首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
锡矿往往与长英质岩浆岩伴生,然而锡矿形成的热能源区尚不清楚,其可能与地幔物质相关。我国云南锡矿带中出露的中-酸性岩石及碱性岩杂岩体为研究锡矿及其周围岩浆成因提供了良好的物质条件。本文报道了云南个旧地区代表性的花岗岩、辉长-闪长岩和碱性岩类新的全岩地球化学、锆石U-Pb年代学和Hf同位素数据。LA-ICP-MS锆石U-Pb定年表明上述岩石分别形成于81.43±0.46Ma(82.89±0.58M)、81.35±0.22Ma和80.35±0.72Ma,指示它们为晚白垩世近同期岩浆活动的产物。其中闪长岩、碱性岩和花岗岩中锆石的Hf同位素组成不均一,ε_(Hf)(t)分别为-4.2~+0.8、-7.5~-1.9和-8.4~+0.4。尽管这些岩体的侵入时代一致,但它们的地球化学特征和同位素特征存在差异,表明这三类火成岩来自不同的岩浆源区,三者不是同一母岩浆相互演化的关系。个旧杂岩体中花岗岩为弱过铝质岩石,SiO_2与P_2O_5含量呈负相关的关系,排除S型花岗岩的可能。亏损Zr、Nb、Sr、Eu等大离子亲石元素的特征可能为锆石、磷灰石、长石类造岩矿物分离结晶作用的结果;Zr、Nb、Ce和Y总量较低,低的FeOT/MgO比值和低的锆石饱和温度表明,指示出个旧地区的花岗岩应为高分异I型花岗质岩石而非A型花岗岩。个旧地区形成于晚白垩世时期的中基性、碱性岩石可能为不同的幔源岩浆近同时侵入的产物,底侵的幔源熔体带来热量诱发中、下地壳岩石发生部分熔融形成含矿的花岗岩,幔源岩浆对于成矿至少在能量也可能在成矿物质上有重要的贡献。  相似文献   

2.
ABSTRACT

The Nanling range (Nanling) is characterized by intense and widespread Mesozoic magmatism related large-scale W–Sn mineralization. A summary of geochemistry, geochronology, and petrogenesis for the W–Sn-bearing granites has been carried out in this study. A series of rock- and ore-forming ages in Nanling indicate that the W–Sn mineralization is closely related to the Early Yanshanian granitic magmatism both in temporal and spatial dimensions (165–150 Ma). Geochemical features show that both of the W- and Sn-bearing granites, which mainly belong to highly fractionated I-type granites with a few A-type granites, are characterized by high contents of SiO2, Al2O3, Na2O, and K2O; enrichment in Rb, Th, U, Zr, Hf, and REE; depletion in Sr, Ba, P, and Ti; and high ratios of A/CNK. Furthermore, the different Sr–Nd–Hf isotopic compositions indicate that they are mainly originated from the partial melting of the Precambrian basement rocks of the Cathaysia Block at low oxygen fugacity, and the estimated temperatures for the tungsten-bearing and tin-bearing granites are ca. 700°C and ca. 800°C, respectively. The model of the mantle–crust interaction exhibits that different percentages of mantle-derived magma were likely involved in the generation of the tin-bearing granites and tungsten-bearing granites. In combination with previous studies, we propose that these granites in Nanling were emplaced in an extensional setting, as a response to the break-off and roll-back of the subducted Palaeo-Pacific Plate during 175–150 Ma.  相似文献   

3.
Pb, Sr and Nd isotopic compositions have been analyzed in recent granites from Northern Africa, Northern Italy and Greece. Lead isotope compositions of K-feldspars are rather homogeneous, and cluster close to the modern lead of Stacey and Kramers (1975) but with slightly higher207Pb/204Pb and208Pb/204Pb ratios. The Cyclades samples, however, have higher206Pb/204Pb ratios. Addition of mantle-derived lead was probably very limited, which supports a quasi-closed system evolution of this element in the continental crust. The Sr, Nd data fall in the enriched part of the143Nd/144Nd vs.87Sr/86Sr diagram and define a smooth hyperbolic mixing curve. Over a wide area, straddling different orogens, most granites may be accounted for by a binary mixture between a recycled crustal component and a depleted mantle-like component. No correlation is observed between either Pb and Sr or Nd isotopic ratios, or any isotopic ratio and major element contents. Quantitative modelling suggests that two cases fit the Sr and Nd characteristics of these granites: they both require anatexis of the crust on a scale large enough to average the isotopic properties of heterogeneous terranes. In the first case, the mantle-derived component may be represented by differentiated Island Arc-type magmas, and the granites result from mixing these magmas with anatectic melts. In the second case, mantle-derived igneous rocks, such as obducted ophiolites, are part of the crustal source and their variable involvement in the anatectic process causes isotopic variations.CRPG Contribution n 630.  相似文献   

