首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Petrogenesis of the Zoned Laacher See Tephra   总被引:2,自引:2,他引:2  
The late Quaternary Laacher See phonolitic tephra deposit (EastEifel, W. Germany) is mineral-ogically and chemically zonedfrom highly evolved, volatile-rich and crystal-poor at its basetowards a mafic, crystal-rich phonolite at the top (Wörner& Schmincke, 1984). This zonation is interpreted as theresult of a continuous eruption from a zoned magma column. Majorand trace element evidence shows that the last erupted maficULST (Upper Laacher See Tephra) phonolite can be derived froma basanite parent magma via fractional crystallization of 30per cent clinopyroxene, 24 per cent amphibole, 4 per cent phlogopite,3.8 per cent magnetite, 2.5–3.0 per cent olivine and 1per cent apatite, leaving a derivative of 30 per cent evolvedmagma. Starting from the mafic (ULST) phonolite as a parent, the zonedsequence is postulated to have been formed by progressive fractionalcrystallization of the observed phenocryst phases. This modelwas tested by a series of 7 step-by-step mass balance fractionationcalculations. Abundance, modal composition and relative variationsof calculated fractionated phases agree well with the observedphenocryst abundances: sanidine followed by plagioclase andminor amounts of mafic phases are to be fractionated to givethe observed zoned sequence. The most evolved phonolite, however, cannot be generated bysubtraction of phenocrysts from the underlying phonolite. Processessuch as liquid-state differentiation may therefore have chemicallymodified the upper part (cupola) of the Laacher See magma columnsubsequent to crystal fractionation. The erupted phonolite magma (5.3 km3) was calculated to havestarted with a volume of 56 km3 of parental basanite magma whichfractionated to form 16.6 km3 of mafic phonolite. This magmafurther differentiated to give a 5.3 km3 zoned (erupted) phonolitecolumn. The non-erupted volume of 50 km3 is postulated to forma cooling cumulate body below the present day Laacher See volcano. The Laacher See magma system represents a complex end-membertype of a highly evolved small volume composition ally zonedmagma chamber with steep major and trace element gradients,the uppermost volatile rich magma layer resembling the stableroof part of rhyolitic chambers.  相似文献   

2.
Twenty six whole rocks, seven matrix and fifty three mineral separates from the compositionally zoned late Quaternary Laacher See tephra sequence (East Eifel, W Germany) were analyzed by instrumental neutron activation. These data document the chemical variation within the Laacher See magma chamber prior to eruption with a highly fractionated phonolite at the top and a more mafic phonolite at its base as derived from other data. Incompatible elements such as Zn, Zr, Nb, Hf, U, light and heavy rare earths are extremely enriched towards the top whereas compatible elements (e.g. Sr, Sc, Co, Eu) are strongly depleted. Semicompatible elements (Ta and some middle REE) are depleted at intermediate levels. This chemical variation is shown by whole rock and matrix data indicating the phonolite liquid was compositionally zoned regardless of phenocryst content. Hybrid rocks (phonolite-basanite) show the largest concentrations for compatible elements. All elements (except Rb) display continuous compositional variations with regard to the stratigraphic position of pumice samples. From these data we are able to distinguish three main units: An early erupted highly fractionated magma, the main volume of evolved phonolite and a mafic phonolite as the final products. The extreme variation of trace element distribution coef ficients (K) for 9 mineral phases with respect to stratigraphic position (resp. matrix composition) cannot be explained by conventional mechanisms. We postulate a significant modification of the trace element content of the phonolite melt by liquid-liquid controlled differentiation processes subsequent to and/or contemporaneous with (fractional) crystallization which caused disequilibrium between phenocrysts and host matrix. Therefore, our “distribution coefficients” deviate from equilibrium partition coefficients equivalent to the amount of this post crystallization modification of the matrix composition. The relationship between varying K and matrix composition is demonstrated by a ΔK-ΔM-diagram (variation of K versus variation of matrix, M). Different parts of this diagram relate to different parameters (T, P, polymerization, complex-building, equilibrium crystallization in a zoned magma column and post crystallization disequilibrium effects) which are responsible for the variation of distribution coefficients in general. The ΔK-ΔM-diagram may allow to distinguish between different processes affecting the distribution coefficients measured in natural volcanic rocks from a differentiating magma system.  相似文献   

