(III) hydroxide species to generate As(OH)3(gas) thermodynamic parameters. Equilibrium calculations carried out by using these data indicate that As(OH)3(gas) is by far the most dominant As complex in both volcanic gases and boiling hydrothermal systems. This species is likely to be responsible for the preferential partition of arsenic into the vapor phase as observed in fluid inclusions from high-temperature (400 to 700°C) Au-Cu (-Sn, -W) magmatic-hydrothermal ore deposits. The results of this study imply that hydrolysis and hydration could be also important for other metals and metalloids in the H2O-vapor phase. These processes should be taken into account to accurately model element fractionation and chemical equilibria during magma degassing and fluid boiling.  相似文献   

6.
The floatability of enargite (3Cu2S.As2S5) has been determined as a function of pulp potential to establish whether the flotation behaviour of the mineral differs sufficiently from that of other copper minerals thus offering the prospect of rejecting arsenic from the Tampakan ore by potential control during flotation.  相似文献   

7.
The abandoned Sb deposit Pezinok in Slovakia is a significant source of As and Sb pollution that can be traced in the upper horizons of soils kilometers downstream. The source of the metalloids are two tailing impoundments which hold ∼380,000 m3 of mining waste. The tailings and the discharged water have circumneutral pH values (7.0 ± 0.6) because the acidity generated by the decomposition of the primary sulfides (pyrite, FeS2; arsenopyrite, FeAsS; berthierite, FeSb2S4) is rapidly neutralized by the abundant carbonates. The weathering rims on the primary sulfides are iron oxides which act as very efficient scavengers of As and Sb (with up to 19.2 wt% As and 23.7 wt% Sb). In-situ μ-XANES experiments indicate that As in the weathering rims is fully oxidized (As5+). The pore solutions in the impoundment body contain up to 81 ppm As and 2.5 ppm Sb. Once these solutions are discharged from the impoundments, they precipitate or deposit masses of As-rich hydrous ferric oxide (As-HFO) with up to 28.3 wt% As2O5 and 2.7 wt% Sb. All As-HFO samples are amorphous to X-rays. They contain Fe and As in their highest oxidation state and in octahedral and tetrahedral coordination, respectively, as suggested by XANES and EXAFS studies on Fe K and As K edges. The iron octahedra in the As-HFO share edges to form short single chains and the chains polymerize by sharing edges or corners with the adjacent units. The arsenate ions attach to the chains in a bidentate-binuclear and monodentate fashion. In addition, hydrogen-bonded complexes may exist to satisfy the bonding requirements of all oxygen atoms in the first coordination sphere of As5+. Structural changes in the As-HFO samples were traced by chemical analyses and Fe EXAFS spectroscopy during an ageing experiment. As the samples age, As becomes more easily leachable. EXAFS spectra show a discernible trend of increasing number of Fe-Fe pairs at a distance of 3.3-3.5 Å, that is, increasing polymerization of the iron octahedra to form larger units with fewer adsorption sites. Therefore, although ferrihydrite is an excellent material for capturing arsenic, its use as a medium for a long-term storage of As has to be considered with a great caution because it will tend to release arsenic as it ages.  相似文献   