4.
Twenty-nine Rb-Sr whole-rock isotopic analyses and three U-Pb zircon analyses on foliated granites and largely unfoliated charnockitic rocks indicate that the central part of the Pan-African belt in west Africa was characterised by intense orogenic plutonism. These data and Rb-Sr analyses on muscovite books from late cross-cutting pegmatites indicate that the peak of magmatic activity occurred 610 ± 10 m.y. ago.Initial 87Sr/86Sr ratios for the granitic and charnockitic rocks are in the range 0.7065–0.7125, and indicate a significantly older crustal component in the magmas.  相似文献   

5.
Magnesium isotopic compositions, along with new Sr–Nd–Pb isotopic data and elemental analyses, are reported for 12 Miocene tourmaline-bearing leucogranites, 15 Eocene two-mica granites and 40 metamorphic rocks to investigate magnesium isotopic behaviors during metamorphic processes and associated magmatism and constrain the tectonic-magmatic-metamorphic evolution of the Himalayan orogeny. The gneisses, granulites and amphibolites represent samples of the Indian lower crust and display large range in δ26Mg from −0.44‰ to −0.09‰ in mafic granulites, −0.44‰ to −0.10‰ in amphibolites, and −0.70‰ to −0.03‰ in granitic gneisses. The average Mg isotopic compositions of the granitic gneisses (−0.19 ± 0.34‰), mafic granulites (−0.22 ± 0.17‰) and amphibolites (−0.25 ± 0.24‰) are similar, indicating the limited Mg isotope fractionation during prograde metamorphism from granitic gneisses to mafic granulites and retrograde metamorphism from mafic granulites to amphibolites. The Eocene two-mica granites and Miocene leucogranites are characterized by large variations in elemental and Sr–Nd–Pb isotopic compositions. The leucogranites and two-mica granites have their corresponding (87Sr/86Sr)i varying from 0.7282 to 0.7860 and 0.7163 to 0.7191, (143Nd/144Nd)i from 0.511888 to 0.512040 and 0.511953 to 0.512076, 207Pb/204Pb from 15.7215 to 15.7891 and 15.7031 to 15.7317, 208Pb/204Pb from 38.8521 to 39.5286 and 39.2710 to 39.4035, and 206Pb/204Pb from 18.4748 to 19.0139 and 18.7834 to 18.9339. However, they have similar Mg isotopic compositions (−0.21‰ to +0.06‰ versus −0.24‰ to +0.09‰), which did not originate from fractional crystallization nor source heterogeneity. Based on hornblende/biotite/muscovite dehydration melting reaction and Mg isotopic variations in two-mica granites and leucogranites with the proceeding metamorphism, along with elemental discrimination diagrams, Eocene two-mica granites and Miocene leucogranites could be related to hornblende dehydration melting and muscovite dehydration melting, respectively. Mg isotopic compositions of Eocene two-mica granites become heavier compared to the source because of residues of isotopically light garnet in the source; while those of Miocene leucogranites become lighter because of entrainment of isotopically light garnet from the source region. Thus, a new model for crustal anatexis and Himalayan orogenesis was proposed based on the Mg isotope fractionation in the leucogranites and metamorphic rocks. This model emphasizes a successive process from Indian continental subduction to rapid exhumation of the Higher Himalayan Crystalline Series (HHCS). The former underwent high-temperature (HT) and high-pressure (HP) granulite-facies prograde metamorphism, which resulted in the hornblende dehydration melting and the formation of Eocene two-mica granites; while the latter experienced amphibolite-facies retrogression and decompression, which resulted in the muscovite dehydration melting and the formation of Miocene leucogranites.  相似文献   