3.
Plagioclase phenocrysts from mafic enclaves and plagioclase from its host granite possess a pat-tern of complex zonation .A plagioclase phenocryst can generally be divided into three parts:an oscillatory, locally patchy zoned core (An47-19),a ring with dusty, more calcic plagioclase (An64-20) and a normally zoned rim composed of sodic plagioclase (An22-3.3). Major discontinuities in zoning coincide with resorption surfaces that are overgrown by the more calcic plagioclase.The cores of large plagioclase phenocrysts from mafic enclaves and host granite show similar zoning patterns and similar compositions, indicating their crystallization under the same conditions .Steep normal zoning of the rims of plagioclases both from host granite and mafic enclaves illustrates a drastic decrease in An content which is considered to have resulted from the continuous differentiation of hybrid magma and efficient heat loss because of the upward emplacement of the residual magma.Wide rims of plagioclases from the host granite against the discrete rims of plagioclases from mafic enclaves indicate that differentiation and cooling lasted much longer in the host granite than in the mafic enclaves.  相似文献   

4.
The occurrence of Laacher See Tephra in Pomerania, NW Poland   总被引:1,自引:0,他引:1  
A millimetre-thick bed of highly vesiculated pumiceous clasts was found in two peat bogs in Pomerania (NW Poland). Their phonolitic composition confirms the correlation with the Laacher See Tephra (LST). Based on the various CaO-Na2O-K2O content, most of these clasts can be linked with the Lower Laacher See Tephra (LLST), and some with the Middle Laacher See Tephra B (MLST-B). 14C dates obtained on peat samples are in agreement with an Allered stratigraphic position of that tephra. In several localities in NW Poland, it was found that there was no occurrence of tephra in peat bogs. Thus the presence of the LST is restricted to the northwestern fringes of Pomerania.  相似文献   

5.
High‐precision correlation of palaeoclimatic and palaeoenvironmental records is crucial for testing hypotheses of synchronous change. Although radiocarbon is the traditional method for dating late Quaternary sedimentary sequences, particularly during the last glacial–interglacial transition (LGIT; 15–9 ka), there are inherent problems with the method, particularly during periods of climate change which are often accompanied by major perturbations in atmospheric radiocarbon content. An alternative method is the use of tephras that act as time‐parallel marker horizons. Within Europe, numerous volcanic centres are known to have erupted during the LGIT, providing considerable potential for high‐precision correlation independent of past radiocarbon fluctuations. Here we report the first identification of the Vedde Ash and Askja Tephra in Ireland, significantly extending the known provenance of these events. We have also identified two new horizons (the Roddans Port Tephras A and B) and tentatively recognise an additional horizon from Vallensgård Mose (Denmark) that provide crucial additional chronological control for the LGIT. Two phases of the Laacher See Tephra (LST) are reported, the lower Laacher See Tephra (LLST) and probably the C2 phase of the Middle Laacher See Tephra (MLST‐C2) indicating a more northeasterly distribution of this fan than reported previously. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