8.
《Chemical Geology》2006,225(3-4):291-303
The Fe–Co–Ni–As–S system has been investigated by combining experimental data with data compiled from literature. The main focus is the phase relations and crystal chemistry of the monosulfide, pentlandite, gerdorffite–cobaltite, diarsenide, and skutterudite solid solutions.The phase relations along the Co(As, S)2–Ni(As, S)2 section has been constructed using literature data. There was reasonable agreement between the different data sets and it was possible to combine them into a unifying model showing the phase relations enveloping the gersdorffite–cobaltite solid solution.The compositional variations and the related changes in unit-cell parameters of these five Fe–Co–Ni-bearing solid solutions have been statistically analyzed. Comparison between the resulting coefficients and the effective ionic radius [Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A32, 751–767.] of the substituting elements test assumptions made concerning valence, spin state, and metal–metal bonding.Monosulfide solid solution and pentlandite both behave in a way consistent with extensive metal–metal bonding. Fe causes significant relative unit-cell expansion; Co causes a large contraction of the unit cell and Ni a moderate contraction. This supports previously suggested bonding models arguing that 56 d electrons stabilize the pentlandite cube-cluster and one d electron from each metal atom participate in metal–metal bonding. Crystal chemical models explaining the variation in the metal/sulfur ratio in pentlandite by metal vacancies are challenged by the observation that excess sulfur increases the unit-cell size of pentlandite.In cobaltite–gersdorffite, diarsenide, and skutterudite, Co has less than half the structural impact than Ni, although both elements caused significant increases in some unit-cell parameters. This partly contradicts bonding models explaining the metal atoms to be in their divalent low-spin state in cobaltite–gersdorffite and the diarsenides, suggesting that the bonding situation is more complex than normally assumed. Substituting As with S causes an expected unit-cell increase in cobaltite–gersdorffite.  相似文献   

9.
Silica-tube quenching experiments and gold-tube pressure experiments were used to study phase relations in the PbS-rich portion of the system Pb-As-S. Emphasis was placed on determining the P-T-X stability relations of jordanite, the most Pb-rich of the synthetic Pb-As-S compounds. Jordanite, Pb9As4S15, is stable below 549 ± 3° C, at which temperature it melts to galena, liquid, and a sulfur-rich vapor phase. Confining pressures of up to 2 Kb do not measurably change this reaction temperature. Density measurements on synthetic material show that the jordanite cell contains 3 (Pb9As4S15); space group P21/m requires that the cell content be expressed as either Pb28–xAs12S46–x or Pb26+xAs12S44+x, with the former much more probable from a structural point of view. In both cases 0.8 < x < 1.4 and the situation is thus quite different from the usual case of defect structures, such as pyrrhotite, Fe1–xS, which shows considerable range of solid solution. Heating experiments on natural gratonite (Pb9As4S15) show that this mineral is most probably a low-temperature dimorph of jordanite, the inversion occurring below 250° C. Experiments have also confirmed the extensive substitution of Sb for As in jordanite, as suspected from chemical analyses of the isostructural mineral geocronite (Pb28–x(As,Sb)12S46–x).
Zusammenfassung Durch Abschreckversuche mit Hilfe von Quarz- und Gold-Druckampullen wurden die Phasenbeziehungen im PbS-reichen Teil des Pb-As-S-Systems studiert. Besonderer Wert wurde auf die Feststellung der P-T-X-Stabilitätsverhältnisse des Jordanits, des Pb-reichsten Phase der synthetischen Pb-As-S-Reihe, gelegt. Jordanit (Pb9As4S15) ist unterhalb 549 ± 3° C stabil, wo er sich semikongruent zu PbS, einer Schmelze und einer schwefelreichen Dampfphase zersetzt. Drucke bis zu 2 kb ergaben keine meßbaren Änderungen dieser Reaktionstemperatur. Dichtemessungen am synthetischen Material weisen darauf hin, daß die Jordanitzelle 3 × (Pb9As4S15) enthält. Die Raumgruppe P21/m fordert entweder die Formel Pb28–xAs12S46–x oder Pb26+xAs12S44+x, wobei die erstere Form strukturell wahrscheinlicher zu sein scheint. In beiden Fällen ist 0.8 < x < 1.4 und weicht vom gebräuchlichen Begriff der Defektstrukturen, wie z.B. beim Pyrrhotin (Fe1–xS) ab, wie das bemerkenswerte Mischkristallfeld zeigt. Erhitzen von natürlichem Gratonit (Pb9As4S15) zeigt, daß dieses Mineral sehr wahrscheinlich eine dimorphe Tieftemperaturphase des Jordanits ist. Die Umwandlung erfolgt unterhalb 250° C. Außerdem wurde eine umfangreichere Substitution von As durch Sb im Jordanit festgestellt, was nach den chemischen Analysen des isostrukturellen Geochronits Pb28–x(As,Sb)12S46–x) zu erwarten war.
  相似文献   