6.
Abstract Experimental results have proved that the Xuefengian Sn-bearing biotite granites were formed by remelting and recrystallization of the Proterozoic metamorphic rocks of the Sibao Group at 500 × 105 —2000× 105 Pa and 750-570 °C and further testified that the F- and B-bearing aqueous solution played an important part in decreasing the formation temperature of the rocks. The results tally with the reality of the field geology. The authors have thus brought to light the mechanism for the formation of the Sn-bearing biotite granites and expounded the significance of their formation in the crust dynamics of South China.  相似文献   

7.
Global-scale cycling of silicon through the biosphere, atmosphere, and hydrosphere has received much attention although, silicon cycling in the Earth’s lithosphere remains poorly understood. As the products of internal heat and material exchange, igneous rocks preserve significant information of silicon migration through the lithosphere. Here we report silicon isotopic compositions of nine peraluminous granites from the Chinese Altai, which forms part of the Central Asian Orogenic Belt. These rocks are characterized by the heaviest δ30Si values (−0.13 ± 0.03‰ to +0.78 ± 0.05‰) compared to global granites, with a linear variation in the silicon isotopic values against silica content, with high silica-rich granites displaying more depleted isotopic compositions. In conjunction with the whole rock weakly negative ɛNd(t) and uniform δ26Mg values, as well as high δ18O values, we suggest that the δ30Si values of these granites were mainly inherited from the magma source, rather than produced by magmatic fractionation. In addition, the wide range of initial 87Sr/86Sr ratios and high Ba content of the samples suggest the role of aqueous fluids. The Chinese Altai is considered to have formed through accretion of volcanic arcs associated with subduction of the Paleo-Asian oceanic lithosphere. The magma derived through partial melting of metasomatic mantle scavenges the heavy 30Si isotopes derived through fluids released from oceanic sediments and transfers to the upper crust where partial melting of crustal sedimentary rocks occur. Mixing of these two melts generated the peraluminous granites. Our study offers a novel insight into a potentially important mechanism of silicon cycling in the lithosphere.  相似文献   

8.
Seventy samples of Hercynian peraluminous granites (Guéret, Millevaches and Saint Sylvestre massifs) and metamorphic units of the Limousin area were analysed for Rb–Sr and Sm–Nd. The source rocks of the peraluminous granites can be found in the metamorphic rocks of Limousin, among them meta-igneous rocks were largely predominent over meta-sedimentary rocks in the source of the three granites. Millevaches and Guéret granites were generated by the partial melting of rocks comprising meta-volcanics and meta-sediments, whereas the Saint Sylvestre granite was produced exclusively by the melting of late Precambrian granites. This leads to confusing T DM Nd values, the confusion being amplified by the segregation of monazite during the petrogenetic evolution of the peraluminous granites, which leads to dramatic fractionation in Sm/Nd ratios. The data of the present study tend to demonstrate that peraluminous granites do not give a good representation of isotopic mean crustal estimates. Late Precambrian time seems, however, to have been a period of extensive crustal generation in Western Europe.  相似文献   

9.
Gejiu is geographically located near Gejiu city, SW China. It is one of the largest tin-polymetallic districts in the world and contains approximately 3 million tons (Mt) of Sn and smaller quantities of Cu, Pb, and Zn. The deposit primarily yields three different types of ore: skarn-hosted ore, basalt-hosted stratiform ore, and carbonate-hosted stratiform ore. Kafang is one of the primary ore deposits in the Gejiu district and is an unusual occurrence hosted in basaltic rocks. Genetic models of the Kafang deposit suggest that it is related either to Anisian (Lower stage of Middle Triassic) Gejiu basalts or to Cretaceous Gejiu granite. In this study, we performed zircon SIMS U–Pb dating, major and trace element analyses, and Sr–Nd–Pb isotopic analyses for the Gejiu basalts and S isotopic analyses for stratiform Cu ore. Our results and previous studies are used to interpret the petrogenesis of the Gejiu basalts and the origin of the basalt-hosted stratiform Cu deposit. The SIMS zircon U–Pb analyses of the Gejiu basalts yield an age of 244.4 Ma. The trace element ratios of the Gejiu basalts are similar to those of ocean island basalt and have positive εNd(t) values (ranging from 0.6 to 2.5) and uniform (87Sr/86Sr)i values (ranging from 0.70424 to 0.70488). These ratios are close to those of the Permian Emeishan flood basalt. Thus, the Gejiu basalts may represent coeval volcanisms within the plate involving remelting of the Emeishan plume head through a stress relaxation process after the main plume event. The Pb and S isotopic compositions of the Gejiu basalts and the stratiform Cu ores indicate that the source of Cu and S is primarily derived from the Gejiu basalts. However, the age of sulfide mineralization (84.2–79.6 Ma) and the age of hydrothermal alteration (85.5–81.9 Ma) are temporally consistent with the age of the Cretaceous granite emplacement (85.5–83.3 Ma). From a petrological and geochemical study, we determine that the Gejiu basalts may have been subjected to pervasive granite-related hydrothermal alteration during the emplacement of granite. These processes increase the K and Mg contents of basalt and probably caused the formation of the Cu ores. Thus, the Kafang stratiform Cu deposit can be considered as a granite-related hydrothermal deposit.  相似文献   