7.
Textural and compositional zoning in plagioclase phenocrysts in a sample from Parinacota volcano (Chile) was investigated using backscattered electron images and electron microprobe analysis of major and trace elements. Large (2 mm) oscillatory zoned crystals (type I) with resorption surfaces of moderate An discontinuities (Ⲓ% An) and decreasing trace-element contents (Sr, Mg, Ti) towards the rim reflect melt differentiation and turbulent convection in the main magma body. Early recharge with a low-Sr mafic magma is seen in the core. Small-scale Sr variations in the core indicate limited diffusion and thus residence and differentiation times of the magma shorter than a few thousand years. Smaller crystals (type II) with low trace-element/An ratio reflect the influence of an H2O-rich melt probably from a differentiated boundary layer. Closed-system in-situ crystallisation, mafic magma recharge and the role of a water-rich differentiated boundary layer can be distinguished from the An-trace element relationships. Crystals apparently move relatively freely between different parts and regimes in the magma chamber, evidence for "convective crystal dispersion". High-Sr type II crystals indicate an earlier input of Sr-rich mafic magma. Recharge of two distinct mafic magma types is thus identified (high-Sr and low-Sr), which must have been present - at increasing recharge rates with time - in the plumbing system throughout the volcano's history.  相似文献   

8.
The Soufrière Hills volcano on Montserrat has for the past 12 years been erupting andesite with basaltic to basaltic–andesite inclusions. The andesite contains a wide variety of phenocryst textures and strongly zoned microlites. Analysis of minor elements in both phenocrysts and microlites allows us to put detailed constraints on their origins. Compositions of clinopyroxene, from overgrowth rims on quartz and orthopyroxene and coarse-grained breakdown rims on hornblende, are identical to those from the mafic inclusions, indicating that these rims form during interaction with mafic magma. In contrast, resorbed quartz and reversely zoned orthopyroxenes form during heating. Microlites of plagioclase and orthopyroxene are chemically distinct from the phenocrysts, being enriched in Fe and Mg, and Al and Ca respectively. However, microlites of plagioclase, orthopyroxene and clinopyroxene are indistinguishable from the compositions of these phases in the mafic inclusions. We infer that the inclusions disaggregated under conditions of high shear stress during ascent in the conduit, transferring mafic material into the andesite groundmass. The mafic component of the system is therefore greater than previously thought. The presence of mafic-derived microlites in the andesite groundmass also means that care must be taken when using this as a starting material for phase equilibrium experiments.  相似文献   

9.
The Bandas del Sur Formation preserves a Quaternary extra-calderarecord of central phonolitic explosive volcanism of the LasCañadas volcano at Tenerife. Volcanic rocks are bimodalin composition, being predominantly phonolitic pyroclastic deposits,several eruptions of which resulted in summit caldera collapse,alkali basaltic lavas erupted from many fissures around theflanks. For the pyroclastic deposits, there is a broad rangeof pumice glass compositions from phonotephrite to phonolite.The phonolite pyroclastic deposits are also characterized bya diverse, 7–8-phase phenocryst assemblage (alkali feldspar+ biotite + sodian diopside + titanomagnetite + ilmenite + nosean–haüyne+ titanite + apatite) with alkali feldspar dominant, in contrastto interbedded phonolite lavas that typically have lower phenocrystcontents and lack hydrous phases. Petrological and geochemicaldata are consistent with fractional crystallization (involvingthe observed phenocryst assemblages) as the dominant processin the development of phonolite magmas. New stratigraphicallyconstrained data indicate that petrological and geochemicaldifferences exist between pyroclastic deposits of the last twoexplosive cycles of phonolitic volcanism. Cycle 2 (0·85–0·57Ma) pyroclastic fall deposits commonly show a cryptic compositionalzonation indicating that several eruptions tapped chemically,and probably thermally stratified magma systems. Evidence formagma mixing is most widespread in the pyroclastic depositsof Cycle 3 (0·37–0·17 Ma), which includesthe presence of reversely and normally zoned phenocrysts, quenchedmafic glass blebs in pumice, banded pumice, and bimodal to polymodalphenocryst compositional populations. Syn-eruptive mixing eventsinvolved mostly phonolite and tephriphonolite magmas, whereasa pre-eruptive mixing event involving basaltic magma is recordedin several banded pumice-bearing ignimbrites of Cycle 3. Theperiodic addition and mixing of basaltic magma ultimately mayhave triggered several eruptions. Recharge and underplatingby basaltic magma is interpreted to have elevated sulphur contents(occurring as an exsolved gas phase) in the capping phonoliticmagma reservoir. This promoted nosean–haüyne crystallizationover nepheline, elevated SO3 contents in apatite, and possiblyresulted in large, climatologically important SO2 emissions. KEY WORDS: Tenerife; phonolite; crystal fractionation; magma mixing; sulphur-rich explosive eruptions  相似文献   

