首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spatial and temporal association between adakitic rocks and Nb-enriched basalts (NEB) is recognised for the first time in the western sector of the Trans-Mexican Volcanic Belt in the San Pedro–Cerro Grande Volcanic Complex (SCVC). The SCVC is composed of subalkalic intermediate to felsic rocks, spanning in composition from high-silica andesites to rhyolites, and by the young transitional hawaiite and mugearite lavas of Amado Nervo shield volcano. Intermediate to felsic rocks of the SCVC show many geochemical characteristics of typical adakites, such as high Sr/Y ratios (up to 180) and low Y (<18 ppm) and Yb contents. Mafic Amado Nervo rocks have high TiO2 (1.5–2.3 wt%), Nb (14–27 ppm), Nb/La (0.5–0.9) and high absolute abundances of HFSE similar to those shown by NEB. However, the Sr and Nd isotopic signature of SCVC rocks is different from that shown by typical adakites and NEB. Although the adakites–NEB association has been traditionally considered as a strong evidence of slab-melting, we suggest that other processes can lead to its generation. Here, we show that parental magmas of adakitic rocks of the SCVC derive their adakitic characteristic from high-pressure crystal fractionation processes of garnet, amphibole and pyroxene of a normal arc basalt. On the other hand, Amado Nervo Na-alkaline parental magmas have been generated by sediment melting plus MORB-fluid flux melting of a heterogeneous mantle wedge, consisting of a mixture of depleted and an enriched mantle sources (90DM + 10EM). We cannot exclude a contribution to the subduction component of slab melts, because the component signature is dominated by sediment melt, but we argue that caution is needed in interpreting the adakites–NEB association in a genetic sense.  相似文献   

2.
Magnesian andesites (MA) occur with 'normal' tholeiitic to calc-alkaline basalt-andesite suites in four greenstone belts of the 2.7 Ga Wawa subprovince, Canada. Collectively, the magnesian andesites span ranges of SiO2=56-64 wt%, Mg-number=0.64-0.50, with Cr and Ni contents of 531-106 and 230-21 ppm, respectively. Relative to 'normal' andesites, the magnesian andesites form distinct trends on variation diagrams, with relatively high Th and LREE contents, uniform Yb over a range of MgO, more fractionated HREE, and lower Nb/Thpm and Nb/Lapm ratios. Niobium-enriched basalts and andesites (NEBA; Nb=7-16 ppm), and an Al-enriched rhyolite (adakite) suite are associated in space and time with the magnesian andesites. Nb-enriched basalts and andesites are characterized by high TiO2, P2O5, Th, and Zr contents, variably high Zr/Hf (36-44) ratios, and more fractionated HREE (Gd/Ybcn=1.3-4.1) compared to the 'normal' tholeiitic to calc-alkaline basalt-andesite suites. The adakite suite has the high Al (Al2O3=16-18 wt%), high La/Ybcn (21-43), and low Yb (0.4-1.2 ppm) of Archean tonalite-trondhjemite-granodiorite (TTG) suites and Cenozoic adakites, indicative of liquids derived mainly from slab melting. The basalt-andesite suites are not characterized by normal tholeiitic or calc-alkaline fractionation trends of major or trace elements. Rather, compositional trends can be accounted for by some combination of fractional crystallization and variable degrees of metasomatism of the source of basalt and/or andesites by adakitic liquids. The occurrence of magnesian andesites, Nb-enriched basalts/andesites, and adakites has been described from certain Phanerozoic arcs featuring shallow subduction of young and/or hot oceanic lithosphere. Adakites likely represent slab melts, magnesian andesites the product of hybridization of adakite liquids with mantle peridotite, and Nb-enriched basalts/andesites melts of the residue from hybridization. Geological similarities between the late-Archean Wawa greenstone belts and certain Cenozoic transpressional orogens with the MA-NEBA-adakite association suggest that subduction of young, hot oceanic lithosphere may have played an important role in the production of this arc-related association in the late Archean.  相似文献   

