首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   

2.
The objective of this study was to investigate natural abundance and the distribution of nitrogen isotopic compositions to assess denitrification in two ~30 m thick vadose zones beneath the different land uses in the wastewater-irrigated area located in southern Shijiazhuang, China. Sediment samples were collected from cores of boreholes drilled in the vegetable growth plot and the wastewater-irrigated farmland for analyses of nitrogen isotopes, physical and chemical properties, respectively. The profile of borehole A drilled in the vegetable growth plot only applied animal wastes had lower δ15N values of mean +7.5 ‰ in the upper vadose zone, but higher values of mean +10.9 ‰ in the lower vadose zone. δ15N values in each part varied little with depth, indicating no or little denitrification occurred in the deep vadose zone below the soil zone. The profile of borehole B drilled in the wastewater-irrigated farmland had low δ15N values of mean +5.7 ‰ below the soil zone and little variations of δ15N values with depth, indicating no or little denitrification occurred in the deep vadose zone below the soil zone. This was also verified by consistent variations of NO3 ? and SO4 2? contents with Cl? contents. Our results suggested most of leachable nitrate from the soil zone was hardly subjected to biological attenuation into groundwater.  相似文献   

3.
Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50–100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area.  相似文献   

4.
The degree of saturation of compacted bentonite buffer in deep geological repositories is subject to alterations from infiltration of groundwater and heat emanated from the waste canisters. The matric suction (ψ)–degree of saturation (S r ) relations of unsaturated clays is represented by soil–water characteristics curves (SWCC) that are influenced by soil structure, initial compaction condition and stress history. Infiltration of groundwater besides increasing the degree of saturation can also alter the pore water chemistry; the associated changes in cation hydration and diffuse double layer thickness could impact the micro-structure and matric suction values. This study examines the influence of infiltrating sodium chloride solutions (1,000–5,000 mg/L) on the transient ψS r relations of compacted bentonite–sand specimens. Analysis of the ψS r plots, and X-ray diffraction measurements indicated that infiltration of sodium chloride solutions has progressively less influence on the micro-structure and SWCC relations of bentonite–sand specimens compacted to increasingly higher dry densities. The micro-structure and SWCC relations of specimens compacted to 1.5 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2 Mg/m3 remained unaffected upon infiltration with sodium chloride solutions.  相似文献   

5.
包气带作为防止地下水硝酸盐污染的天然屏障,其反硝化效果通常受到碳源的限制。针对地下水硝酸盐污染防治技术现状,本文采用Ca(OH)2处理的玉米芯作为反硝化的碳源材料,构建包气带强化反应层,用响应曲面法研究硝酸盐浓度、含水量和温度的交互作用对脱氮性能影响,并用硝态氮去除率、亚硝态氮累积、pH值变化以及溶解性有机碳(dissolved organic carbon, DOC)淋失通量综合评价脱氮性能,最后采用高通量测序揭示脱氮层中微生物变化。研究结果表明:温度、含水量以及温度和含水量交互作用对硝态氮去除率影响显著,其中温度是反硝化过程中最关键的因素;系统运行74天后,硝态氮去除率达到50%,亚硝态氮累积量(以N计)大多低于3 mg/L,pH值维持在7.0左右,DOC淋失通量(以C计)介于0.10.2 mg/(cm2·d);高通量测序发现,脱氮层中微生物的丰富度降低,而与反硝化和碳分解有关的微生物相对丰度提高,在碳源的刺激下微生物向有利于脱氮的方向演变。  相似文献   

