首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 208 毫秒
1.
基于广义Winkler弹性地基梁理论的梯形渠道冻胀力学模型   总被引:2,自引:0,他引:2  
寒区渠道衬砌冻胀破坏现象普遍,而渠道的防冻工程设计大多依赖工程实践经验和定性认识,具有一定的随意性和盲目性,对衬砌结构所受的冻胀力计算缺乏简明、合理的方法。考虑冻土与衬砌的相互作用和冻土地基的连续性,基于广义Winkler地基梁理论并结合有限差分法,推导了渠道衬砌板冻胀挠曲线微分方程,建立了梯形渠道冻胀力学模型,给出了衬砌渠道法向冻胀力及切向冻结力的计算方法。同时,考虑渠道衬砌冻胀破坏的极限承载力以及冻胀过程中坡脚上抬位移对实际冻胀力的削减和释放效应,避免了冻胀力及衬砌结构内力计算值过大。为验证模型的合理性,以甘肃省靖会总干渠梯形渠道为研究对象,对其进行冻胀破坏计算。结果表明:模型由于考虑了衬砌结构与冻土间的相互作用,渠道衬砌板法向冻胀力呈非线性分布,修正了工程力学模型线性分布假设;与工程力学模型相比,冻胀力数值在坡脚处增大、跨中减小、底板上增大,计算结果更符合工程实际。研究提出的冻胀力学模型科学合理,简便快捷,具有更好的通用性,可为寒区渠道的抗冻胀设计提供参考。  相似文献   

2.
权晓龙 《地下水》2014,(1):153-155
提高渠道衬砌工程质量水平,需要对混凝土衬砌渠道冻胀特性及影响因素进行研究。按照大U形混凝土衬砌渠道断面,利用FEA有限元数学近似分析法,对渠道冻胀特性进行瞬态数值模拟。模拟结果表明:各监测点在冻胀过程中相对外部冻胀量、法向冻胀力、以及切向冻胀力均存在一定的滞后现象,与工程实际中大 U形混凝土衬砌渠道冻胀实际特性相符。 FEA有限元数学近似分析法能够准确模拟渠道冻胀特性,为工程研究提供了一种新的计算机模拟仿真思路。  相似文献   

3.
寒区破碎岩体隧道冻胀力室内对比试验研究   总被引:8,自引:0,他引:8  
根据相似理论,以曲墙式、直墙式和圆形衬砌为例,通过模型试验方法研究了寒区破碎岩体隧道在不同约束条件和冻结深度下衬砌所受法向冻胀力(以下简称冻胀力)的量值和分布规律.结果表明:冻结深度越大,冻胀力越大;顶端约束越强,冻胀力越大.对于曲墙式和直墙式衬砌,顶端约束对拱部和仰供处冻胀力影响较大,对边墙处冻胀力影响较小;对于圆形衬砌,顶端约束对整个衬砌所受冻胀力影响程度相差不大;直墙式衬砌受冻胀力的量值最大,圆形衬砌受冻胀力量值最小.对于3种衬砌结构,最大冻胀力均发生在仰供脚处.试验数据与现场测试数据基本吻合,说明试验有较好的准确性.  相似文献   

4.
渠道基土冻结时温度场和应力场的数值模拟   总被引:3,自引:0,他引:3  
张钊  吴紫汪 《冰川冻土》1993,15(2):331-338
本文用有限差分法计算了渠道基土冻胀过程中二维不稳定温度场的分布规律。模拟计算了渠道基土由于冻胀作用而对砌体产生的冻胀力。计算结果表明,在渠底和渠坡下部衬砌体所受冻胀应力最大,冻胀应力随深度呈衰减趋势。在两侧边界部位,由于受边界约束作用,冻胀应力随深度呈衰减—增大—衰减的震荡趋势,若使衬砌体完全不发生位移,即使在弱冻胀条件下,表面约束应力也达0.5×10~5N/m~2,可见用刚性衬砌约束冻胀变形是不行的,必须采取综合措施进行防治。  相似文献   

5.
额敏县乌什水水库引水渠位于新疆北部,地基基础属季节性冻土。冬冻夏融,呈季节性变化。冬季输水受渠道渗漏影响,沿渠道两侧形成上层滞水的季节含水层。每年冬季降温期间,渠道砼板在冻结层冻胀力和渠水表层冻结冰的冰撑力综合作用下遭受冻胀破坏,严重威胁季节性冻土区渠道输水安全。通过对水工建筑物冻害调查、研究、观测,提出如下综合防治方案:选择防渗措施,减少渠道渗漏;夯实渠道基础,置换下垫土石;采取保温措施,抵御冻胀破坏;改变设计结构,提高抗冻害能力。  相似文献   

