首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
《Applied Geochemistry》2006,21(11):1969-1985
Gossan Creek, a headwater stream in the SE Upsalquitch River watershed in New Brunswick, Canada, contains elevated concentrations of total Hg (HgT up to 60 μg/L). Aqueous geochemical investigations of the shallow groundwater at the headwaters of the creek confirm that the source of Hg is a contaminated groundwater plume (neutral pH with Hg and Cl concentrations up to 150 μg/L and 20 mg/L, respectively), originating from the Murray Brook mine tailings, that discharges at the headwaters of the creek. The discharge area of the contaminant plume was partially delineated based on elevated pH and Cl concentrations in the groundwater. The local groundwater outside of the plume contains much lower concentrations of Hg and Cl (<0.1 μg/L and 3.8 mg/L, respectively) and displays the chemical characteristics of an acid-sulfate weathering system, with low pH (4.1–5.5) and elevated concentrations of Cu, Zn, Pb and SO4 (up to 5400 μg Cu/L, 8700 μg Zn/L, 70 μg Pb/L and 330 mg SO4/L), derived from oxidation of sulfide minerals in the Murray Brook volcanogenic massive sulfide deposit and surrounding bedrock. The HgT mass loads measured at various hydrologic control points along the stream system indicate that 95–99% of the dissolved HgT is attenuated in the first 3–4 km from the source. Analyses of creek bed sediments for Au, Ag, Cu, Zn, Pb and Hg indicate that these metals have partitioned strongly to the sediments. Mineralogical investigations of the contaminated sediments using analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), reveal discrete particles (<1–2 μm) of metacinnabar (HgS), mixed Au–Ag–Hg amalgam, Cu sulfide and Ag sulfide.  相似文献   

2.
《Applied Geochemistry》2005,20(3):627-638
Concentrations of total Hg and methylmercury (MMHg) in riparian soil, mine-waste calcine, sediment, and moss samples collected from abandoned Hg mines in Wanshan district, Guizhou province, China, were measured to show regional dispersion of Hg-contamination. High total Hg and MMHg concentrations obtained in riparian soils from mined areas, ranged from 5.1 to 790 mg kg−1 and 0.13 to 15 ng g−1, respectively. However, total Hg and MMHg concentrations in the soils collected from control sites were significantly lower varying from 0.1 to 1.2 mg kg−1 and 0.10 to 1.6 ng g−1, respectively. Total Hg and MMHg concentrations in sediments varied from 90 to 930 mg kg−1 and 3.0 to 20 ng g−1, respectively. Total Hg concentrations in mine-waste calcines were highly elevated ranging from 5.7 to 4400 mg kg−1, but MMHg concentrations were generally low ranging from 0.17 to 1.1 ng g−1. Similar to the high Hg concentrations in soil and sediments, moss samples collected from rocks ranged from 1.0 to 95 mg kg−1 in total Hg and from 0.21 to 20 ng g−1 in MMHg. Elevated Hg concentrations in mosses suggest that atmospheric deposition might be an important pathway of Hg to the local terrestrial system. Moreover, the spatial distribution patterns of Hg contamination in the local environment suggest derivation from historic Hg mining sites in the Wanshan area.  相似文献   

3.
Mercury concentrations were determined in stream sediments from the Camaquã River Basin, located in the shield region of the state of Rio Grande do Sul, southern Brazil. The resulting geochemical data show that overbank floodplain deposits exhibit higher concentrations than sediments collected from the active channel bed. In addition, higher Hg concentrations were measured in the fine(<63 μm) sediment fraction of the samples. Total Hg concentrations in the fine fraction of active stream sediments from Lavras do Sul County, which have been influenced by past gold mining activities, have decreased during the last five years to values ≤142 ng g−1. However, in a settling pond containing abandoned mine wastes, the Hg concentration of a bulk sample remained exceptionally high (5220 ng g−1). Preliminary speciation results show that Hg0 is the predominant species in most of the samples. This was the form of Hg released by the gold amalgamation activities in the area, and appears to be relatively stable under the existing Eh and pH conditions.  相似文献   