10.
The 1995–1999 eruption of the Soufriere Hills volcano,Montserrat, has produced a crystal-rich andesite containingquench-textured mafic inclusions, which show evidence of havingbeen molten when incorporated into the host magma. Individualcrystals in the andesite record diverse histories. Amphibolephenocrysts vary from pristine and unaltered to strongly oxidizedand pseudomorphed by anhydrous reaction products. Plagioclasephenocrysts are commonly reverse zoned, often with dusty sievetextures. Reverse zoned rims are also common on orthopyroxenephenocrysts. Pyroxene geothermometry gives an average temperatureof 858 ± 20°C for orthopyroxene phenocryst cores,whereas reverse zoned rims record temperatures from about 880to 1050°C. The heterogeneity in mineral rim compositions,zoning patterns and textures is interpreted as reflecting non-uniformreheating and remobilization of the resident magma body by intrusionof hotter mafic magma. Convective remobilization results inmixing together of phenocrysts that have experienced differentthermal histories, depending on proximity to the intruding maficmagma. The low temperature and high crystallinity are interpretedas reflecting the presence of a cool, highly crystalline magmabody beneath the Soufriere Hills volcano. The petrological observations,in combination with data on seismicity, extrusion rate and SO2fluxes, indicate that the current eruption was triggered byrecent influx of hot mafic magma. KEY WORDS: Montserrat; eruption; magma mixing; mafic inclusion; sieve texture  相似文献   

11.
东太平洋海隆为世界典型的扩张脊,其上的洋中脊玄武岩为研究快速扩张作用下的岩浆作用提供了机会。在东太平洋海隆1°N采集到的洋中脊玄武岩内发现了大量结晶状况良好的斜长石斑晶。基于玄武岩的常量元素测试分析,洋脊下部的原始岩浆经历了以橄榄石为主的结晶分离过程,并未发生大规模的斜长石结晶分离。对样品中斜长石斑晶的电子探针测试表明,这些斜长石斑晶为岩浆自生矿物,而非捕掳晶。部分环带斜长石斑晶成分的规律性的变化主要受控于原始岩浆温度的变化,而非岩浆混合作用。我们推测Galapagos三联点下部可能存在一个相对封闭的岩浆体系,为斜长石矿物的结晶提供了时间和空间条件。这些斜长石斑晶形成后并未分离成岩,而是被岩浆带至洋底喷发形成玄武岩。  相似文献   

12.
颜丽丽  贺振宇  刘磊  赵志丹 《地质通报》2015,34(203):466-473
浙江雁荡山是中国东南部燕山晚期巨型火山-侵入杂岩带的重要组成部分。对其中央侵入相石英正长斑岩的暗色微粒包体中的斑晶和基质斜长石进行了详细的内部结构和成分分析,揭示了斜长石复杂环带的成因和相关的岩浆作用过程。斑晶斜长石由熔蚀的核部和表面干净的幔部组成,边部包裹有钾长石膜。核部斜长石呈浑圆状或港湾状,内部发育筛状结构,An成分显著低于幔部斜长石,代表来自酸性岩浆房中早期结晶的斜长石捕掳晶。同时,幔部斜长石与自形、表面干净的基质斜长石具有类似的An含量,且两者均含有针状磷灰石的包裹体,应结晶自与暗色微粒包体相应的基性岩浆。长石的复杂结构记录了雁荡山火山-侵入杂岩形成过程中的岩浆混合作用和岩浆演化过程。岩浆混合之后的火山喷发活动,造成岩浆房的压力突然减小,温压条件达到钾长石结晶的区域,在石英正长斑岩的斑晶斜长石和暗色包体中的斑晶与基质斜长石外均形成钾长石膜,构成反环斑结构。  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987113001151   总被引:1,自引:0,他引:1  
Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Comp...  相似文献   