10.
Biotite igneous ages and well‐defined isochron ages of plutons from the composite Blue Tier Batholith and the Coles Bay area in northeastern Tasmania range from 395 to 370 Ma. The older limit of this range, for the George River granodiorite, is considerably older than any age previously recorded for NE Tasmania. The ages of the youngest plutons (Mt Paris and Anchor granites), which host cassiterite ores, record pervasive hydrothermal alteration events. The initial 87Sr/80Sr ratios of the granitoids range from 0.7061 to 0.7136 and suggest different protolith compositions, consistent with mineralogical and geochemical characteristics of each pluton. The S‐type garnetbiotite granites (Ansons Bay and Booby alia granites) have initial ratios greater than 0.7119, indicative of enriched, high Rb/Sr ratio, crustal source‐rocks of Proterozoic age (1700–800 Ma). The S‐type biotite granites (Poimena and Pearson granites) have relatively high initial 87Sr/86Sr ratios (0.7070, 0.7105) but overlap with those of the I‐type granodiorites (George River, Scamander Tier, Pyengana and Coles Bay granodiorites) which are in the range of 0.7061 to 0.7073. The initial ratios of the enriched altered plutons are poorly constrained, and on both hand‐specimen and thin‐section scales, reveal open‐system Sr isotopic patterns.

Isochron ages for the arenite‐lutite and lutite sedimentary associations of the Mathinna Beds, which are intruded by the granitoids, reflect an approach to Sr isotopic equilibrium during regional metamorphism. The metamorphic age (401 ± 7 Ma) of the early Pragian arenite‐lutite association indicates a relatively small time interval between deposition, regional metamorphism and granitoid intrusion. The isotopic age for the lutite sedimentary association (423 ± 22 Ma) is tentatively correlated with a Benambran‐age burial metamorphic event that has not previously been recorded in Tasmania.  相似文献   

11.
The Ascutney Mountain igneous complex in eastern Vermont, USA, is composed of three principal units with compositions ranging from gabbro to granite. Sr and O isotopic and major element relationships for mafic rocks, granites, and nearby gneissic and schistose country rock have been investigated in order to describe the petrogenesis of the mafic suite which ranges from gabbro to diorite. The entire complex appears to have been formed within a short interval 122.2±1.2 m.y. ago. The granites with 18O near +7.8 had an initial 87Sr/86Sr of 0.70395(±6) which is indistinguishable from the initial ratio of the most primitive gabbro. Initial 87Sr/86Sr ratios and 18O values for the mafic rocks range from 0.7039 to 0.7057 and +6.1 to +8.6, respectively. The isotopic ratios are highly correlated with major element trends and reflect considerable crustal contamination of a mantle-derived basaltic parent magma. The likely contaminant was Precambrian gneiss similar to exposed bedrock into which the basic rocks were emplaced. A new approach to modelling of assimilation during the formation of a cogenetic igneous rock suite is illustrated. Chemical and isotopic modelling indicate that the mafic rocks were produced by simultaneous assimilation and fractional crystallization. The relative amounts of fractionation and assimilation varied considerably. The mafic suite was not produced by a single batch of magma undergoing progressive contamination; rather, the various rocks probably were derived from separate batches of magma each of which followed a separate course of evolution. The late stage granite was apparently derived from basaltic magma by fractionation with little or no crustal assimilation. The early intrusive phases are much more highly contaminated than the final one. The observed relationships have important implications for the formation of comagmatic complexes and for isotopic modelling of crustal contamination.  相似文献   