3.
In the Northern Volcanic Zone of the Andes, the Cayambe VolcanicComplex consists of: (1) a basal, mostly effusive volcano, theViejo Cayambe, whose lavas (andesites and subordinate dacitesand rhyolites) are typically calc-alkaline; and (2) a younger,essentially dacitic, composite edifice, the Nevado Cayambe,characterized by lavas with adakitic signatures and explosiveeruptive styles. The construction of Viejo Cayambe began >1·1Myr ago and ended at 1·0 Ma. The young and still activeNevado Cayambe grew after a period of quiescence of about 0·6Myr, from 0·4 Ma to Holocene. Its complex history isdivided into at least three large construction phases (Angurealcone, Main Summit cone and Secondary Summit cone) and compriseslarge pyroclastic events, debris avalanches, as well as periodsof dome activity. Geochemical data indicate that fractionalcrystallization and crustal assimilation processes have a limitedrole in the genesis of each suite. On the contrary, field observations,and mineralogical and geochemical data show the increasing importanceof magma mixing during the evolution of the volcanic complex.The adakitic signature of Nevado Cayambe magmas is related topartial melting of a basaltic source, which could be the lowercrust or the subducted slab. However, reliable geophysical andgeochemical evidence indicates that the source of adakitic componentis the subducted slab. Thus, the Viejo Cayambe magmas are inferredto come from a mantle wedge source metasomatized by slab-derivedmelts (adakites), whereas the Nevado Cayambe magmas indicatea greater involvement of adakitic melts in their petrogenesis.This temporal evolution can be related to the presence of thesubducted Carnegie Ridge, modifying the geothermal gradientalong the Wadati–Benioff zone and favouring slab partialmelting. KEY WORDS: adakites; 40Ar/39Ar dating; Cayambe volcano; Ecuador; mantle metasomatism; Andes  相似文献   

4.
New chronological, geochemical, and isotopic data are reported for Triassic (219–236 Ma) adakite-magnesian andesite-Nb-enriched basaltic rock associations from the Tuotuohe area, central Qiangtang terrane. The adakites and magnesian andesites are characterized by high Sr/Y (25–45), La/Yb (14–42) and Na2O/K2O (12–49) ratios, high Al2O3 (15.34–18.28 wt%) and moderate to high Sr concentrations (220–498 ppm) and εND (t) (+0.86 to +1.21) values. Low enrichments of Th, Rb relative to Nb, and subequal normalized Nb and La contents, and enrichments of light rare earth elements combine to distinguish a group of Nb-enriched basaltic rocks (NEBs). They have positive εND (t) (+2.57 to +5.16) values. Positive correlations between Th, La and Nb and an absence of negative Nb anomalies on mantle normalized plots indicate the NEBs are products of a mantle source metasomatized by a slab melt rather than by hydrous fluids. A continuous compositional variation between adakites and magnesian andesites confirms slab melt interaction with mantle peridotite. The spatial association of the NEBs with adakites and magnesian andesites define an “adakitic metasomatic volcanic series” recognized in many demonstrably subduction-related environments (e.g., Mindanao arc, Philippines; Kamchatka arc, Russia; and southern Baja California arc, Mexico). The age of the Touhuohe suite, and its correlation with Triassic NEB to the north indicates that volcanism derived from subduction-modified mantle was abundant prior to 220 Ma in the central Qiangtang terrane.  相似文献   