6.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

7.
To estimate the behavior of ethanol-blended dissolved BTEX hydrocarbons in groundwater, a quantitative tracing study instead of qualitative analysis was carried out by using a large sand tank, into which 2-L solution including bromide, ethanol and dissolved BTEX was injected under a controlled hydraulic condition. Mean residence time (MRT), pore volume swept by solute (V p), retardation coefficient (R) and biodegradation rate constant (k) of injected solutes were estimated. Compared with bromide that was used as a conservative tracer, ethanol and BTEX had shorter MRT and smaller V p with the sequence of EtOH < T < E < m/p-X < o-X < B < Br. Biodegradation was confirmed as evidenced by the consumptions of dissolved oxygen (DO), nitrate and sulfate, and the production of acetate. The sequence of k as EtOH > T > E > m/p-X > o-X > B was just opposite to the sequences of MRT and V p. The relationship among above sequences implies that MRT and V p can be used as indicators to assess in situ biodegradability of a solute. Biodegradation of a reactive solute can make its MRT shortened and V p shrunk. In addition, the sorption of ethanol could be neglected (R = 1.0), whereas BTEX compounds were adsorbed (R = 1.04–1.15). It should be noted that biodegradation of a solute can affect the estimation of its retardation coefficient. To our knowledge, this paper provides an available route to quantitatively estimate biodegradability of a solute in groundwater.  相似文献   

8.
Number 6 fuel oil is one of the most used energy sources for electricity generation. However, leaks can contaminate soil and also groundwater due to leaching. At old sites, the oil may have low toxicity but still contaminate groundwater with foul-tasting compounds even at low concentrations. The purpose of this study was to evaluate the feasibility of applying H2O2 to reduce the leaching potential of a fuel oil contaminated soil. A silt-loam soil was collected from a contaminated thermal-electric plant with a hydrocarbon concentration of 3.2% in soil producing 4.3 mg/l in leachate. Hydrogen peroxide was applied (0.1, 0.2, 0.3, 0.6, 1.2% dry weight basis), and petroleum hydrocarbons were measured in soil and leachate pre- and post-treatment (72 h). At first, the soil and leachate concentrations diminished linearly (24.4 and 27.3% in soil and leachate, respectively). This was followed by a phase in which the concentration in leachate diminished greatly (75.8%) although the concentration in soil was reduced only moderately (15.1%). Overall, hydrocarbons in leachates were reduced 82.4% even though concentrations in soil were only reduced 35.8%. Correlation analysis showed that at only 1.0% w/w H2O2 a concentration of petroleum hydrocarbons in leachate safe for human consumption (≤ 1 mg/l) could be obtained even with a final hydrocarbon concentration in soil > 2%. Thus, this study presents an alternative strategy for remediation of fuel oil contaminated soils in urban environments that protects water sources by focusing on contamination in leachates, without spending extra financial resources to reduce the hydrocarbon concentration in low-toxicity soil.  相似文献   

9.
Knowledge of the baseline of groundwater nitrate is essential for water quality management. As large-scale anthropogenic activities, especially utilization of chemical fertilizers began from the 1950s in most countries, such as China, the baseline of groundwater nitrate can be determined from pre-modern water using tritium and statistical analysis. In the (semi)arid northern China, the median values of nitrate baseline for the three large regions (Tarim river basin, TRB; Loess Plateau of China, LPC; North China Plain, NCP) range from 2 to 9 mg/L (as NO3). Several main factors control nitrate content in the unsaturated zone moisture and in groundwater, e.g., nitrate input, sediment moisture movement (direction and rate), and depth of water table at the macroscopic scale in (semi)arid areas, where nitrate loss by denitrification can be limited. Sixteen unsaturated zone profiles (638 sediment samples in total) with depths ranging from 5 to 18.25 m were sampled to demonstrate how those factors affect groundwater nitrate. As sediment moisture moves upward from the water table in the TRB case, a large inventory of nitrate in the unsaturated zone with evapo-transpired origin would never enter groundwater and groundwater nitrate contents remain at the baseline level. On the contrary, in the LPC and NCP, nitrate from fertilizers may pass through the unsaturated zone and eventually reach the water table to pollute groundwater. It is also noticed that there is a time lag between land-use change and groundwater quality response, due to the buffering capacity of the thick unsaturated zone, to which attention should be paid regarding water quality management.  相似文献   