12.
Anorogenic granites of middle to late Proterozoic age in the Davis Inlet — Flowers Bay area of Labrador are subdivided on the basis of petrology and geochemistry into three coeval suites. Two of these are high-temperature anhydrous hypersolvus granites: a peralkaline aegirine-sodic-calcic to sodic amphibole-bearing suite and a non-alkaline fayalite-pyroxene-bearing suite. The third is a group of non-alkaline subsolvus hornblende-biotite-bearing granites. Associated with the hypersolvus peralkaline suite is a group of genetically related syenites and quartz syenites. The granites cut ca. 3,000 Ma old Archaean gneisses as well as Elsonian layered basic intrusions of the Nain Complex. One of these, a crudely layered mass which ranges in composition from gabbro to diorite and monzonite, appears to be related to the syenites. The peralkaline granites and some of the syenites are extremely enriched in the high field-strength elements such as Y, Zr, Nd, as well as Rb, Ga and Zn, and have low abundances of Ba, Sr and most of the transition elements. In contrast, the non-alkaline hypersolvus and subsolvus granites do not show the same degree of enrichment. Concentration of the highly charged cations in the peralkaline suite is believed to be the result of halogen-rich fluid activity during fractionation of the magma. The sodic evolution trend in the peralkaline suite is reflected mineralogically by the development of aegirine and aegirine-hedenbergite solid solutions, and by a spectacular amphibole compositional range from katophorite through winchite, richterite, riebeckite to arfvedsonite and ferro eckermannite. Accessory phases which are ubiquitous in these rocks include aenigmatite, astrophyllite, fluorite, monazite and zircon. The non-alkaline hypersolvus granites typically contain iron-rich phases such as fayalite, eulite, ferrosilite-hedenbergite, and annite rich biotite. In the subsolvus granites, amphiboles range in composition from edenite through common hornblende to actinolite and also coexist with annite-rich biotite.Whole-rock and mineral isotopic data for the different suites yield isochrons that are within error of ca. 1,260 Ma, but they have variable initial 87Sr/86Sr ratios. The initial 87Sr/86Sr of the syenites and peralkaline granites (0.7076±11) is significantly lower than the initial 87Sr/86Sr of the subsolvus granites (0.7138±22). These isotopic data provide further confirmation of the importance of a late Elsonian alkaline event in Labrador which can be correlated with Gardar igneous activity in south Greenland. The petrogenesis of the peralkaline suite is interpreted to reflect the effects of fractionation of anhydrous phases from mantle derived basic magma which was contaminated during ascent by radiogenic partial melts of crustal derivation. The non-alkaline hypersolvus and subsolvus granites are interpreted as crustal melts which formed under conditions of variable in response to the same thermal event, and which subsequently experienced feldspar fractionation during crystallization.  相似文献   

13.
The Cretaceous-Paleogene granites of the Eastern Sikhote Alin volcanic belt (ESAVB) and Late Cretaceous granitoids of the Tatibin Series (Central Sikhote Alin) are subdivided into three groups according to their oxygen isotope composition: group I with δ18O from +5.5 to +6.5‰, group II with δ18O from +7.6 to +10.2‰, and group III with less than +4.5‰. Group I rocks are similar in oxygen isotope composition to that of oceanic basalts and can be derived by melting of basaltic crust. Group II (rocks of the Tatibin Series) have higher δ18O, which suggests that their parental melts were contaminated by sedimentary material. The low 18O composition of group III rocks can be explained by their derivation from 18O-depleted rocks or by subsolidus isotopic exchange with low-18O fluid or meteoric waters. The relatively low δ18O and 87Sr/86Sr in the granitoids of Primorye suggest their derivation from rocks with a short-lived crustal history and can result from the following: (1) melting of sedimentary rocks enriched in young volcanic material that was accumulated in the trench along the transform continental margin (granites of the Tatibin Series) and (2) melting of a mixture of abyssal sediments, ocean floor basalts, and upper mantle in the lithospheric plate that subsided beneath the continent in the subduction zone (granites of the ESAVB).  相似文献   