5.
Central Mindanao was the locus of a Pliocene (4–5 Ma old) arc–arc collision event followed by basaltic to dacitic magmatism starting at 2.3 Ma, representing the most voluminous volcanic field in the Philippines. Lava compositions range from calc-alkaline to shoshonitic. Adakites and Nb-enriched basalts are among the magmatic products. All the lavas are Na-rich (up to 4.88%), with Na2O/K2O ratios from 2.5 to 6.5. Sr, Nd and Pb isotopic compositions are similar to MORB, except for some shoshonitic lavas that have slightly less radiogenic Nd ratios. K-enrichment in basalts can be related to both fractional crystallization (FC) at moderate pressures and to partial melting of an enriched source. Trace element systematics indicate that the sub-central Mindanao mantle is characterized by the presence of garnet, phlogopite, amphibole, and perhaps some titanate phase. The enrichment of this source is attributed to the interaction of slab-derived melts, i.e., adakites, with the arc mantle. This would explain the presence of Nb-enriched basalts, transitional adakites and high-magnesium andesites, as well as the bulk Na-enrichment and relatively unradiogenic character of the central Mindanao lavas. We envision an ion-exchange type of enrichment, in which the HFSE, LILE and LREE, mobilized during slab melting, are preferentially enriched in the metasomatized mantle, resulting in a diversity of post-collision magma compositions. The MORB-like isotopic signatures of the central Mindanao lavas preclude important contributions of slab-derived hydrous fluids, sediments, continental crust or an OIB-type contaminant. Slab melting after cessation of subduction is deemed possible by thermal rebound of previously depressed geotherms. Initial contributions to mantle enrichment in post-collision sites may thus come from slab melts. In most other cases of post-collision magmatism, however, this signature can be easily masked by enrichments coming from other sources, e.g., the continental lithosphere.  相似文献   

6.
俯冲带复杂的壳幔相互作用   总被引:15,自引:0,他引:15  
俯冲带除俯冲板片脱水形成的富大离子亲石元素流体、交代地幔楔形成的岛弧钙碱性玄武岩安山岩-英安岩-流纹岩及相应侵入岩组合外,还存在由俯冲扳片熔融形成的埃达克质熔体交代地慢楔形成的埃达克岩-富铌玄武岩-富镁安山岩组合,从而构成了俯冲带的流体交代与熔体交代两大类壳慢相互作用体系及相应的岩石组合。熔体交代作用的显著特点是Mg、高场强元素Nb、Ti、P等含量增加,Nd/Sr值增高,而Si、K、Na及La/Yb降低。洋壳板片或洋脊俯冲、玄武质岩浆底侵使地壳增厚,或板片断离、撕裂等作用均可产生埃达克质熔体并随之产生熔体交代作用。流体和熔体与地幔橄揽岩的相互作用构成了俯冲带复杂的地球化学体系。  相似文献   

7.
We report elemental and Nd–Sr isotopic data for three types of Ordovician volcanic and gabbroic rocks from the Sharburti Mountains in the West Junggar (Xinjiang), Northwest China. Gabbros and Type I lavas occur in the Early Ordovician Hongguleleng ophiolite whereas Type II and III lavas are parts of the Middle Ordovician Bulukeqi Group. Gabbros and Type I lavas are tholeiites with a depleted light rare earth element (LREE) and mid-oceanic ridge basalt (MORB)-like signature with a crystallization sequence of plagioclase–clinopyroxene, suggesting formation at a mid-oceanic ridge. Type II lavas are Nb-enriched basalts (NEBs, Nb = 14–15 ppm), which have E-MORB-like REE patterns and Nb/Yb and Th/Yb ratios. They come from mantle metasomatized by slab melts. Type III lavas are further divided into two sub-types: (1) Type IIIa is tholeiitic to calc-alkaline basalts and andesites, with REE patterns that are flat or slightly LREE enriched, and with a negative Nb anomaly and Th/Yb enrichment, indicating that they were generated above a subduction zone; (2) Type IIIb is calc-alkaline basalts and andesites, which are strongly enriched in LREE with a marked negative Nb anomaly and Th/Yb enrichment, suggesting generation in a normal island-arc setting. The initial 87Sr/86Sr ratios of Type III lavas range from 0.70443 to 0.70532 and ?Ndt ranges from +1.5 to +4.5, suggesting that these melts were derived from mantle wedge significantly modified by subducted material (enriched mantle I (EMI)) above a subduction zone. Contemporary tholeiitic to calc-alkaline basalt–andesite and NEB association suggest that the NEBs erupted during development of the tholeiitic to calc-alkaline arc. We propose a model of intra-oceanic subduction influenced by ridge subduction for the Ordovician tectono-magmatic evolution of the northern West Junggar.  相似文献   