6.
冻土三轴冻胀应力-应变试验方法研究   总被引:3,自引:1,他引:2  
仇文革  孙兵 《冰川冻土》2010,32(1):116-120
提出了一种试验方法,研究土体或破碎岩体在不同含水率、不同温度、不同应力状态下冻结后产生的冻胀应变与冻胀力之间的关系,并针对寒区隧道提出了一种新型三轴冻胀应力-应变关系.试验设备采用应变控制式三轴仪及低温冷冻库,通过改变测力环的刚度来实现不同约束状态,进而得到土体或破碎岩体在不同约束状态下冻结后产生的冻胀应变及冻胀力,将这些特征点进行回归分析即可得到冻胀应力应变关系.根据上述试验方法,对饱和砂土进行三轴冻胀应力-应变试验.结果表明:冻胀应力应变关系呈对数曲线变化,且冻胀力随冻胀应变的对数呈线性变化;轴向约束越强,冻胀应变越小,冻胀力越大,且冻胀力随轴向约束强度的增大趋于某一极值;围压越大,冻胀力和冻胀应变越大.  相似文献   

7.
匡亮  仇文革 《岩土力学》2006,27(Z1):524-528
详细地介绍了曲墙式、直墙式和圆形断面隧道衬砌在约束条件、隔热保温层及含水状况等因素变化情况下的相似材料冻胀力室内模型试验,通过分析试验得出不同衬砌断面在各种因素影响下衬砌和围岩间冻胀压力的量值和分布特征,以及由冻胀压力引起的结构内力分布特征。研究表明,直墙式断面受冰胀力最大,曲墙式次之,圆形面最小;曲墙式、直墙式断面冻胀力均呈分布荷载形态,前者拱脚及仰拱脚处冻胀力最大,后者边墙、底板处冻胀力最大。  相似文献   

8.
寒冷地区输水渠道冻胀破坏链式分析及减灾研究   总被引:3,自引:3,他引:0  
张如意  姜海波  王正成 《冰川冻土》2016,38(6):1607-1614
寒冷地区输水渠道在运行过程中,由于持续负温的影响,地温逐步下降,引起渠基土体水分分布发生变化导致土体冻胀,致使输水渠道结构破坏,这种作用影响所表现出来的链式效应是冻胀破坏作用的重要特征。为了探明寒冷地区输水渠道冻胀破坏机理,分析渠道的冻胀破坏因素,引入链式破坏理论进行分析。从系统理论出发,分析冻胀破坏系统的链式关系结构,建立冻胀破坏链式效应关系模型。以寒冷地区渠道衬砌结构冻胀破坏为例,分析经过一个冻融周期,渠基土体颗粒、土体成分组成、气温、地温变化规律和土壤水分迁移规律对渠道衬砌结构冻胀破坏的影响。分析渠道衬砌结构冻胀破坏链式机理,是在外部环境气温、水分等条件输入下,地温分布受土体性质及土体水分的影响,土体水分迁移受地温和土体性质的作用,土体产生冻胀是对地温和水分分布作用的响应,以此为依据提出寒区渠道冻胀破坏断链减灾方法。  相似文献   

9.
金塔县位于河西走廊中段的北部边缘,属季节性冻土地区,多年平均气温8.0℃,1月份平均气温-13.8℃,平均冻结深度1.15m,最大冻结深度1.41m。六十年代初期,我县最初开展混凝土渠道衬砌试验,由于对基士的性质、水、冰冻、气候等因素的影响认识不足,建成的渠道未经通水,进入冬季就遭受冻胀破坏。为了研究冻胀过程规律,消除冻胀变形,1964年开始,利用当地材料在东干渠进行试验。经多年的试验和实践认识到,水、土、温度为渠道防渗衬砌冻胀破坏的三个因素,同时发现,冻胀一般多发生在渠侧坡二分之一到三分之一之间,在渠线经过耕地时冻胀强烈。现将本县混凝土衬砌渠道采用的一些抗冻措施介绍于后。  相似文献   