14.
Crystallization experiments were conducted on dry glasses fromthe Unzen 1992 dacite at 100–300 MPa, 775–875°C,various water activities, and fO2 buffered by the Ni–NiObuffer. The compositions of the experimental products and naturalphases are used to constrain the temperature and water contentsof the low-temperature and high-temperature magmas prior tothe magma mixing event leading to the 1991–1995 eruption.A temperature of 1050 ± 75°C is determined for thehigh-temperature magma based on two-pyroxene thermometry. Theinvestigation of glass inclusions suggests that the water contentof the rhyolitic low-temperature magma could be as high as 8wt % H2O. The phase relations at 300 MPa and in the temperaturerange 870–900°C, which are conditions assumed to berepresentative of the main magma chamber after mixing, showthat the main phenocrysts (orthopyroxene, plagioclase, hornblende)coexist only at reduced water activity; the water content ofthe post-mixing dacitic melt is estimated to be 6 ± 1wt % H2O. Quartz and biotite, also present as phenocrysts inthe dacite, are observed only at low temperature (below 800–775°C).It is concluded that the erupted dacitic magma resulted fromthe mixing of c. 35 wt % of an almost aphyric pyroxene-bearingandesitic magma (1050 ± 75°C; 4 ± 1 wt % H2Oin the melt) with 65 wt % of a phenocryst-rich low-temperaturemagma (760–780°C) in which the melt phase was rhyolitic,containing up to 8 ± 1 wt % H2O. The proportions of rhyoliticmelt and phenocrysts in the low-temperature magma are estimatedto be 65% and 35%, respectively. It is emphasized that the strongvariations of phenocryst compositions, especially plagioclase,can be explained only if there were variations of temperatureand/or water activity (in time and/or space) in the low-temperaturemagma. KEY WORDS: Unzen volcano; magma mixing; experimental study  相似文献   

15.
为揭示华北克拉通北缘中晚三叠世解放营子花岗闪长岩的岩浆混合机制,对寄主岩石和镁铁质包体中斜长石和角闪石开展了电子探针分析.分析结果显示,多斑和少斑包体边部的斜长石斑晶发育An值增加的突变环带,环带的An值为32~46,明显高于核部和边部斜长石的An值(18~31),而核部的An值与寄主岩石中斜长石的An值一致,该特征指...  相似文献   

16.
The eruption of Soufrière Hills Volcano, Montserrat, has been ongoing since 1995. The volcano is erupting a crystal-rich hornblende-plagioclase andesite with ubiquitous mafic inclusions, indicating mixing with mafic magma. This mafic magma is thought to be the driving force of the eruption, supplying heat and volatiles to the andesite resident in the magma chamber. As well as producing macroscopic mafic inclusions, the magma mixing process involves incorporation of phenocrysts from the andesite into the mafic magma. These inherited phenocrysts show clear disequilibrium textures (e.g. sieved plagioclase rims and thermal breakdown rims on hornblende). Approximately 25 % of all phenocrysts in the andesite show these textures, indicating very extensive mass transfer between the two magma types. Fragments of mafic inclusions down to sub-mm scale are found in the andesite, together with mafic crystal clusters, which are commonly found adhered to the rims of phenocrysts with disequilibrium features. Mineral chemistry also points to the transfer of microlites or microphenocrysts, initially formed in the mafic inclusions, into the andesite. This combined evidence suggests that some of the mafic inclusions disaggregate during mingling and/or ascent, possibly due to shearing, and raises the question: What proportion of the andesite ‘groundmass’ actually originated in the mafic inclusions, and thus, what is the true amount of mafic magma in the magmatic system? We present a new method for quantifying the relative proportions of groundmass plagioclase derived from mafic and andesitic magma, based on analysis of back-scattered electron images of the groundmass. Preliminary results indicate that approximately 16 % of all groundmass plagioclase belongs genetically to the mafic inclusions. Together with the crystal clusters, disequilibrium phenocryst textures and mm-scale inclusions, there is a ‘cryptic’ mafic component in the andesite of approximately 6 % by volume. This is significant compared with the proportion of macroscopic mafic inclusions (typically ~ 1–5 %). The new method has the potential to allow tracking of the mafic fraction through time and thus to yield further insights into magma hybridisation processes.  相似文献   