8.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

9.
The Uchi subprovince of the Archean Superior Province is a series of greenstone belts extending 600 km east–west along the southern margin of the North Caribou Terrane protocontinent. The 2.7 Ga Confederation tectonostratigraphic assemblage of the Birch–Uchi greenstone belt, northwest Ontario, is dominated by volcanic suites of mafic, intermediate and felsic composition. Tholeiitic basalts range compositionally from Mg# 59–26 evolving continuously to greater REE contents (La=2–19 ppm; Th/Lapm˜1), with small negative Nb anomalies. Primitive tholeiites are similar to modern intraoceanic arc basalts, whereas evolved members extend to greater concentrations of Ti, Zr, V, Sc, and Y, and lower Ti/Zr, but higher Ti/Sc and Ti/V ratios characteristic of back arc basalts. Calc-alkaline basalts to dacites are characterised by more fractionated REE (La/Ybn=1–8), high Th/Nbpm ratios and deeper negative Nb anomalies; they plot with modern oceanic arc basalts and some may qualify as high magnesium andesites. The two suites are interpreted as a paired arc–back arc sequence. A third group of Nb-enriched basalts (NEB; Nb=9–18 ppm) extend to extremely high TiO2, Ta, P2O5, Sc and V contents, with strongly fractionated REE and ratios of Nb/Ta and Zr/Hf greater than primitive mantle values whereas Zr/Sm ratios are lower. The most abundant rhyolitic suite has extremely enriched but flat trace element patterns and is interpreted as strongly fractionated tholeiitic basalt liquids. A second group are compositionally similar to Cenozoic adakites and Archean high-Al, high-La/Ybn tonalites; they possess Yb ≤ 0.4 ppm, Y ≤ 6 ppm and Sc ≤ 8 ppm, with La/Ybn of 19–30 and Zr/Sm of 50–59. They are interpreted as melts of ocean lithosphere basaltic crust in a hot shallow subduction zone. Adakites are associated with NEB in Cenozoic arcs where there is shallow subduction of young and/or hot ocean lithosphere, often with oblique subduction. Slab melt adakites erupt, or metasomatise sub-arc mantle peridotite to generate an HFSE-enriched source that subsequently melts during induced mantle convection. The Archean adakite–NEB association erupted during development of the tholeiitic to calc-alkaline arc and its associated back arc. Their coexistence in the Confederation assemblage of the Birch–Uchi greenstone belt implies convergent margin processes similar to those in Cenozoic arcs. Received: 2 June 1999 / Accepted: 29 December 1999  相似文献   

10.
During the Neogene, a magmatic change from calc-alkaline to alkaline types occurred in all the regions surrounding the western Mediterranean. This change has been studied in Oranie (western Algeria). In this area, potassic to shoshonitic calc-alkaline andesites (with La/Nb ratios in the range 4–6) were mainly erupted between 12 and 9 Ma. They were followed (between 10 and 7 Ma) by basalts displaying geochemical features which are transitional between calc-alkaline and alkaline lavas (La/Nb=1–1.7). After a ca. 3-Ma quiescence period, volcanic activity resumed, with the eruption of OIB-type alkaline basalts (La/Nb=0.5–0.6), from 4 to 0.8 Ma. A combined geochemical approach, using incompatible elements and Sr, Nd and O isotopes, allows us to conclude that the transitional basalts derived from the melting of a heterogeneous mantle source, at the boundary between lithosphere and asthenosphere. We propose that melting of a previously subduction-modified lithospheric mantle occurred between 12 and 10 Ma, in response to the upwelling of hot asthenosphere flowing up into an opening gap above a detached sinking slab. As a result, calc-alkaline magmas were formed. From 10 to 7 Ma, the transitional basalts were generated through melting of the boundary mantle zone between the lithosphere and the upwelling asthenosphere. During that stage, the contribution of the lithospheric source was still predominant. Then, as sinking of the oceanic slab progressed, the increasing uprise of the asthenosphere led to the formation and emplacement (from 4 to 0.8 Ma) of typical within-plate alkaline basalts derived from a plume-modified asthenospheric mantle.  相似文献   