14.
ABSTRACT

Zircon U–Pb ages, major element and trace element compositions, and Sr, Nd, and Pb isotopic compositions for late Mesozoic granites from the southern Jiaodong Peninsula (eastern China) were determined. Ages for the Wulianshan, Xiaozhushan, and Dazhushan plutons are 119.1–122.3, 114.2, and 108.9 Ma, respectively. Major and trace element characteristics show that these granitic rocks belong to alkaline, A-type granites formed in an extensional setting. Trace element compositions show strong, variable negative anomalies in Ba, K, P and Ti, and positive anomalies in Rb, Th, U, Pb, Ce, Zr, and Hf, which are typical characteristics of A-type granites. Variable Sr and Nd isotopic compositions, 87Sr/86Sr(i) = 0.70540–0.7071 and εNd(t) = ?14.5 to ?20.9. Whole-rock Pb isotopic compositions have the following ranges, (206Pb/204Pb)t = 15.707–16.561, (207Pb/204Pb)t = 15.376–16.462, and (208Pb/204Pb)t = 36.324 to 37.064. Isotopic modelling indicates an origin that lies between mantle tapped by Cenozoic basalts around the Tan-Lu megafault and lower continental crust (LCC), and which can be explained by mixing of 11–18% mantle and 82–89% LCC. Based on new and compiled data, we suggest that the southern Jiaodong Peninsula, as well as the Laoshan area, was in a regional extensional setting of an orogenic belt during 106–126 Ma. The granitic rocks may be the result of late Mesozoic lithospheric thinning and decratonization (i.e. late Mesozoic craton destruction event occurring throughout eastern China).  相似文献   

15.
The anorogenic igneous rocks of Mull consist essentially of a lava pile of predominantly basaltic composition, cut by an intrusive complex. The basement consists of Precambrian metamorphic rocks of the Moine Series underlain by Lewisian gneiss. The intrusive complex contains a significant proportion of granitic intrusions which can be ascribed to three successive centres of activity, Centres 1–3. We report new major and trace element, including rare earth element analyses, 87Sr/86Sr ratios and 18O values for a comprehensive collection of granitic rocks from the 3 centres. The 18O values range from +4 to –6 indicating variable extent of interaction between the rocks and heated meteoric groundwater. However, correlations of 18O with other major and trace element data and 87Sr/86Sr ratios are uniformly low, apart from Fe2O3. It is thus unlikely that the interaction of the rocks with meteoric water has systematically altered the chemical (including Sr isotope) characteristics. The chemical and Sr isotope data reflect magmatic values and can therefore be used to comment on the petrogenesis of the granitic rocks.These data indicate that there are important differences between granitic rocks of the centres with Centre 1 forming one distinct group and Centres 2 and 3 a different group. For a given SiO2 value, the Centre 1 granites have higher Na2O, MgO, P2O5, TiO2, Sr, and V and lower Al2O3, MnO, Zn, Zr, and Y than those of Centres 2 and 3. In addition, the Centre 1 granites have lower REE contents and higher CeN/YbN ratios than those of Centres 2 and 3. Granites from all three centres have Eu anomalies, those of Centre 3 being generally greater (Eu/Eu* = 0.66–0.10). Finally, there are important Sr isotope distinctions between the three Centres; calculated initial 87Sr/86Sr ratios for the Centre 1 granites (using 58.2Ma) range between 0.71366–0.71646 (average 0.71530) and have a general correlation of 87Sr/86Sr with 87Rb/86Sr. The initial 87Sr/86Sr ratios of the Centre 2 granites range from 0.70663 to 0.70868, but the 87Sr/86Sr data do not define an isochron. Finally, data for the Centre 3 granites define a Rb-Sr wholerock isochron with an age of 58.2±2.5 Ma and an initial 87Sr/86Sr ratio of 0.71003 ±36.Both the chemical trends and isotopic data for the Mull granites can be interpreted in terms of contrasted origins for the granitic rocks of the two groups. The relatively primitive chemical composition and high initial 87Sr/86Sr ratios of the Centre 1 granites indicate a substantial crustal contribution and we consider that these granites formed by a combination of partial melting of Lewisian basement together with some magma derived by fractional crystallization of basaltic magma. In contrast, the chemical and isotope data for the Centre 2 and 3 granites are consistent with formation dominantly by fractional crystallization of basaltic magma, together with a relatively small proportion of crustal contamination. A model is proposed which emphasises that acid magmatism in Mull is a consequence of the rise and crystallization of basic magma into continental crust. Granite magma has formed both by partial melting and by fractional crystallization and both of these events probably occurred under open system conditions.With oxygen isotope analyses by J.J. Durham, Geochemical Division, Institute of Geological Sciences, 64–78 Grays Inn Road, London, WC1X 8NG, England  相似文献   

