首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
开展大九湖湿地生态系统CH4通量研究,对深入了解碳循环机制、科学经营以及准确评估湿地生态系统碳收支等方面具有重要意义.以湖北省神农架林区大九湖亚高山泥炭湿地为研究区域,采用涡度相关法对CH4通量进行原位连续观测,分析了泥炭湿地CH4通量变化特征及其影响因素.结果表明,大九湖泥炭湿地在2015年8月至2016年5月期间表现为CH4的源,日通量均值为15.57 nmol·m-2·s-1.CH4通量具有“夜间极大值”(2:00或22:00) 和“三峰模式”(6:00、12:00和22:00) 两种昼夜变化规律;CH4通量具有明显季节变化规律,8月释放最多(36.46 nmol·m-2·s-1),3月释放最少(3.92 nmol·m-2·s-1).相关性分析表明,大九湖泥炭湿地CH4通量受空气温度(Ta)、土壤温度(Ts)、土壤含水量(SWC)和摩擦风速(U*)的共同影响;不同时间尺度上,各影响因子与CH4通量的相关性有所差异.曲线拟合得出,CH4通量与Ta和Ts呈指数增长趋势,与SWC呈二次曲线关系.   相似文献   

2.
热融湖塘作为多年冻土退化产生的分布最广的热喀斯特景观,是大气中甲烷(CH4)的重要来源。热融湖塘的形成和演化及其对全球大气CH4循环的影响是气候变化研究领域的重要问题之一。本文综合阐述了北半球多年冻土区热融湖塘的演化、分布及变化特征,揭示了热融湖塘CH4的产生、氧化、排放过程及其影响因素。研究表明,环北极地区热融湖塘总面积约为1.4×106 km2,虽然部分地区可能导致湖塘扩张或形成新的湖塘,但整体上湖塘覆盖面积呈减少趋势;青藏高原热融湖塘总面积约为2.83×103 km2,表现为中部地区湖塘数量和面积显著增加,黄河源地区呈减少趋势。受有机质稳定性和微生物群落差异的影响,热融湖塘表层富含有机质的淤泥层及融化的深层冻土层CH4产生潜力较大,但CH4氧化过程极大地限制了湖塘CH4的排放。目前,环北极地区热融湖塘CH4排放量为1.9~6.3 Tg CH<...  相似文献   

3.
若尔盖高原草甸土与泥炭土氧化CH4研究   总被引:4,自引:0,他引:4  
若尔盖高原草甸土氧化大气CH4的速率为-0.092~0.125 ng·g-1·h-1,氧化速率随着土壤深度的增加而减小,深度超过25cm的土层没有氧化大气CH4的潜力;而高原泥炭土CH4排放速率为0.236~1.088 ng·g-1·h-1,排放速率亚表层土(10~25 cm)最大.两种土壤均能氧化高浓度CH4,泥炭土氧化大气浓度CH4的速率是草甸土的15~22倍.两种土壤不同层次氧化高浓度CH4的潜力都没有显著差异.降水减少或人为排水导致的泥炭地水位下降,将加强若尔盖高原土壤氧化CH4从而减少CH4排放.  相似文献   

4.
控制灌溉对稻田CH4和N2O综合排放及温室效应的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
采用静态箱-气象色谱法对控制灌溉稻田CH4和N2O排放进行了观测,研究控制灌溉模式对稻田CH4和N2O排放的影响,并对其温室效应进行了评估。结果表明,控制灌溉稻田CH4排放通量明显低于淹水灌溉稻田,且主要集中在分蘖前期和中期,全生育期CH4排放量比淹水灌溉稻田减少73.2%~85.0%。控制灌溉稻田N2O排放通量在水稻全生育期大部分时间都要大于淹水灌溉稻田,稻季N2O排放量分别为106.65 mg/m2和96.40 mg/m2,控灌稻田较淹灌稻田增加了10.6%。控制灌溉稻田稻季排放CH4和N2O的全球增温潜势(GWPs)为726 kg/hm2,较淹水灌溉稻田减少了59.1%。控制灌溉模式能显著降低CH4和N2O综合排放的全球增温潜势。  相似文献   

5.
内陆水体是大气甲烷(CH4)的重要排放源,其中冒泡途径排放的CH4对总排放贡献较大。通过梳理国内外研究的最新进展,系统介绍了内陆水体CH4冒泡的产生、传输、氧化及排放机制,并概述了CH4冒泡排放的测定方法与技术。其次,基于不同的时空尺度,对比分析了全球内陆水体的CH4冒泡排放的时空变化特征;总结了CH4冒泡产生与排放过程中相关影响因素的作用机制,并介绍了水体CH4冒泡排放模型的发展现状。最后,探讨了内陆水体CH4冒泡的潜在研究方向与挑战,为后续中国内陆水体CH4冒泡排放观测、过程机理与调控机制探究、模型开发与估算等研究工作提供参考。  相似文献   