11.
南菲律宾地区类埃达克岩和富铌玄武质熔岩的成因   总被引:7,自引:3,他引:7  
埃达克岩(adakite)最初 是指由消减板片玄武岩物质熔融形成的富硅、富钠、高Sr/Y和La/Yb比值的弧火山熔岩。它通常产在会聚带,这个部位的年轻的、因而仍然是热的大洋板片正在发生俯冲消减。富铌的岛弦玄武央进则是吕等到高碱的镁铁质熔岩,它们相对于正常的岛弦玄武岩含有较多的高场强元素(HFSE)。这些玄武岩通常与埃达克央共生, 这一组合是直被用于论证他们的高HFSE含量是因为他们的地幔源区受到板片来源的熔体的交代。先前的区域研究结果表明,南菲律宾是埃达克岩和富铌岛孤玄武岩的一个典型产地。然而最近的详细研究显示,尽管该地区的一些岛弧火山岩是类埃达克岩的,但是它们很可能是来自地幔楔的母岩浆的分异作用的产物,而这里的地幔楔主要是受沉积来源的成分交代的,此外,菲律宾南部最典型的富铌熔岩中HFSE的富集,也很有可能是起因于似乎是西太平洋边缘特有的富集地幔组分的熔融。这些结果提出了如下问题:南菲律宾是否存在真正的板片来源的熔体?这里的富铌岛弧 熔岩是否起因于地幔楔被这种熔体交代?  相似文献   

12.
富铌玄武岩:板片熔体交代的地幔楔橄榄岩部分熔融产物   总被引:4,自引:0,他引:4  
富铌玄武岩是一类具有特殊地球化学特征的岛弧玄武岩。与正常岛弧玄武岩相比,它具有硅饱和并富钠的特征;同时具有相对高的Nb(一般>7×10-6)、TiO2(1%~2%)和P含量,以及低的LILE/HFSE和HREE/HFSE比值,并富集高场强元素;它的原始地幔标准化微量元素图显示了弱的Nb、Ta负异常(有时出现弱的正异常),原始地幔标准化La/Nb比值小于2(但很少小于0.7),它是由受埃达克质熔体交代过的地幔橄榄岩部分熔融形成的。由于富铌玄武岩与埃达克岩是大洋板片俯冲作用的直接产物,因此,通过对该岩石组合及与俯冲作用有关的流体和熔体的研究,不仅可以查明洋壳俯冲作用过程中的岩浆活动特征,还可以阐明洋壳俯冲及壳幔相互作用,具十分重要的地质意义。  相似文献   

13.
《Chemical Geology》2007,236(1-2):42-64
Carboniferous volcanic rocks in the Alataw area, Northern Tianshan Range (Xinjiang), consist of early Carboniferous (ca. 320 Ma) adakites and Nb-enriched arc basalts and basaltic andesites (NEBs), and late Carboniferous (ca. 306–310 Ma) mainly high-K calc-alkaline andesites, dacites and rhyolites. The adakites are calc-alkaline, and characterized by high Na2O/K2O (1.52–3.32) ratios, negligible to positive Eu anomalies, strong depletion of heavy rare earth elements (e.g., Yb = 0.74–1.47 ppm) and Y (6.7–14.9 ppm), positive Sr and Ba but negative Nb and Ti anomalies, and relatively constant εNd(T) values (+ 3.4–+ 6.6) and (87Sr/86Sr)i ratios (0.7035–0.7042). Some andesitic and dacitic adakite samples exhibit high MgO contents similar to magnesian andesites. The NEBs are sodium-rich (Na2O/K2O = 2.03–8.06), and differ from the vast majority of arc basalts in their higher Nb, Zr, TiO2 and P2O5 contents and Nb/Th, Nb/La and Nb/U ratios, and minor negative to positive anomalies in Ba, Nb, Sr, Zr and Ti. They have the highest εNd(T) values (+ 6.4–+ 11.6) but varying (87Sr/86Sr)i ratios (0.7007–0.7063). The high-K calc-alkaline suite is similar to typical ‘normal’ arc volcanic rocks in terms of moderately fractionated rare earth abundance and distinctly negative Eu, Nb, Sr and Ti anomalies. They have εNd(T) values (+ 1.2–+ 6.4) and (87Sr/86Sr)i ratios (0.7018–0.7059). Geochemically, they are similar to coeval I-type granitoids in the Alataw area. Given the presence of early Carboniferous ophiolites in the Northern Tianshan Range, and the isotopically inappropriate compositions of Proterozoic metamorphic basement in the Alataw area, we argue that the Alataw adakites were most probably related to the melting of young subducted crust of the Northern Tianshan Ocean. The NEBs likely originated from mantle wedge peridotites metasomatized by adakites and minor slab-derived fluids. The later high-K calc alkaline suite was generated by AFC processes that acted on melts derived from a mantle wedge metasomatized by hydrous fluids. The larger range of isotopic compositions exhibited by both the NEB and high-K suite, relative to the adakites, suggests that the mantle wedge was heterogeneous prior to slab- or fluid-mediated metasomatism.Continental crustal growth of the Central Asian orogenic belt was dominated by contributions of the juvenile materials from the depleted mantle prior to 270 Ma and possibly afterwards. The results of this study suggest that other Carboniferous Nb-enriched basalts in the Tianshan Range were generated by subduction processes rather than by intraplate tectonics as previously proposed.  相似文献   