10.
R. O. Sack 《Petrology》2017,25(5):498-515
Possible topologies of miscibility gaps in arsenian (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores are examined. These topologies are based on a thermodynamic model for fahlores whose calibration has been verified for (Cu,Ag)10(Fe,Zn)2Sb4S13 fahlores, and conform with experimental constraints on the incompatibility between As and Ag in (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores, and with experimental and natural constraints on the incompatibility between As and Zn and the nonideality of the As for Sb substitution in Cu10(Fe,Zn)2(Sb,As)4S13 fahlores. It is inferred that miscibility gaps in (Cu,Ag)10(Fe,Zn)2As4S13 fahlores have critical temperatures several °C below those established for their Sb counterparts (170 to 185°C). Depending on the structural role of Ag in arsenian fahlores, critical temperatures for (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores may vary from comparable to those inferred for (Cu,Ag)10(Fe,Zn)2As4S13 fahlores, if the As for Sb substitution stabilizes Ag in tetrahedral metal sites, to temperatures approaching 370°C, if the As for Sb substitution results in an increase in the site preference of Ag for trigonal-planar metal sites. The latter topology is more likely based on comparison of calculated miscibility gaps with compositions of fahlores from nature exhibiting the greatest departure from the Cu10(Fe,Zn)2(Sb,As)4S13 and (Cu,Ag)10(Fe,Zn)2Sb4S13 planes of the (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlore cube.  相似文献   

11.
Changes in the UV spectra of As(OH)3 solutions with variations in pH and temperature have recently been used to determine the temperature dependence of the pKa of the acid. In previous studies I used quantum mechanical techniques to study changes in structure and vibrational spectra as a function of pH for arsenites and thioarsenites. I previously calculated UV spectra for ``molecular' minerals, like realgar As4S4. Here I use a number of different quantum mechanical methods, both Hartree-Fock and density functional theory based, to calculate the UV spectra for both a related simple well-characterized gas-phase molecule PF3 and for As(OH)3 and As(SH)3 and their conjugate anions and some neutral and anionic oligomers in aqueous solution. For the monomeric species small numbers of water molecules have been explicitly included, in a supermolecule or microsolvation approach. I find that UV absorption energies accurate to a few tenths of an eV can be obtained both for gas- phase PF3 and for neutral arsenious acid in aqueous solution, for which the UV absorption maximum is calculated to occur around 6.5 eV, consistent with experiment. Accurate calculation of the UV energies for arsenite anions in aqueous solution is much more difficult, since basis set size and solvation effects are considerably larger than for the neutral molecules, but fairly reliable results can still be obtained. Deprotonation is found to reduce the lowest calculated UV transition energy by about half an eV. Oligomerization also reduces the lowest calculated UV energy by at least half an eV. Replacement of one or all the –OH groups by –SH groups reduces the lowest calculated UV energies by about 2 eV. UV excitation energies have been calculated for oligomeric species as large as As3E3(EH)3 and As4E6, where E = O, S, and may be useful for identifying such species in solution.  相似文献   