10.
混凝土渠道冻胀破坏机制与抗冻技术研究进展   总被引:7,自引:0,他引:7  
在我国寒冷地区混凝土渠道破坏主要表现为冻胀破坏,如何防治混凝土渠道冻胀破坏成为一个非常现实的工程问题.随着混凝土渠道抗冻技术的发展,对这一问题的研究愈加深入.从土体冻胀机制、水分冻移机制及混凝土衬砌体冻胀破坏机制等方面较深入地分析了混凝土渠道冻胀破坏的机制,总结了我国近年来混凝土渠道冻胀力学模型和抗冻技术的前沿研究成果,并对目前研究工作中存在的不足进行了一定的评价,讨论了今后应进一步开展研究的若干问题,为我国寒区混凝土渠道的加固改造建设提供一定的参考价值.  相似文献   

11.
多年冻土地区的排水沟渠经常遭受水平冻胀力的破坏,严重影响构筑物的服役性能。根据青藏高原多年冻土区路基坡脚U型槽排水沟渠的现场试验,并通过数值计算与理论分析,分析了结构埋深、粗颗粒换填范围以及结构形式对其温度场和水平冻胀力的影响。结果表明:改变工况,对土体温度场分布的形状影响较小,仅对其大小有一定影响。不同工况下水平冻胀力均沿深度非均匀分布,最大水平冻胀力主要出现在结构中部,而其上部和下部较小,结构侧壁在1/2至1/3处易发生冻胀破坏。梯形结构所受的水平冻胀力较U型结构增大13%~15%左右,但其分布形式基本相同。因此,U型结构在降低水平冻胀力方面优于梯形结构。随着换填范围增大,排水沟渠的水平冻胀力最大值逐渐减小;对于埋深1.7 m的排水沟渠来说,其侧边的0~2.8 m是影响水平冻胀力的主要换填宽度范围,而当换填宽度超过2.8 m后,水平冻胀力几乎不再降低。  相似文献   

12.
目前来看,在构筑物与土体表面粗糙度影响土-构筑物接触面间切向冻胀力方面的研究还较少,因此,本研究从川西季节冻土区渠基土-衬砌接触面的切向冻胀力问题出发,着重考虑衬砌表面粗糙度这一因素对接触面间抗剪强度、黏聚力、内摩擦角的影响规律和影响效应,并结合环境温度、含水率及冻结时长,利用正交分析综合探究了4种因素对接触面间峰值抗剪强度影响的相关性和显著性,结果表明:接触面间抗剪强度、黏聚力、内摩擦角随衬砌表面粗糙度变化呈现相同规律,即衬砌表面越粗糙,3项指标随即增大。正交分析中揭示了影响接触面间峰值抗剪强度大小最显著的因素是衬砌粗糙度,其次是环境温度和含水率,冻结时长的影响效应不显著,同时低温、低含水率、较长冻结时长、较高衬砌粗糙程度下的峰值抗剪强度越大。此项结果可为季节冻土区渠系工程防冻胀危害提供理论支撑。  相似文献   

13.
多年冻土地区L型挡土墙土压力(冻胀力)的分析与试验   总被引:6,自引:0,他引:6  
为适应多年冻土区土体冻胀过程所产生的较大变形的特性, 缩短施工进程, 减少扰动时间, 在青藏铁路格拉段选择了一个试验工点进行了L型悬臂挡墙的初步验证性试验研究. 通过对L型挡墙的受力模式分析, 确定了对粗颗粒填料不考虑冻胀力的土压力设计控制值. 通过与现场实测土压力分布规律的对比, 探讨了土压力与冻胀力的关系.  相似文献   

14.
严健  何川  晏启祥  许金华 《岩土力学》2019,40(9):3593-3602
以国道317线雀儿山隧道为工程依托,进行了隧道洞口冰碛地层的冻胀力原位测试,同时结合数值模拟、理论模型计算等方法,得到了冻融圈厚度、冻胀压力以及冻结前后衬砌结构内外测的应力。在此基础上,计算得到了衬砌结构的轴力、弯矩分布和变化规律,并与已有研究结果进行了比较分析。研究结果表明:寒区隧道洞口段冰碛地层作为高原常见季冻土受低温影响显著,低温持续22 h时冻融圈厚度达2 m左右;采用隧道冻胀力计算模型计算得到的冻胀压力在19.8~158.3 kPa之间,原位测试的冻胀压力在40~240 kPa之间,其中拱脚处最小,仰拱处最大;冰碛地层冻结前后的衬砌结构内侧、外侧应力各自具有复杂的变化和分布规律,冻结状态下衬砌结构轴力呈“扇”形分布,弯矩呈“蝶”形分布。与相关研究成果比较分析表明,现场采用的原位测试方法合理,结果更准确。  相似文献   