14.
Extensive sampling of the Antisana volcano in Ecuador (NorthernVolcanic Zone of the Andes) has revealed the presence of adakite-likerocks throughout the edifice, i.e. rocks with geochemical characteristicsclose, but not identical, to those of slab melts. Two main volcanicgroups have been distinguished, characterized by two distinctevolutionary trends. The AND group, mostly composed of andesites,shows the clearest adakitic characteristics such as high La/Yband Sr/Y ratios and low heavy rare earth element (HREE) contents.The CAK group, composed of high-K andesites and dacites, displaysless pronounced adakitic-like characteristics. Although themore basic rocks of each group are difficult to distinguishon many geochemical diagrams, a geochemical study shows thatthe evolution of the AND and CAK groups is dominated by differentpetrogenetic processes. The isotopic characteristics of theCAK rocks suggest that evolution of this group is dominatedby a limited assimilation–fractional crystallization processwithin the granitic continental basement of the cordillera.In the AND group, the abundances of incompatible elements, suchas Nb or HREE, suggest that the series was produced by a partialmelting process in a mantle rich in garnet, amphibole and/orclinopyroxene. Such a mantle source has been demonstrated (experimentallyand by exhumed mantle xenoliths) to be produced in subductionzones where slab melts react with and metasomatize the mantlewedge. In Ecuador, magmas erupted in the Western Cordillera(trenchward relative to Antisana volcano) are true adakites,suggesting that slab melts can be responsible for the metasomatismof the mantle wedge beneath the NVZ in Ecuador. If mantle convectioncan drag down this modified mantle beneath Antisana volcano,destabilization of metasomatic amphibole at appropriate pressuresin this modified garnetiferous mantle can adequately explainthe formation and the geochemical features of Antisana lavas. KEY WORDS: subduction; adakite; metasomatism; Ecuador; AFC; Sr and Nd isotopes  相似文献   

15.
Geochemical studies on metavolcanic rocks of the Gadwal greenstone belt (GGB), eastern Dharwar craton, have documented several rock types that are indicative of subduction zone tectonics reflecting on the crustal growth processes in the Dharwar craton. The dominance of komatiites in the western Dharwar craton (WDC) and the arc volcanics in the eastern Dharwar craton (EDC) is an indication for the predominance of plume magmatism in the WDC and the intraoceanic subduction zone processes in EDC which together played a significant role in the growth and evolution of continental crust in the Dharwar craton. Boninites of GGB are high calcic type with high MgO (13–24 wt.%) and a characteristic MREE depleted U-shaped REE patterns whereas the basalts have flat REE patterns with no Eu anomalies. Nb-enriched basalts exhibit slightly fractionated REE patterns with high Nb (8–26 ppm) content compared to arc basalts. Adakites of GGB are Sr depleted with highly fractionated REE patterns and no Eu anomaly compared to rhyolites. The occurrence of boninites along with arc basalts, Nb-enriched basalts–basalt–andesite–dacite–rhyolites and adakites association in Gadwal greenstone belt indicate the intraoceanic subduction zone processes with a clear cut evidence of partial melting of metasomatized mantle wedge (boninites), melting of subducting slab (adakites) and residue of adakite–wedge hybridization (Nb-enriched basalts) which have played a significant role in the growth of continental crust in the Dharwar craton during the Neoarchaean.  相似文献   