12.
This report describes a new form of arsenian pyrite, called As3+-pyrite, in which As substitutes for Fe [(Fe,As)S2], in contrast to the more common form of arsenian pyrite, As1−-pyrite, in which As1− substitutes for S [Fe(As,S)2]. As3+-pyrite has been observed as colloformic overgrowths on As-free pyrite in a hydrothermal gold deposit at Yanacocha, Peru. XPS analyses of the As3+-pyrite confirm that As is present largely as As3+. EMPA analyses show that As3+-pyrite incorporates up to 3.05 at % of As and 0.53 at. %, 0.1 at. %, 0.27 at. %, 0.22 at. %, 0.08 at. % and 0.04 at. % of Pb, Au, Cu, Zn, Ni, and Co, respectively. Incorporation of As3+ in the pyrite could be written like: As3++yAu++1-y(□)⇔2Fe2+; where Au+ and vacancy (□) help to maintain the excess charge. HRTEM observations reveal a sharp boundary between As-free pyrite and the first overgrowth of As3+-pyrite (20-40 nm thick) and co-linear lattice fringes indicating epitaxial growth of As3+-pyrite on As-free pyrite. Overgrowths of As3+-pyrite onto As-free pyrite can be divided into three groups on the basis of crystal size, 8-20 nm, 100-300 nm and 400-900 nm, and the smaller the crystal size the higher the concentration of toxic arsenic and trace metals. The Yanacocha deposit, in which As3+-pyrite was found, formed under relatively oxidizing conditions in which the dominant form of dissolved As in the stability field of pyrite is As3+; in contrast, reducing conditions are typical of most environments that host As1−-pyrite. As3+-pyrite will likely be found in other oxidizing hydrothermal and diagenetic environments, including high-sulfidation epithermal deposits and shallow groundwater systems, where probably kinetically controlled formation of nanoscale crystals such as observed here would be a major control on incorporation and release of As3+ and toxic heavy metals in oxidizing natural systems.  相似文献   

13.
Microbial SO42− reduction limits accumulation of aqueous As in reducing aquifers where the sulfide that is produced forms minerals that sequester As. We examined the potential for As partitioning into As- and Fe-sulfide minerals in anaerobic, semi-continuous flow bioreactors inoculated with 0.5% (g mL−1) fine-grained alluvial aquifer sediment. A fluid residence time of three weeks was maintained over a ca. 300-d incubation period by replacing one-third of the aqueous phase volume of the reactors with fresh medium every seven days. The medium had a composition comparable to natural As-contaminated groundwater with slightly basic pH (7.3) and 7.5 μM aqueous As(V) and also contained 0.8 mM acetate to stimulate microbial activity. Medium was delivered to a reactor system with and without 10 mmol L−1 synthetic goethite (α-FeOOH). In both reactors, influent As(V) was almost completely reduced to As(III). Pure As-sulfide minerals did not form in the Fe-limited reactor. Realgar (As4S4) and As2S3(am) were undersaturated throughout the experiment. Orpiment (As2S3) was saturated while sulfide content was low (∼50 to 150 μM), but precipitation was likely limited by slow kinetics. Reaction-path modeling suggests that, even if these minerals had formed, the dissolved As content of the reactor would have remained at hazardous levels. Mackinawite (Fe1 + xS; x ? 0.07) formed readily in the Fe-bearing reactor and held dissolved sulfide at levels below saturation for orpiment and realgar. The mackinawite sequestered little As (<0.1 wt.%), however, and aqueous As accumulated to levels above the influent concentration as microbial Fe(III) reduction consumed goethite and mobilized adsorbed As. A relatively small amount of pyrite (FeS2) and greigite (Fe3S4) formed in the Fe-bearing reactor when we injected a polysulfide solution (Na2S4) to a final concentration of 0.5 mM after 216, 230, 279, and 286 days. The pyrite, and to a lesser extent the greigite, that formed did sequester As from solution, containing 0.84 and 0.23 wt.% As on average, respectively. Our results suggest that As precipitation during Fe-sulfide formation in nature occurs mainly in conjunction with pyrite formation. Our findings imply that the effectiveness of stimulating microbial SO42− reduction to remediate As contamination may be limited by the rate and extent of pyrite formation and the solubility of As-sulfides.  相似文献   