6.
对采自湖北神农架大九湖泥炭地泥炭藓(Sphagnum palustre)样品进行了不同预处理,之后提取微生物基因组DNA,构建克隆文库进而对泥炭藓共生菌的群落结构进行分析.菌落培养实验和荧光定量PCR结果显示,双氧水能杀死泥炭藓表面附生的微生物及破坏部分DNA,为研究泥炭藓内共生细菌提供一定的途径.群落组成分析结果表明双氧水处理后,所获得的细菌克隆文库的群落特征发生了改变,主要表现在细菌种类的减少及各菌门所占比率的变化上:NTX-0中酸杆菌门(Acidobacteria)和变形杆菌门(Proteaobacteria)百分比含量分别位居第一和第二,而经过双氧水进行表面除菌后NTX-0-degerming中变形菌门(Proteobacteria)占了绝对优势;而在NTX-2-degerming中,蓝细菌门(Cyanobacteria)占绝对主导地位,细菌的群落多样性明显降低,细菌种类减少.系统发育分析表明与泥炭藓内共生的细菌一方面能适应大九湖泥炭湿地酸性、贫营养的环境,另一方面能为泥炭藓提供碳源、氮源,从而参与泥炭湿地的元素循环.尤其值得注意的是在内共生菌中发现了Ⅱ型甲烷氧化菌,证实了甲烷氧化菌与泥炭藓的内共生关系,暗示着这类细菌通过自身的代谢进而影响全球碳循环的潜在意义.此外,首次报道了利用细菌的通用引物扩增出了大量泥炭藓叶绿体的序列,这可能为叶绿体内共生学说提供佐证.  相似文献   

7.
基于北极理事会北极监测与评估计划(AMAP)工作组于2021年发布的“短寿命气候强迫因子(SLCFs)对北极气候、空气质量和人类健康的影响”科学评估报告,本文系统解读了黑碳(BC)、甲烷(CH4)、臭氧(O3)与硫酸盐(SO42-)气溶胶等短寿命气候强迫因子特征及其对北极气候变化的影响。报告指出:BC、O3和CH4共同促进了北极地区的快速变暖,而SO42-气溶胶对北极气候变化具有致冷效应,由此减缓了由CO2和SLCFs导致的部分增暖效应。全球人为源CH4排放量以及北极大气中的CH4含量持续增加,苔原退化、泥炭地融化、森林火灾频发等导致北极地区BC和有机碳气溶胶排放日益增多,气候变暖进一步导致更大范围且更加频繁的森林火灾和冻土退化,对BC与CH4等释放以及气候效应形成正反馈。因此,SLCFs减排将有利于北极地区生态环境的健康可持...  相似文献   

8.
疏勒河上游多年冻土区植物生长季主要温室气体排放观测   总被引:1,自引:1,他引:0  
选取青藏高原东北部疏勒河上游多年冻土区的高寒草甸样地为研究对象, 对2011年植物生长季(6-10月)主要温室气体(CO2、 CH4CH4和CO2)的排放进行了观测. 结果显示: 疏勒河上游多年冻土区高寒草甸地表CO2、 CH4和N2O排放速率范围分别为7.58~418.60 mg·m-2·h-1, -0.20~0.14 mg·m-2·h-1和-27.22~39.98 μg·m-2·h-1. 0~10 cm土壤温度、 含水量和盐分与CO2和CH4排放速率显著相关, 但与N2O排放速率无显著相关. 日均排放速率显示, CO2和N2O在整个观测期均表现为排放; CH4在植物返青期和生长旺盛期表现为排放, 在枯黄期伴随表层土壤发生日冻融循环时为吸收. 从9月30日12:00-10月6日14:40, 表层0~10 cm土壤经历了3次日冻融循环, CO2和N2O日均排放速率分别由冻融前的60.73 mg·m-2·h-1和9.91 μg·m-2·h-1提高到122.33 mg·m-2·h-1和11.70 μg·m-2·h-1. 土壤温度、 含水量和盐分是影响CO2和CH4排放的重要因子, 表层土壤冻融交替作用可提高地表CO2和N2O的排放速率.  相似文献   

9.
利用玉树隆宝湿地2015年的涡动相关系统观测资料,分析了高寒湿地CO2通量的变化特征及影响因子。结果表明:玉树隆宝湿地生长季CO2通量日变化呈倒单峰型,夏季日变化幅度大,冬季日变化幅度小。4-9月CO2净交换量为负值,其余各月CO2净交换量为正值。全年CO2净吸收量为465 g·m-2。白天CO2通量随着光合有效辐射的增大而减小。CO2排放量与土壤温度和气温日较差均呈正相关。高寒湿地土壤体积含水量对CO2通量的影响很微弱。降雨事件发生后, CO2排放量在短期内有所升高。各影响因子中,光合有效辐射对高寒湿地CO2通量影响的相关度最高,其次为气温日较差,土壤温度,而土壤体积含水量对CO2通量影响的相关度最低。  相似文献   