16.
Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt   总被引:3,自引:0,他引:3  
Geochemical studies of Plio-Quaternary volcanic rocks from theValle de Bravo–Zitácuaro volcanic field (VBZ) incentral Mexico indicate that slab melting plays a key role inthe petrogenesis of the Trans-Mexican Volcanic Belt. Rocks fromthe VBZ are typical arc-related high-Mg andesites, but two differentrock suites with distinct trace element patterns and isotopiccompositions erupted concurrently in the area, with a traceelement character that is also distinct from that of other Mexicanvolcanoes. The geochemical differences between the VBZ suitescannot be explained by simple crystal fractionation and/or crustalassimilation of a common primitive magma, but can be reconciledby the participation of different proportions of melts derivedfrom the subducted basalt and sediments interacting with themantle wedge. Sr/Y and Sr/Pb ratios of the VBZ rocks correlateinversely with Pb and Sr isotopic compositions, indicating thatthe Sr and Pb budgets are strongly controlled by melt additionsfrom the subducted slab. In contrast, an inverse correlationbetween Pb(Th)/Nd and 143Nd/144Nd ratios, which extend to lowerisotopic values than those for Pacific mid-ocean ridge basalts,indicates the participation of an enriched mantle wedge thatis similar to the source of Mexican intraplate basalts. In addition,a systematic decrease in middle and heavy rare earth concentrationsand Nb/Ta ratios with increasing SiO2 contents in the VBZ rocksis best explained if these elements are mobilized to some extentin the subduction flux, and suggests that slab partial fusionoccurred under garnet amphibolite-facies conditions. KEY WORDS: arcs; mantle; Mexico; sediment melting; slab melting  相似文献   

17.
ABSTRACT

The Kuoerzhenkuola epithermal Au deposit is located in the northern part of the West Junggar region of NW China and is underlain by a recently discovered porphyritic monzonite intrusion that contains Cu–Au mineralization. Zircon LA-ICP-MS U–Pb dating of this intrusion yielded an age of 350 ± 4.7 Ma. The porphyritic monzonite is calc-alkaline and is characterized by high concentrations of Sr (583–892 ppm), significant depletions in the heavy rare earth elements (HREE; e.g. Yb = 0.96–2.57 ppm) and Y (10.4–23.3 ppm), and primitive mantle-normalized multi-element variation diagram patterns with positive Sr and Ba and negative Nb and Ti anomalies, all of which indicate that this intrusion is compositionally similar to adakites elsewhere. The composition of the porphyritic monzonite is indicative of the derivation from magmas generated by the melting of young subducted slab material. The area also contains Nb-enriched basalts that are enriched in sodium (Na2O/K2O = 1.20–3.90) and have higher Nb, Zr, TiO2, and P2O5 concentrations and Nb/La and Nb/U ratios than typical arc basalts. The juxtaposition of adakitic rocks, Nb-enriched basalts, and dolerites in this region suggests that the oceanic crust of the expansive oceans within the West Junggar underwent early Carboniferous subduction. Magnetite is widespread throughout the Kuoerzhenkuola Au deposit, as evidenced by the volcanic breccias cemented by late hydrothermal magnetite and pyrite. In addition, the zoned potassic, quartz-sericite alteration, and propylitic and kaolin alteration in the deeper parts of the porphyritic monzonite are similar to those found in porphyry Cu–Au deposits. These findings, coupled with the mineralogy and geochemistry of the alteration associated with the Kuoerzhenkuola Au deposit, suggest that the mineralization in this area is not purely epithermal, with the geology and geochemistry of the porphyritic monzonite in this area suggesting that a porphyry Cu–Au deposit is probably located beneath the Kuoerzhenkuola Au deposit.  相似文献   