17.
Deccan volcanism with a tremendous burst of volcanic activity marks a unique episode in Indian geological history and covers nearly two third of Peninsular India. Occurrences of mafic sill in the continental basalts are rather rare throughout the flood basalt provinces and only few sporadic reports have been described from different Continental Flood Basalts of the world. In the present article, petrology of mafic sill from the Narshingpur-Lakhnadon section of Eastern Deccan province of India has been presented. The mafic sill in the field is found to occur in a relatively deep valley amidst Gondwana rocks, which occur as the basement of the extrusion. The sill is spatially associated with three initial flows viz. flow I, II and III of adjacent Narshingpur-Harrai-Amarwara section. The sill in its central part is a medium grained rock and petrographically corresponds to dolerite containing augite, plagioclase and rare olivine grains; the chilled facies of the sill is characterized by phenocrysts of olivine, plagioclase and augite that are set in groundmass consisting predominantly of plagioclase, olivine and glass. Mineral chemistry indicates that olivine phenocrystal phase is magnesian (Fo61). Plagioclase phenocrystal composition ranges from An 51 to An 71 whereas the same variation of the groundmass plagioclase composition corresponds to An 31 to An 62. The overlap in the compositions for groundmass and phenocrystal plagioclase may be explained due to fluctuating PH2O condition. The pyroxene compositions (both groundmass and phenocryst) in majority of the cases are clubbed well within the augite field, however, in a few cases, groundmass compositions are found to fall in the sub-calcic augite and pigeonite field. Some zoned pyroxene phenocrysts, characteristically display different types of zoning patterns. Opaque minerals in the mafic sill are found to be magnetite and ilmenite and this coexisting iron-oxide composition helps to constrain the prevalent fO2 condition in the parent magma. The geochemistry of the mafic sill and associated basaltic lava flows indicates close genetic link amongst them. Critical consideration of trace elements indicates a distinct enriched mantle source (EM-I/EM-II/HIMU) for the parental magma. Trace element modeling indicates that equilibrium batch-melting of plume source followed by fractionation of olivine, clinopyroxene and plagioclase and subsequent heterogeneous mixing of melt and settled crystals can very well explain the genesis of the mafic sill and the associated basaltic flows.  相似文献   

18.
Voluminous andesite and dacite lavas of Daisen volcano, SW Japan,contain features suggesting the reverse of normal fractionation(anti-fractionation), in the sense that magma genesis progressedfrom dacite to andesite, accompanied by rises in temperature.A positive correlation exists between phenocryst content (0–40vol. %) and wt % SiO2 (61–67%). Phenocryst-rich dacitescontain hornblende and plagioclase that are generally unaltered,clear, and euhedral. However, phenocryst-poor rocks containsieve-textured plagioclase, resorbed plagioclase, and opacitein which hornblendes are pseudomorphed. Some Daisen rocks containtwo coexisting pyroxenes. Many orthopyroxene phenocrysts fromtwo-pyroxene lavas have high-Ca overgrowth rims (up to 50 µm),a feature consistent with crystallization from a higher-temperaturemagma than the core. Rim compositions are similar from phenocrystto phenocryst in individual samples. Temperatures of 800–900°Care obtained from the cores, whereas temperatures of 1000–1100°Care indicated for the rims. Lavas ranging from aphyric andesite(  相似文献   