15.
粉土在中国分布广泛,工程中大量涉及,常表现为冻胀敏感性,在冻土地区工程建设中需重点考虑其冻胀特性。为减少粉土冻胀对工程的影响,基于环保的理念,以防腐处理后的麦秸秆作为加筋材料,将其切断后随机掺入粉土中;并对粉土和秸秆加筋粉土试样分别进行了开敞系统下的一维冻胀试验,重点研究了秸秆掺量和长度对粉土冻胀特性的影响。结果表明:秸秆加筋对粉土的冻胀有明显的抑制作用,少量的掺加(0.2%、0.4%)可将接近强冻胀的粉土改良为弱冻胀或不冻胀;在其他条件相同的情况下,试验范围内粉土的冻胀率随秸秆掺量的增加而线性增大,但总体远小于未改良土;秸秆掺量一定时,存在最优秸秆长度,在该长度下,秸秆加筋粉土的冻胀变形量和冻胀率均最小。  相似文献   

16.
渠道抗冻胀垫层设计方法研究与数值模拟   总被引:2,自引:0,他引:2  
安鹏  邢义川  张爱军  朱彭涛 《岩土力学》2013,34(Z2):257-264
基土换填是常用的抗冻胀措施。目前非冻胀性土缺乏科学标准的定义,换填厚度基本按照经验公式和工程类比确定,不尽科学合理。在对垫层抗冻胀机制的分析基础之上,根据层状土毛管水土水势理论给出了垫层材料的选择依据,结合热阻等效原理在考虑了衬砌结构允许位移的基础上给出了渠道垫层厚度的计算公式,并根据传统算法与该方法对山东打渔张北干渠弧形坡脚梯形渠道进行抗冻胀垫层设计;同时采用ANSYS有限元软件对渠道铺设垫层前后进行热力耦合数值模拟。研究表明,垫层通过改善水分场、温度场削弱了冻胀发生的因素;该垫层算法比传统算法合理、工程造价较低。数值分析表明,渠道冻胀量、冻胀力明显被削减,其中对阴坡的削减可达90%以上。  相似文献   

17.
青藏粉土单向冻结冻胀率变化特性研究   总被引:6,自引:1,他引:5  
开展了饱和青藏粉土在开放系统不同温度梯度条件下的单向冻结试验,对冻结过程中冻结深度和冻胀速率的发展变化过程进行了研究.结果表明:不同顶板温度下,土样均在25 h左右达到冻结稳定状态,之后冻结深度基本不再发生变化.土样冻结过程中,冻胀速率表现为快速减小、较小值保持稳定、快速增大、较大值保持稳定四个阶段.基于以上试验结果,对土样冻结过程中冻胀率的变化过程进行了研究,发现冻胀率随冻结深度的增加先减小后增加,冻胀率从减小变为增大的时刻就是冻结深度趋于稳定的时刻,而冻胀率快速增大的时刻为冻胀速率进入较大值保持阶段的时刻.冻胀率变化的内在机理为土样冻结过程中由冰透镜体分凝所导致的未冻区固结和已冻区冻胀共同作用的结果.  相似文献   

18.
对盐胀和冻胀规律的研究有助于深入认识硫酸(亚硫酸)盐渍土的工程性质。通过对天山北麓水磨河流域细土平原区硫酸(亚硫酸)盐渍土盐胀和冻胀试验研究发现:(1)随着温度的降低,试样盐胀和冻胀率逐渐增大。试样冻结前土体产生的膨胀是盐胀,试样冻结后产生的膨胀是盐胀和冻胀,当土体达到-15℃以后,土体盐胀和冻胀趋于稳定。(2)硫酸钠含量不变的情况下,随着含水量的增大,其起胀温度降低。土体起胀温度取决于土体中硫酸钠析水结晶温度、硫酸钠结晶含量的多少、土体结构、内摩阻力、粘聚力、土颗粒间的引力、土体孔隙间和孔隙接触间吸收结晶硫酸钠的程度。(3)硫酸钠含量增加,其单次盐胀和冻胀率变化区间增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号