14.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

15.
16.
Summary It is shown that a completely tetrahedral structure for Cu3VS4 would be unstable because of a large residual electric charge on the vanadium atom. The observed structure of sulvanite places six copper atoms, as well as four sulfur atoms, within bonding distance of each vanadium atom. The consideration of alternative valence-bond structures that are compatible with the electroneutrality principle (atomic charges restricted to the range between–1 and +1) leads to the bond numbers 0.50 for Cu–S and 0.29 for V–Cu, with 1.00 assumed for V–S. These bond numbers correspond reasonably well with the observed bond lengths and with electroneutrality (charges-0.27 for Cu, +0.06 for V, +0.19 for S). The bond angles at the sulfur atom indicate some bond-bending strain, estimated at 0.85 kcal mole–1 per sulfur atom. This study of the sulvanite structure thus provides an explanation of the concentration of the four bonds formed by the sulfur atom into a small solid angle on one side of the atom.
Zusammenfassung Es wird gezeigt, daß eine Struktur mit durchgehend tetraedrischer Koordination für Cu3VS4 wegen der großen Restladung des Vanadiumatoms instabil wäre. In der beobachteten Struktur des Sulvanites liegen sowohl vier Schwefelatome wie sechs Kupferatome im Bindungsabstand zu jedem Vanadiumatom. Die Betrachtung anderer kovalenter Strukturen, die mit dem Elektroneutralitäts-Prinzip (Atomladungen auf den Bereich zwischen –1 und +1 beschränkt) verträglich sind, führt auf Bindungszahlen 0,50 für Cu–S und 0.29 für V–Cu, wenn 1,00 für V–S angenommen wird. Diese Bindungszahlen entsprechen den beobachteten Bindungslängen und der Elektroneutralität (Ladungen –0,27 für Cu, +0,06 für V, +0,19 für S) ziemlich gut. Die Bindungswinkel am Schwefelatom deuten auf eine gewisse Spannung durch Verbiegung der Bindungen hin, die auf 0,85 kcal·mol–1 pro Schwefelatom geschätzt wird. Diese Untersuchung der Sulvanitstruktur liefert so eine Erklärung für die Konzentration der vier von Schwefel ausgehenden Bindungen in einem kleinen räumlichen Winkelbereich an einer Seite des Atoms.


With 1 Figure

Dedicated to ProfessorF. Machatschki on the occasion of his 70th birthday.  相似文献   

17.
Interplay of S and As in Mekong Delta sediments during redox oscillations   总被引:1,自引:1,他引:0  
The cumulative effects of periodic redox cycling on the mobility of As,Fe,and S from alluvial sediment to groundwater were investigated in bioreactor experiments.Two particular sediments from the alluvial floodplain of the Mekong Delta River were investigated:Matrix A(14 m deep)had a higher pyrite concentration than matrix B(7 m deep)sediments.Gypsum was present in matrix B but absent in matrix A.In the reactors,the sediment suspensions were supplemented with As(Ⅲ)and SO_4~(2-),and were subjected to three full-redox cycles entailing phases of nitrogen/CO_2,compressed air sparging,and cellobiose addition.Major differences in As concentration and speciation were observed upon redox cycling.Evidences support the fact that initial sediment composition is the main factor controlling arsenic release and its speciation during the redox cycles.Indeed,a high pyrite content associated with a low SO_4~(2-)content resulted in an increase in dissolved As concentrations,mainly in the form of As(Ⅲ),after anoxic half-cycles;whereas a decrease in As concentrations mainly in the form of As(Ⅴ),was instead observed after oxic half-cycles.In addition,oxic conditions were found to be responsible for pyrite and arsenian pyrite oxidation,increasing the As pool available for mobilization.The same processes seem to occur in sediment with the presence of gypsum,but,in this case,dissolved As were sequestered by biotic or abiotic redox reactions occurring in the Fe—S system,and by specific physico-chemical condition(e.g.pH).The contrasting results obtained for two sediments sampled from the same core show that many complexes and entangled factors are at work,and further refinement is needed to explain the spatial and temporal variability of As release to groundwater of the Mekong River Delta(Vietnam).  相似文献   