10.
三峡澎溪河水域CO2与CH4年总通量估算   总被引:1,自引:0,他引:1       下载免费PDF全文
李哲  白镭  蒋滔  郭劲松  刘静 《水科学进展》2013,24(4):551-559
以2010年6月~2011年5月三峡澎溪河回水区CO2与CH4通量监测数据为基础,参考澎溪河高阳平湖水域全年4次的24 h昼夜连续跟踪观测结果,对每月各采样点的日通量值进行估算。提出了水下地形划分法和环境因素控制法,将各采样点日通量数据外延至整个回水区水域,并估算了澎溪河回水区水域CO2与CH4年总通量值。研究期间,澎溪河回水区全年各采样点CO2通量均值为(3.05±0.46)mmol/(m2·h);CH4为(0.050 1±0.009 6)mmol/(m2·h)。以水下地形法为基础,该水域全年CO2和CH4总通量分别为40 060.5 t和540.9 t;以环境因素控制法为基础,全年CO2与CH4总通量分别为39 073.0 t和467.2 t。以环境要素控制法为参考,该水域CO2全年平均释放强度为43.26 mmol/(m2·d),在全球水库数据序列中处于中等略偏高水平,CH4全年平均释放强度为1.42 mmol/(m2·d),在全球水库序列中处于中等水平。  相似文献   

11.
稻田CH4的传输   总被引:28,自引:1,他引:28  
通过对稻田CH_4排放、土壤CH_4产生率以及植物体CH_4传输、气泡、液相扩散这三种排放路径的同时测量后发现:CH_4氧化作用在下午CH_4排放路径通畅时较小;阴雨天气造成CH_4排放率降低会增加CH_4在土壤中的氧化量。早稻CH_4传输效率在6月上、中旬较高,晚稻则在水稻生长初期的7月下旬最高,这主要是两季水稻的生长季节中气候因子的差异造成的。只有在较短的时间尺度内,当水稻植物体、气候因素维持相对恒定时,CH_4产生率和稻田甲烷排放才显出正相关性。 水稻植物体内有明显的CH_4浓度梯度。水稻的切割控制实验发现,通过植物体排放CH_4的比例随季节而变化,在进行单株植物体排放测量时发现了同样结果,早稻和晚稻CH_4通过水稻植物体的传输平均分别占CH_4总体排放的73.18%(43.07—97.88%〕及54.98%(11—99.95%);植物体对CH_4排放的作用在早稻大于晚稻;水稻植物体排放CH_4的能力的季节变化对早、晚稻类似,随着水稻的生长而不断增强,到水稻抽穗中期达到最大,以后则随水稻的成熟而变小;水稻植物体排放CH_4的能力与水稻植物体的高度存在极大的线性正相关。土壤中CH_4的浓度远远大于大气中的CH_4含量(10—10~4倍),根部区域土壤CH_4浓度小于水稻行间土壤中的;在垂直方向,CH_4浓度在14cm深的土壤中最大,与土壤浅层有  相似文献   

12.
全球变暖可能导致多年冻土中的有机碳分解,向大气释放甲烷(CH4),但多年冻土的甲烷释放通量与微生物群落结构以及功能基因的丰度相关性还不清楚.于2019年6月~2020年1月,选择青藏高原北部祁连山多年冻土区,利用静态箱-气相色谱法对不同海拔地区进行CH4释放通量测定,并分析土壤理化性质、CH4功能微生物群落、功能微生物...  相似文献   

13.
稻田CH_4排放的控制措施   总被引:16,自引:0,他引:16  
通过对稻田CH_4排放施肥效应的研究指出:化肥的施用能够降低CH_4的排放,但是有机物的数量及质量是影响稻田CH_4排放的主要因素,因此稻田CH_4排放的控制应该主要从有机肥的科学施用入手;比起常规的有机肥,沼渣肥这种已经发酵的“陈”有机肥能够较大程度地降低CH_4排放。推出沼渣肥和化肥混施的方案,在不降低水稻产量的同时降低CH_4排放,并建议新鲜有机肥(紫云英、稻草、猪粪等)先进沼气池产生沼气并利用,沼渣在施入土壤前先充分干燥。 水管理实验发现,当土壤湿润度低到一定程度时(26%<湿度<31%),CH_4排放率突然减少,CH_4产生率也明显降低,而且主要的产CH_4区域向土壤深处移动。重新灌水后在较长的一段时间内CH_4排放率仍不能恢复。一个三日间隔灌溉法因为灌溉的时间间隔太短,没有起到降低排放的作用。同时考虑水稻产量及方案实用性,提出用适当时间表的间歇灌溉来降低CH_4排放。如果能控制好土壤湿润度的临界值,我国常用的晒田技术会起到降低CH_4排放的效果。 为更好地降低CH_4排放,并努力增加水稻产量,设想了一种水肥结合的控制措施,即把沼渣肥和化肥混施方案与最简单的间歇灌溉方案——晒田共同使用、结果使晚稻CH_4排放降低了一倍多。水稻作为传输CH_4的主要路径,某些水稻品种也可能对降低稻田CH_4排  相似文献   