4.
《Applied Geochemistry》2006,21(11):1986-1998
Elevated concentrations of Hg are present (averaging 36 μg/g), mainly as cinnabar, in the Murray Brook Au deposit, located in northern New Brunswick, Canada. After the mined ore was subjected to CN leaching, the tailings were deposited in an unsaturated pile, and 10 a after mine closure an estimated 4.7 × 103 kg of CN and 1.1 × 104 kg of Hg remain in the pile. Elevated Hg concentrations have been measured in the groundwater (up to 11,500 μg/L) and surface water (up to 32 μg/L) down-gradient of the tailings. To investigate the controls on Hg mobility and leaching persistence, laboratory experiments were conducted using unsaturated columns filled with tailings. Within the first 0.2 pore volumes (PV) eluted, the concentrations of Hg and CN increased to peak concentrations of 12,900 μg Hg/L and 16 mg CN/L, respectively. In the subsequent 0.9 PV, concentrations decreased to approximately 1300 μg Hg/L and 2.8 mg CN/L. Thermodynamic calculations demonstrate that >99.8% of the mobilized Hg in the tailings pore water is in the form of Hg–CN complexes, indicating that Hg mobility to the surrounding aquatic environment is directly dependent on the rate of CN leaching. One-dimensional transport simulations suggest that leached CN can be partitioned into conservative (24%) and non-conservative (76%) fractions. Extrapolation of simulation results to the field scale suggests that CN, and by extension Hg, will continue to elute from the tailings for at least an additional 130 a.  相似文献   

5.
《Applied Geochemistry》2006,21(11):1955-1968
Elemental Hg–Au amalgamation mining practices are used widely in many developing countries resulting in significant Hg contamination of surrounding ecosystems. The authors examined for the first time Hg contamination in air, water, sediment, soil and crops in the Tongguan Au mining area, China, where elemental Hg has been used to extract Au for many years. Total gaseous Hg (TGM) concentrations in ambient air in the Tongguan area were significantly elevated compared to regional background concentrations. The average TGM concentrations in ambient air in a Au mill reached 18,000 ng m−3, which exceeds the maximum allowable occupational standard for TGM of 10,000 ng m−3 in China. Both total and methyl-Hg concentrations in stream water, stream sediment, and soil samples collected in the Tongguan area were elevated compared to methyl-Hg reported in artisanal Au mining areas in Suriname and the Amazon River basin. Total Hg concentrations in vegetable and wheat samples ranged from 42 to 640 μg kg−1, all of which significantly exceed the Chinese guidance limit for vegetables (10 μg kg−1) and foodstuffs other than fish (20 μg kg−1). Fortunately, methyl-Hg was not significantly accumulated in the crops sampled in this study, where concentrations varied from 0.2 to 7.7 μg kg−1.  相似文献   

6.
《Applied Geochemistry》2006,21(6):1044-1063
A suite of trace metals was analyzed in water and sediment samples from the Blesbokspruit, a Ramsar certified riparian wetland, to assess the impact of mining on the sediment quality and the fate of trace metals in the environment. Limited mobility of trace metals was observed primarily because of their high partition coefficient in alkaline waters. Nickel was most mobile with a mean Kd of 103.28 L kg−1 whereas Zr was least mobile with a mean Kd of 105.47 L kg−1. The overall trace metal mobility sequence, derived for the Blesbokspruit, in increasing order, is: Zr < Cr < Pb < Ba < V < Cu < Zn < Sr < Mn < U < Mo < Co < Ni. Once removed from the solution, most trace metals were preferentially associated with the carbonate and Fe–Mn oxide fraction followed by the exchangeable fraction of the sediments. Organic C played a limited role in trace metal uptake. Only Cu was primarily associated with the organic fraction whereas Ti and Zr were mostly found in the residual fraction. Compared to their regional background, Au and Ag were most enriched, at times by a factor of 20–400, in the sediments. Significant enrichment of U, Hg, V, Cr, Co, Cu and Zn was also observed in the sediments.The calculated geoaccumulation indices suggest that the sediments are very lightly to lightly polluted with respect to most trace metals and highly polluted with respect to Au and Ag. The metal pollution index (MPI) for the 20 sampled sites varied between 2.9 and 45.7. The highest MPI values were found at sites that were close to tailings dams. Sediment eco-toxicity was quantified by calculating the sediment quality guideline index (SQG-I). The calculated SQG-I values (0.09–0.69) suggest that the sediments at the study area have low to moderate potential for eco-toxicity.  相似文献   