16.
Geochemical and Nd-Sr isotopic compositions and U-Pb zircon ages of two Variscan granites (Neunburg and Oberviechtach) from southern Oberpfalz, NW Bohemian massif, have been investigated in order to place constraints on their formation and on the crustal reworking. Both granites exhibit similar mineralogical, chemical and isotopic characteristics. They have peraluminous compositions (A/CNK ratios 1.2-1.3) and display high K2O/Na2O ratios of 2.2-2.3, consistent with typical S-type granites. In terms of trace elements, they show an enrichment of LREE and strong fractionation between LREE and HREE (LaN/YbN ratios 46 to 60). Compared with the primordial mantle, distinct negative anomalies of several trace elements (Ba, Sr, Nb and Ti) are also observed in both granites. They are further characterised by low initial kNd-values of ш.2 to ъ.2 and high initial 87Sr/86Sr ratios of 0.7114 to 0.7147. Zircon U-Pb data indicate that the intrusion of both granites shortly post-dates the HT-LP metamorphism of the Moldanubian basement and crystallised at about 320 Ma. The samples studied contain zircons mostly having xenocrystic cores with diverse morphologies. These inherited zircons have Early Proterozoic to Early Palaeozoic ages. This points to melting of sources comprising substantial sedimentary rocks. The LaN/YbN and TbN/YbN ratios of both granites are the highest so far reported from granitoids within this region. Melting of lower crustal rocks leaving garnet as a restite phase in the source provides a viable mechanism to reproduce the REE characteristics.  相似文献   

17.
The aim of this article is to examine the geochemistry and geochronology of the Cadomian Mishu granites from northwest Iran, in order to elucidate petrogenesis and their role in the evolution of the Cadomian crust of Iran. The Mishu granites mainly consist of two-mica granites associated with scarce outcrops of tonalite, amphibole granodiorite, and diorite. Leucogranitic dikes locally crosscut the Mishu granites. Two-mica granites show S-type characteristics whereas amphibole granodiorite, tonalities, and diorites have I-type signatures. The I-type granites show enrichment in large-ion lithophile elements (e.g. Rb, Ba and K) and depletion in high field strength elements (e.g. Nb, Ti and Ta). These characteristics show that these granites have been formed along an ancient, fossilized subduction zone. The S-type granites have high K, Rb, Cs (and other large ion lithophile elements) contents, resembling collision-related granites. U–Pb zircon dating of the Mishu rocks yielded 238U/206Pb crystallization ages of ca. 550 Ma. Moreover, Rb–Sr errorchron shows an early Ediacaran age (547 ± 84 Ma) for the Mishu igneous rocks. The two-mica granites (S-type granites) show high 87Sr/86Sr(i) ratios, ranging from 0.7068 to 0.7095. Their ?Nd values change between ?4.2 and ?4.6. Amphibole granitoids and diorites (I-type granites) are characterized by relatively low 87Sr/86Sr(i) ratios (0.7048–0.7079) and higher values of ?Nd (?0.8 to ?4.2). Leucogranitic dikes have quite juvenile signature, with ?Nd values ranging from +1.1 to +1.4 and Nd model ages (TDM) from 1.1 to 1.2 Ga. The isotopic data suggests interaction of juvenile, mantle-derived melts with old continental crust to be the main factor for the generation of the Mishu granites. Interaction with older continental crust is also confirmed by the presence of abundant inherited zircon cores. The liquid-line of descend in the Harker diagrams suggests fractional crystallization was also a predominant mechanism during evolution of the Mishu I-type granites. The zircon U–Pb ages, whole rock trace elements, and Sr–Nd isotope data strongly indicate the similarities between the Mishu Cadomian granites with other late Neoproterozoic–early Cambrian (600–520 Ma) granites across Iran and the surrounding areas such as Turkey and Iberia. The generation of the Mishu I-type granites could be related to the subduction of the Proto-Tethyan Ocean during Cadomian orogeny, through interaction between juvenile melts and old (Mesoproterozoic or Archaean) continental crust. The S-type granites are related to the pooling of the basaltic melts within the middle–upper parts of the thick continental crust and then partial melting of that crust.  相似文献   