18.
《Applied Geochemistry》2003,18(9):1479-1496
Arsenic species were measured in a bundled-piezometer installed in the Holocene barrier of the Stuarts Point coastal sands aquifer, northern New South Wales, Australia. Vertical distribution shows two peaks of elevated As concentration. At a depth of 10–11 m, concentrations of AsTot, As(V) and As(III) are in the range of 52–85, 38–67 and 14–18 μg/l respectively and the ratio of As(V)/As(III) is well above 1 at 3.7–2.7. The second peak, at a depth of 25 m, shows the highest concentrations of AsTot, As(V) and As(III) with values reaching 337, 125 and 212 μg/l, respectively. The As(V)/As(III) ratio is below 1 at 0.6–0.7. High AsTot and As(V) concentrations at shallower depths are associated with acidic conditions and very low concentrations of all ions. Desorption of As from Al-hydroxides and As-enriched Fe-oxyhydroxides are plausible mechanisms releasing As into the groundwater system. The elevated concentration of AsTot and As(III) at 25 m is potentially related to the leaching of the clay surfaces. Elevated HCO3- and alkaline pH conditions at this depth cause desorption of As which is later present as As(III) species in the reducing environment. The high concentrations of HCO3- further reduce the possible extent of As sorption on Fe and Mn oxyhydroxides. The identification of As in a groundwater system associated with the coastal barrier sand-dune environment raises serious questions of the suitability of human consumption of untreated groundwater, drawn from these aquifer types. Further investigation both in Australia and globally are needed to classified the extent of this hydrogeochemical occurrence near coastal communities that rely on groundwater.  相似文献   

19.
Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)3, As(SH)2S- and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides S n 2- , n = 2–6, the bisulfide anion, SH-, hydrogen sulfide, H2S and the sulfanes, S n H2, n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH- to H2S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S8 with SH- to produce the polysulfides, S n H-, n = 2–6. Our results are in excellent agreement with available experimental data, and support the existence of a S6 species.  相似文献   

20.
The oxidation and dissolution mechanisms of galena (PbS) remain uncertain with a wide variety of possible mechanisms having been proposed in the literature. In this study, the thermodynamic viability of some possible mechanisms has been tested using semi-empirical quantum chemical calculations applied to a perfect (001) galena surface.The adsorption of O2 and H2O has been examined in both the gaseous and aqueous environments. In agreement with previous ab initio quantum chemical calculations, the surface induced dissociation of H2O in either environment was found to be energetically unfavourable. However, the dissociative adsorption of O2 was found to be possible and resulted in two O atoms bonded to diagonally adjacent S atoms with the O atoms oriented along the diagonal.The adsorption of H+ and possible subsequent dissolution mechanisms have been examined in the aqueous environment. An anaerobic mechanism leading to the dissolution of hydroxylated Pb2+ was identified. The mechanism involves the protonation of 3 surface S atoms surrounding a central surface Pb atom followed by substitution of this Pb by a further H+. The activation energy of this mechanism was estimated to be ≈100 kJ mol−1. Pb2+ dissolution could only occur with vacancy stabilisation by a H+. The analogous mechanisms for systems comprising H+ adsorbed on either 2 or 4 of the S atoms surrounding a central surface Pb were not found to be energetically viable. Subsequent dissolution of one of the protonated S atoms to form H2S(g) was not found to be possible thus indicating the likely formation of a Pb-deficient S-rich surface under acidic anaerobic conditions.Acidic aerobic dissolution has also been examined. Congruent dissolution to form H2SO4 and Pb2+•6H2O is energetically viable. The dissolution of one of the protonated S atoms neighbouring the Pb2+ vacancy, resulting from the anaerobic dissolution, to form H2SO4, is also possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号