7.
The contents of biogenic components in 1511 samples of the Baltic Sea sediments (depth range 0–5 cm) are studied, and maps of their distribution are compiled. The sediments contain < 13.03% Corg, < 1.33% N, < 9.0% SiO2am, < 5.0% CaCO3, and < 1.45% P. The maximum and elevated contents of components are found in the mud of the sea deeps. The more fraction < 0.01 mm the sediments contain, the higher are the contents of components. Four facies types of carbonaceous mud, precursors of shales, have been recognized: (1) shallow-water (lagoon) lime sapropel, (2) carbonaceous mud of the shallow-water Gulf of Finland, (3) carbonaceous mud of the middle-depth Baltic Sea, and (4) laminated carbonaceous metal-bearing mud. The latter type of mud is strongly enriched in manganese and ore-forming trace elements, which points to its formation in the stagnant environment. In composition the Baltic Sea mud is similar to petroliferous mudstones of the Bazhenov Formation in West Siberia and to ancient black shales.  相似文献   

8.
The sources and historical deposition of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in dated sediment cores from the Pichavaram mangrove–estuarine complex. The ΣPAH flux in mangrove and estuarine sediments was 0.064 ± 0.031 μg/cm2/yr and 0.043 ± 0.020 μg/cm2/yr, respectively. The PAH flux in sediments increased up-core, coinciding with rapid urbanization since the 1970s. The flux showed a decrease in recent years (since 1990), coinciding with less riverine discharge, and perhaps more effective implementation of environmental regulations. The sediments were dominated by low molecular weight PAHs, suggesting anthropogenic input. Ratios of specific PAH isomer pairs suggested a greater input of petrogenic vs. pyrogenic derived PAHs. Notably, the deposition of high molecular weight PAHs increase in mangrove surface sediments was due to lignite and firewood combustion. Because of their overall low concentration in sediments it is unlikely these PAHs pose an immediate ecological hazard.  相似文献   

9.
Selenium (Se) is an important co-existing elemental component of the mineral matrix of mercury (Hg) ore deposits. The hazards associated with Se contamination of the aquatic ecosystems in Hg mining areas; however, are often overlooked by environmental researchers due to a preoccupation with Hg. Selenium may also pose a long-term risk to the local ecosystem, and further complicate the situation as Se may also play an important antagonistic role against Hg. Furthermore, most studies on Se pollution have focused only on total Se, whereas the toxicity, bioavailability, and bioaccumulation of Se in aquatic ecosystems is primarily determined by its site-specific individual species. In this study, the concentrations of total Se, inorganic Se (tetravalent and hexavalent), and organic Se were determined in water samples collected from 41 typical sites selected in rivers, tributaries, and springs in Wanshan, China, where Hg and Se co-occur due to historic Hg mining and retorting activities. Se concentrations were observed to decrease with distance from mine-waste calcines, which indicated that mine-waste calcines may be significant sources of the elevated Se in the rivers, especially in downstream areas within 8 km from the mine-waste calcines. The concentration of total aqueous Se throughout the study area was highly variable (3.8 ± 6.0 μg L−1) and on average was one order of magnitude greater than that in natural river systems worldwide (0.1–0.3 μg L−1). The majority of the Se was hexavalent (3.1 ± 4.9 μg L−1; 65%), followed by tetravalent (0.53 ± 0.86 μg L−1; 15%) and organic forms (0.85 ± 1.5 μg L−1; 20%), possibly due to the generally alkaline conditions. Se concentrations in some sampling sites exceeded certain recommended limit of values. However, the existing criteria for Se in aquatic system are mainly based on total Se and the recommended limit of values in different countries or organizations are inconsistent with one another. Therefore, the need to consider Se speciation rather than only total Se is highlighted for future studies.  相似文献   

10.
《Applied Geochemistry》2006,21(11):1940-1954
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 μg/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 μg/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region.  相似文献   