18.
Cenozoic adakitic rocks in the Gangdese changed from barren continental melts to ore-forming slab melts at ~ 23 Ma. The distribution and chemical characteristics of the ore-forming adakites point to an association with the Ninetyeast Ridge. The subduction of the thick, rigid Ninetyeast Ridge changed the geometry and rheology of the eastern Tibetan Plateau lithosphere and asthenosphere, restrained the eastward escape of asthenospheric mantle as well as continental fragments, and promoted the uplift and building of the Tibetan Plateau, which consequently changed the tectonic and climatic regimes in eastern Asia.  相似文献   

19.
Tertiary volcanic rocks from the Westerwald region range frombasanites and alkali basalts to trachytes, whereas lavas fromthe margin of the Vogelsberg volcanic field consist of morealkaline basanites and alkali basalts. Heavy rare earth elementfractionation indicates that the primitive Westerwald magmasprobably represent melts of garnet peridotite. The Vogelsbergmelts formed in the spinel–garnet peridotite transitionregion with residual amphibole for some magmas suggesting meltingof relatively cold mantle. Assimilation of lower-crustal rocksand fractional crystallization altered the composition of lavasfrom the Westerwald and Vogelsberg region significantly. Thecontaminating lower crust beneath the Rhenish Massif has a differentisotopic composition from the lower continental crust beneaththe Hessian Depression and Vogelsberg, implying a compositionalboundary between the two crustal domains. The mantle sourceof the lavas from the Rhenish Massif has higher 206Pb/204Pband 87Sr/86Sr than the mantle source beneath the Vogelsbergand Hessian Depression. The 30–20 Ma volcanism of theWesterwald apparently had the same mantle source as the QuaternaryEifel lavas, suggesting that the magmas probably formed in apulsing mantle plume with a maximum excess temperature of 100°Cbeneath the Rhenish Massif. The relatively shallow melting ofamphibole-bearing peridotite beneath the Vogelsberg and HessianDepression may indicate an origin from a metasomatized portionof the thermal boundary layer. KEY WORDS: continental rift volcanism; basanites; trachytes; assimilation; fractional crystallization; partial melting  相似文献   

20.
The Pliocene (7 Ma) Nb-enriched arc basalts of the ValovayamVolcanic Field (VVF) in the northern segment of the Kamchatkaarc, Russia, host abundant mantle xenoliths, including spinelIherzolites. Textural and microstructural evidence for high-temperature,multi-stage, creep-related deformations in spinel Iherzolitessupports a sub-arc mantle derivation. Pyroxene chemistry indicatesthe existence of two compositional suites: (1) a Cr-diopsidesuite with low-Tt, moderate-Al clinopyroxene compositions, and(2) an Al-augite suite with high Al and Tt, and low Cr concentrationsin clinopyroxene. Some spinel lherzolite xenoliths contain metasomaticAl-augite-type clinopyroxene, Al-Tt spinel, and felsic veinssimilar to trondhjemite melt. The Al-augite series xenolithstypically contain high-Na plagioclase, Cr-poor, Al-Fe-Mg andAl-Tt-Fe spinels, with occasional almandine-grossularite garnetand high-Al and -Na pargasitic amphibole. Pyroxene and spinel compositional trends suggest that the Crdiopsideseries xenoliths from the VVF Nb-enriched arc basalts representan island-arc mantle affected by a metasomatic event. Occurrenceof high-Na plagioclase and trondhjemitic veins favors the additionof a metasomatic component with high Na, Al and Si to the northernKamchatka arc mantle. Trondhjemitic veins, representing siliceousslab melts, compositionally exemplify the metasomatic component.Na metasomatism by peridotite-slab melt interaction is an importantmantle hybridization process responsible for arc-related alkalinemagma generation from a veined sub-arc mantle. KEY WORDS: metasomatism; island arc; mantle xenoliths; Kamchatka; mantle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号