14.
稻田CH4的排放规律   总被引:26,自引:0,他引:26  
通过对我国长江中下游地区、西南地区及华中地区这三大主要水稻区稻田CH_4排放的多年测量,描述了稻田CH_4排放的一般规律及特征。稻田CH_4排放的日变化有三种型式,即下午最大值型式、夜间最大值型式以及下午、夜间双峰型式,导致这三种型式的主要原因是CH_4排放路径的日变化;不同品种水稻的不同生理特性、天气条件会通过改变CH_4排放路径的日变化来改变CH_4排放日变化的型式;随着水稻生长,CH_4排放日变化幅度也会随着变化。 早稻与晚稻稻田CH_4排放的季节变化型式不一致。早稻的CH_4排放一般出现三个排放峰值,其中第一个与第三个峰值是由土壤中CH_4的产生率增加引起的,第二个峰值则是由于CH_4排放路径的畅通引起的。四川地区单季稻CH_4排放的季节变化与早稻比较一致,但是没有第一个排放峰值的出现。引起早、晚稻不同季节变化的原因是水稻生长季节中气温的季节变化。灌溉水状态也能够较大程度的影响稻田CH_4的排放的季节变化。 含SO_4~(2-)的肥料能够降低CH_4的排放,但其作用的大小取决于土壤中有机物质(肥)的数量;施尿素、KCl也能够使CH_4排放降低,但它的降低效应没有有机肥使CH_4排放增大的正效应大,这说明有机肥对CH_4排放的影响很大,而在空气中堆腐过的沼渣肥使稻田CH_4的排放大大降低。不同的施肥使  相似文献   

15.
为了研究废弃矿井中煤层气成因,以沁水盆地南部潘庄区块废弃矿井为例,抽采废弃矿井中煤层气并进行化学组分和同位素测试,并采集部分废弃矿井水样品测试水中离子浓度、pH值等进行研究。结果表明:潘庄区块废弃矿井中煤层气CH4体积分数平均值为91.99%,CO2为1.26%,N2为6.73%;甲烷碳同位素(δ13C1)值为-31.36‰~-33.53‰,平均-32.25‰,氢同位素(δD)值为-182.76‰~-193.20‰,平均-187.538‰。废弃矿井排采水中阴阳离子主要为Mg2+、K+、HCO3-、Cl-、Na+、SO42-和NO3-等,产出水型为Mg-(HCO32型,表明矿井水受到地表水的强烈影响。废弃矿井中煤层气主要以热成因气为主,少量次生生物气。与附近未开采煤储层相比,研究区废弃矿井中的环境更有利于次生生物气的生成。   相似文献   

16.
冰芯包裹气体的提取分析提供了历史时期大气CH4含量变化最直接的信息.“三极(南极、格陵兰及青藏高原)”冰芯的大气甲烷记录的恢复,刻画了自然变化时期大气CH4含量的详细变化情景及不同纬度间的变化差异,并以此可进一步分析大气CH4含量变化与气候变化的关系以及陆地CH4排放随时间的变化特征.冰芯研究揭示,工业革命以来大气CH4含量的急剧增长及其现阶段的大气含量是过去几十万年来任何气候变化时期从未发生过的.  相似文献   

17.
Rice paddies are an important anthropogenic source of methane (CH4) to the atmosphere, which aggravate the global warming greatly. CH4 fluxes from a rice paddy in Central China were continuously measured with the eddy covariance method in 2018. The characteristics, dynamics and drivers of the observed CH4 fluxes from this paddy field were subsequently analyzed. The results indicated that a distinct seasonal variation of daily CH4 fluxes was found over the whole observed period. Daily CH4 fluxes were the highest in the vegetative period, then decreased gradually, and became the lowest in the fallow period; observed CH4 fluxes had a clear single-peak diurnal pattern during the vegetative and reproductive periods, and reached daily peaks at about 14:00-16:00. However, no obvious diurnal variation in CH4 fluxes was observed during the fallow period; air temperature was the most important drivers that controlled the seasonal variation of CH4 fluxes from this paddy field, and Vapor Pressure Deficit (VPD) was also found related to the CH4 emissions; the largest daily CH4 flux was 0.69 μmol/(m2·s), occurred in the late of vegetative period, and the total amount of CH4 emissions over the whole observed period was about 28 g C/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号