11.
Sediments of a thermokarst system on the north-eastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment related to climatic changes since the early Holocene. The thermokarst pond with a length of 360 m is situated in a 14.5 × 6 km tectonically unaffected intermontane basin, which is underlain by discontinuous permafrost.A lake sediment core and bankside lacustrine onshore deposits were analysed. Additionally, fossil lake sediments were investigated, which document a former lake-level high stand. The sediments are mainly composed of marls with variable amounts of silt carbonate micrite, and organic matter.On the basis of sedimentological (grain size data), geochemical (XRF), mineralogical (XRD) and micropaleontological data (ostracods and chironomide assemblages) a reconstruction of a paleolake environment was achieved.Lacustrine sediments with endogenic carbonate precipitation suggest a lacustrine environment since at least 19.0 cal ka BP. However, because of relocation and reworking processes in the lake, the sediments did not provide distinct information about the ultimate formation of the lake. The high amount of endogenic carbonate suggests prolonged still-water conditions at about 9.3 cal ka BP. Ostracod shells and chironomid head capsules in fossil lake sediments indicate at least one former lake-level high stand, which were developed between the early and middle Holocene. From the late Holocene the area was possibly characterized by a lake-level decline, documented by a hiatus between lacustrine sediments and a reworked loess or loess-like horizon. After the lake-level decline and the following warming period, the area was affected by thermally-induced subsidence and a re-flooding of the basin because of thawing permafrost.  相似文献   

12.
Three sediment cores (50 cm depth) were collected at three different sites from a tidal flat estuary at Passagem Channel (Vitória, Espírito Santo State-Brazil) to evaluate the influence of recent urbanization processes on the deposition of organic matter (OM) in a complex polluted tropical estuary. In addition to geochronology (by excess 210Pb), the sources of natural and anthropogenic OM to the sediments were evaluated by total organic C (TOC – 14.29 ± 8.73, 30.43 ± 14.71 and 48.70 mg g−1 ± 25.46, respectively, for P1, P2 and P3), C/N molar ratio and lipid biomarkers (sterols and terpenoids). Taraxerol (3.10 ± 4.85, 9.71 ± 3.85 and 16.10 mg gTOC−1 ± 32.48 for P1, P2 and P3, respectively) and sitosterol (1.71 ± 2.72, 2.94 ± 6.41 and 4.07 mg gTOC−1 ± 4.41 for P1, P2 and P3, respectively) were the most abundant compounds in all cores, suggesting a major contribution of terrestrially-derived OM to the study region. Coprostanol levels and selected sterol index indicated significant contamination by fecal material. The organic geochemical indicators suggest that changes of OM reflect occupation and urbanization alteration processes around the Passagem Channel over the last 70 a, mainly the conversion of mangrove forest into urban areas, bridge building and Treatment Plant Station installation.  相似文献   

13.
The pollution and deterioration of most important vital rivers in the Katanga region, Democratic Republic of Congo (DRC) are mainly due to the discharge of untreated industrial effluents as well as to the mining and artisanal mineral exploitation activities. In this study, the concentrations of metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, and Pb) and major elements (Na, Mg, and K) in mining effluents, water and sediment samples of two main rivers of the district of Kolwezi (Katanga, DRC) were subjected to analysis by Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). The results showed that, in general, the metal concentrations in the sampling sites from the mining effluent and river waters exceed largely the World Health Organization and the Aquatic Quality Guidelines for the Protection of Aquatic Life recommendation limits. The highest metal concentrations in water and sediment samples were detected surrounding the mining effluents discharge. In the surface sediments of Luilu River, the values of 47,468 and 13,199 mg kg−1 were observed for Cu and Co, respectively. For the sediment samples from Musonoie River, the maximum values of 370.8 and 240.6 mg kg−1 for Cu and Co, respectively were observed. The results of this study suggest that the mining effluents being discharged into the rivers and the accumulation of pollutants in sediments might represent a source of toxicity for aquatic living organisms and could pose significant human health risks. The measures to establish a monitoring program and the application of wastewater treatment techniques to the mining effluents prior to discharge are recommended to reduce the load of contaminants into the receiving systems.  相似文献   