18.
This study reports new geochemical and Sr and Nd isotope data for 11 samples of hynormative late Miocene (~6.5 Ma) basalt, basaltic andesite, and rhyolitic volcanic rocks from Meseta Rio San Juan, located in the states of Hidalgo and Queretaro, Mexico, in the north-central part of the Mexican Volcanic Belt (MVB). The in situ growth-corrected initial isotopic ratios of these rocks are as follows: 87Sr/86Sr 0.703400-0.709431 and 143Nd/144Nd 0.512524-0.512835. For comparison, the isotopic ratios of basaltic rocks from this area show very narrow ranges as follows: 87Sr/86Sr 0.703400-0.703540 and 143Nd/144Nd 0.512794-0.512835. The available geological, geochemical, and isotopic evidence does not support the generation of the basic and intermediate magmas by direct (slab melting), nor by indirect (fluid transport to the mantle) participation of the subducted Cocos plate. The basaltic magmas instead could have been generated by partial melting of the upper mantle. The evolved basaltic andesite magmas could have originated from such basaltic magmas through assimilation coupled with fractional crystallization. Rhyolitic magmas might represent partial melting of different parts of the underlying heterogeneous crust. Their formation and eruption probably was facilitated by extensional tectonics and upwelling of the underlying mantle. The different petrogenetic processes proposed here for basaltic and basaltic andesite magmas on one hand and rhyolitic magmas on the other might explain the bimodal nature of Meseta Rio San Juan volcanism. Finally, predictions by the author about the behavior of Sr and Nd isotopic compositions for subduction-related magmas is confirmed by published data for the Central American Volcanic Arc (CAVA).  相似文献   

19.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

20.
Intrusion-related migmatites comprise a substantial part of the high-grade part of the southern Damara orogen, Namibia which is dominated by Al-rich metasedimentary rocks and various granites. Migmatites consist of melanosomes with biotite+sillimanite+garnet+cordierite+hercynite and leucosomes are garnet- and cordierite-bearing. Metamorphic grade throughout the area is in the upper amphibolite to lower granulite facies (5–6 kbar at 730–750 °C). Field evidence, petrographic observations, chemical data and mass balance calculations suggest that intrusion of granitic magmas and concomitant partial melting of metasedimentary units were the main processes for the generation of the migmatites. The intruding melts were significantly modified by magma mixing with in situ partial melts, accumulation of mainly feldspar and contamination with garnet from the wall rocks. However, it is suggested that these melts originally represented disequilibrium melts from a metasedimentary protolith. The occurrence of LILE-, HFSE- and LREE-enriched and -depleted residues within the leucosomes implies that both quartzo-feldspathic and pelitic rocks were subjected to partial melting. Isotope ratios of the leucosomes are rather constant (143Nd/144Nd (500 Ma): 0.511718–0.511754, ε Nd (500 Ma): ?3.54 to ?5.11) and Sr (87Sr/86Sr (500 Ma): 0.714119–0.714686), the metasedimentary units have rather constant Nd isotope ratios (143Nd/144Nd (500 Ma): 0.511622–0.511789, ε Nd (500 Ma): ?3.70 to ?6.93) but variable Sr isotope ratios Sr (87Sr/86Sr (500 Ma): 0.713527–0.722268). The most restitic melanosome MEL 4 has a Sr isotopic composition of 87Sr/86Sr (500 Ma): 0.729380. Oxygen isotopes do not mirror the proposed contamination process, due to the equally high δ18O contents of metasediments and crustal melts. However, the most LILE-depleted residue MEL 4 shows the lowest δ18O value (<10). Mass balance calculations suggest high degrees of partial melting (20–40%). It is concluded that partial melting was promoted by heat transfer and release of a fluid phase from the intruding granites. High degrees of partial melting can be reached as long as the available H2O, derived from the crystallization of the intruding granites, is efficiently recycled within the rock volume. Due to the limited amounts of in situ melting, it seems likely that such regional migmatite terranes are not the sources for large intrusive granite bodies. The high geothermal gradient inferred from the metamorphic conditions was probably caused by exhumation of deep crustal rocks and contemporaneous intrusion of huge masses of granitoid magmas. The Davetsaub area represents an example of migmatites formed at moderate pressures and high temperatures, and illustrates some of the reactions that may modify leucosome compositions. The area provides constraints on melting processes operating in high-grade metasedimentary rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号