19.
Fukujin Seamount is a large, active, submarine volcano on thevolcanic front in the northernseamount province (NSP) of theMariana island arc (MIA). Five dredge hauls from the summitand upper flanks of Fukujin recovered mainly highly porphyriticbasaltic andesites. A few nearly aphyric samples are medium-Ksiliceous andesites (SiO2 = 62%, K2O = 1•5%). Fukujin andmost other large arc-front volcanoes of the northern MIA havetholeiitic (iron-enrichment) fractionation trends. This contrastswith the calc-alkaline trends of many smaller seamounts. A negativecorrelation of modal plagioclase content with bulk-rock SiO2,as well as bulk-rock major and trace element variation trends,and glass analyses, suggests that lavas with >30 vol.% phenocrystsand <55 wt.% SiO2 are partial cumulates. The presence ofbimodal phenocryst populations along with reversed to normalzoning of phenocrysts is explained by magma mixing of andesiticand basaltic liquids. Hybrid basaltic andesites probably formedby the accumulation of plagioclase in a tholeiitic magma chamberundergoing replenishment and mixing at a shallow crustal level.A petrogenetic model is presented for the origin of basalticandesite by combined magma mixing and fractional crystallization.Aphyric siliceous andesites can be modelled by simple fractionationof basaltic andesite. The early fractionating assemblage consistedmainly of plagioclase and clinopyroxene, with lesser olivineand minor magnetite, but plagioclase remained suspended in themelt. The later fractionating assemblage was dominated by plagioclasewith orthopyroxene instead of olivine. *Present address: 2260 rue Panet, Montreal, Quebec, H2L 3A6, Canada.  相似文献   

20.
Phenocryst zoning patterns are used to identify open-systemmagmatic processes in the products of the 2001 eruption of ShiveluchVolcano, Kamchatka. The lavas and pumices studied are hornblende–plagioclaseandesites with average pre-eruptive temperatures of 840°Cand fO2 of 1·5–2·1 log units above nickel–nickeloxide (NNO). Plagioclase zoning includes oscillatory and patchyzonation and sieve textures. Hornblendes are commonly unzoned,but some show simple, multiple or patchy zoning. Apatite microphenocrystsdisplay normal and reverse zoning of sulphur. The textural similarityof patchy hornblende and plagioclase, together with Ba–Srsystematics in patchy plagioclase, indicate that the cores ofthese crystals were derived from cumulate material. Plagioclase–liquidequilibria suggest that the patchy texture develops by resorptionduring H2O-undersaturated decompression. When H2O-saturatedcrystallization recommences at lower pressure, reduced pH2Oresults in lower XAn in plagioclase, causing more Al-rich hornblendeto crystallize. Plagioclase cores with diffuse oscillatory zoning,and unzoned hornblende crystals, probably represent a populationof crystals resident in the magma chamber for long periods oftime. In contrast, oscillatory zoning in the rims of plagioclasephenocrysts may reflect eruption dynamics during decompressioncrystallization. Increasing Fe/Al in oscillatory zoned rimssuggests oxidation as a result of degassing of H2O during decompression.A general lack of textural overlap between phenocryst typessuggests that different phenocryst populations were spatiallyor temporally isolated during crystallization. We present evidencethat the host andesite has mixed with both more felsic and moremafic magmas. Olivine and orthopyroxene xenocrysts with reactionor overgrowth rims and strong normal zoning indicate mixingwith basalt. Sieve-textured plagioclase resulted from mixingof a more felsic magma with the host andesite. The mineralogyand mineral compositions of a mafic andesite enclave are identicalto those of the host magma, which implies efficient thermalquenching, and thus small volumes of intruding magma. Mixingof this magma with the host andesite results in phenocryst zoningbecause of differences in dissolved volatile contents. We suggestthat small magma pulses differentiated at depth and ascendedintermittently into the growing magma chamber, producing incrementalvariations in whole-rock compositions. KEY WORDS: patchy zoning; magma mixing; Shiveluch  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号