14.
《Quaternary Research》2014,81(3):400-423
The way in which the NE Tibetan Plateau uplifted and its impact on climatic change are crucial to understanding the evolution of the Tibetan Plateau and the development of the present geomorphology and climate of Central and East Asia. This paper is not a comprehensive review of current thinking but instead synthesises our past decades of work together with a number of new findings. The dating of Late Cenozoic basin sediments and the tectonic geomorphology of the NE Tibetan Plateau demonstrates that the rapid persistent rise of this plateau began ~ 8 ± 1 Ma followed by stepwise accelerated rise at ~ 3.6 Ma, 2.6 Ma, 1.8–1.7 Ma, 1.2–0.6 Ma and 0.15 Ma. The Yellow River basin developed at ~ 1.7 Ma and evolved to its present pattern through stepwise backward-expansion toward its source area in response to the stepwise uplift of the plateau. High-resolution multi-climatic proxy records from the basins and terrace sediments indicate a persistent stepwise accelerated enhancement of the East Asian winter monsoon and drying of the Asian interior coupled with the episodic tectonic uplift since ~ 8 Ma and later also with the global cooling since ~ 3.2 Ma, suggesting a major role for tectonic forcing of the cooling.  相似文献   

15.
Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.  相似文献   

16.
This study was conducted to assess the anthropogenic impact on metal concentrations in the bottom sediments of the Juam reservoir, Korea, and in stream sediments in its catchment, and to estimate the potential mobility of selected metals (Fe, Mn, Cu, Ni, Pb and Zn) using sequential extraction. A comparison of the metal concentrations in the stream sediments with mean background values in sediments collected from first- or second-order creeks shows that Pb, Cu and Ni are the most affected by anthropogenic inputs. The 206Pb/207Pb ratios of the bottom and core sediments (means: 1.2320 ± 0.0502 and 1.2212 ± 0.0040, respectively) suggest that Pb contamination is mainly due to the waste discharge of abandoned coal and metal mines rather than industrial and airborne sources. Considering the proportion of metals bound to the exchangeable, carbonate and reducible fractions, the comparative mobility of metals is suggested to decrease in the order Mn > Pb > Zn > Ni > Fe  Cu.  相似文献   

17.
In total 27 short and one long sediment core, and 278 surface sediment samples from the Baltic Sea were analyzed for mercury (Hg), and organic carbon contents. Thirteen short cores and the long core were dated by radionuclide methods (210Pb, 137Cs, AMS14C). The dataset allows discriminating between natural and human induced changes on the Hg levels in Baltic Sea sediments. Preindustrial Holocene background concentrations vary between 20 and 50 μg Hg per kg dry sediment and are positively correlated with organic carbon changes. Strong human induced pollution is recorded for the second half of the past century and caused high Hg concentrations of up to several hundred μg Hg per kg dry sediment even in Baltic Sea basins. Maximum concentrations are found at industrial and war waste dumping sites (local hot spots). An Hg concentration decreasing trend toward the present day is observed at most coring sites, a result of environmental measures undertaken during the last two decades. At sites where it is possible to calculate Hg fluxes, the natural accumulation rates vary between 2.1 and 5.4 μg Hg per m2 per year. Anthropogenically sourced Hg accumulation rates vary in a wide range of 30 and 300 μg Hg per m2 per year for the time span of maximum pollution. In areas characterized by discontinuous sedimentation only “inventories” of human sourced Hg expressed as the total amount of deposited Hg (above the natural background) per m2 can be calculated. The inventories of the investigated cores vary in the range of 1 and 8 mg Hg per m2. Additionally, influences of sediment dynamics on spatial distribution pattern of Hg concentrations in surface and subsurface sediments are discussed.  相似文献   

18.
《Applied Geochemistry》2004,19(3):379-393
The speciation of Hg is a critical determinant of its mobility, reactivity, and potential bioavailability in mine-impacted regions. Furthermore, Hg speciation in these complex natural systems is influenced by a number of physical, geological, and anthropogenic variables. In order to investigate the degree to which several of these variables may affect Hg speciation, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the Hg phases and relative proportions of these phases present in Hg-bearing wastes from selected mine-impacted regions in California and Nevada. The geological origin of Hg ore has a significant effect on Hg speciation in mine wastes. Specifically, samples collected from hot-spring Hg deposits were found to contain soluble Hg-chloride phases, while such phases were largely absent in samples from silica-carbonate Hg deposits; in both deposit types, however, Hg-sulfides in the form of cinnabar (HgS, hex.) and metacinnabar (HgS, cub.) dominate. Calcined wastes in which Hg ore was crushed and roasted in excess of 600 °C, contain high proportions of metacinnabar while the main Hg-containing phase in unroasted waste rock samples from the same mines is cinnabar. The calcining process is thought to promote the reconstructive phase transformation of cinnabar to metacinnabar, which typically occurs at 345 °C. The total Hg concentration in calcines is strongly correlated with particle size, with increases of nearly an order of magnitude in total Hg concentration between the 500–2000 μm and <45 μm size fractions (e.g., from 97–810 mg/kg Hg in calcines from the Sulphur Bank Mine, CA). The proportion of Hg-sulfides present also increased by 8–18% as particle size decreased over the same size range. This finding suggests that insoluble yet soft Hg-sulfides are subject to preferential mechanical weathering and become enriched in the fine-grained fraction, while soluble Hg phases are leached out more readily as particle size decreases. The speciation of Hg in mine wastes is similar to that in distributed sediments located downstream from the same waste piles, indicating that the transport of Hg from mine waste piles does not significantly impact Hg speciation. Hg LIII-EXAFS analysis of samples from Au mining regions, where elemental Hg(0) was introduced to aid in the Au recovery process, identified the presence of Hg-sulfides and schuetteite (Hg3O2SO4), which may have formed as a result of long-term Hg(0) burial in reducing high-sulfide sediments.  相似文献   

19.
《Applied Geochemistry》2006,21(8):1335-1346
The chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in marine sediments from two coastal regions of Singapore (Kranji in the NW, and Pulau Tekong in the NE) was determined using the latest version of the 3-step sequential extraction procedure, as described by the European Community Bureau of Reference (1999). To obtain a mass balance, a fourth step, i.e., digestion and analysis of the residue was undertaken using a microwave-assisted acid digestion procedure. The total content of all metals except for Pb in sediments was greater in Kranji than in Pulau Tekong. All metals, except Cd were more mobile and bio-available in Kranji, where metals were present at higher percentages in the acid-soluble fractions (the most labile fraction). In sediments from Kranji, the mobility order of the heavy metals studied was Cd > Ni > Zn > Cu > Pb > Cr, whereas sediments from Pulau Tekong showed the same order for Cd, Ni, Pb and Cr, but had a reverse order for Cu and Zn (Cu > Zn). The highest percentages of Cr, Ni and Pb were found in the residual fractions in both Kranji (78.9%, 54.7%, 55.9%, respectively) and Pulau Tekong (82.8%, 77.3%, 62.2%, respectively), meaning that these metals were strongly bound to the sediments. Results are consistent with findings from Barcelona, Spain where similar results for Cr and Ni have also been reported for marine sediments. The sum of the 4 steps (acid-soluble + reducible + oxidizable + residual) was in good agreement with the total content, which implies that the accuracy of the microwave extraction procedure in conjunction with the GFAAS analytical method is assured.  相似文献   

20.
Black carbon (BC), especially biochar, is a potential material for the remediation of hydrophobic organic compounds (HOCs) pollution in soils and sediments. Recent studies have reported that the adsorption capability of BC in sediment was reduced as time increased. It was hypothesised that this behaviour was caused by the presence of natural organic matter (NOM), but few systematic studies have examined the influence of NOM on the sorption ability of BC in sediment (S). The results of this study revealed that a humic acid (HA) coating changed the surface properties, blocked the micropores, and decreased the sorption capacity of rice-straw biochar (RBC) towards pentachlorophenol. With increasing aging time, the reductions in the sorption capacity of the S + RBC and S + HA + RBC systems occurred more rapidly than in the S + HA/RBC (HA-coated RBC) system, and the sorption curves became closer to that of the S + HA/RBC system, indicating that HA may play a primary role in reducing the sorption capacity of RBC in the sediment. With higher HA contents, the sorption capacity of the complex sediments was lower and decreased more rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号