10.
In semi-arid climates, phreatophytes draw on shallow aquifers, and groundwater evapotranspiration (ETG) is a principal component of groundwater budgets. Diurnal water table fluctuations, which often are a product of ETG, were monitored in the riparian zone of Red Canyon Creek, Wyoming, USA. These fluctuations were higher in a riparian wetland (2–36 mm) than a grass-covered meadow (1–6 mm). The onset and cessation of water-table fluctuations correspond to daily temperatures relative to freezing. Spatial differences were due to vegetation type and specific yield, while temporal changes were due to vegetation dormancy. Ratios of ETG to potential evapotranspiration (PET), K c,GW, were similar to ratios of actual evapotranspiration (ET) to PET, K c, in semi-arid rangelands. Before vegetation senescence, K c,GW increased between precipitation events, suggesting phreatophytes pull more water from the saturated zone as soil moisture decreases. In contrast, K c decreases with soil moisture following precipitation events as ET becomes increasingly water-limited. Error in ETG is primarily from estimates of specific yield (S y), which is difficult to quantify in heterogeneous sediments. ETG values may be more reliable because the range of acceptable S y is smaller than K c and S y does not change with vegetation type or soil moisture.  相似文献   

11.
The spatial distribution of vegetation pattern and vegetation cover fraction (VCF) was quantified with remote sensing data in the Hailiutu River basin, a semiarid area in North China. The moderate resolution imaging spectroradiometer normalized different vegetation index (NDVI) values for 4 years from 2008 to 2011 and field observation data were used to assess the impact of climate factors, landform and depth to water table on vegetation distribution at large scale. In the VCF map, 74 % of the study area is covered with low and low–medium density vegetation, 24 % of the catchment is occupied by medium–high and high-density vegetation, and 2 % of area is bare soil. The relationship between NDVI and climate factors indicated that NDVI is correlated with relative humidity and precipitation. In the river catchment, NDVI increases gradually from landform of sand dune, eolian sand soil to river valley; 92.4 % of low NDVI from 0.15 to 0.3 is mostly distributed in sand dunes and the vegetation type is shrubs. Crops, shrubs and some dry willows dominate in eolian sand soil and 82.5 % of the NDVI varies between 0.2 and 0.35. In the river valley, 70.4 % of NDVI ranges between 0.25 and 0.4, and grass, dry willow and some crops are the main plants. Shrubs development of Korshinsk peashrub and Salix psammophila are dependent on groundwater by analyzing NDVI response to groundwater depth. However, NDVI of Artemisia desertorum had little sensitivity to groundwater.  相似文献   

12.
Over the past decades, the Gujarat state of India experienced intensive agricultural and industrial activities, fertilizer consumption and abstraction of groundwater, which in turn has degraded the ground water quality. Protection of aquifers from nitrate pollution is a matter of prime concern for the planners and decision-makers. The present study assessed the spatial and temporal variation of groundwater nitrate levels in areas with different land use/land cover activities for both pre- and post-monsoon period. The pre-monsoon nitrate level (1.6–630.7 mg/L) in groundwater was observed to be higher as compared to the post-monsoon level (2.7–131.7 mg/L), possibly due to insufficient recharge and evaporation induced enrichment of agrichemical salts in groundwater. High HCO3 ? (200–1,000 mg/L) as well as SO4 2?/Cl? (0.111–0.992) in post-monsoon period provides a favourable environment for denitrification, and lower the NO3 levels during the post-monsoon period. The K vs NO3 scatter plot suggests a common source of these ions when the concentration is <5 mg/L, the relationships between different pollutants and nitrate also suggest that fertilizers and other sources, such as, animal waste, crop residue, septic tanks and effluents from different food processing units present in the area can be attributed to higher nitrate levels in the groundwater. Appropriate agronomic practices such as application of fertilizers based on calibrated soil tests and proper irrigation with respect to crop can minimize the requirement for inorganic fertilizers, which can bring down the cost of cultivation considerably, and also protect groundwater from further degradation.  相似文献   

13.
Saturation index with respect to calcite (SIc) and equilibrium CO2 partial pressure are important parameters to study groundwater in limestone aquifers. Aside from their use in time series, CO2 and SIc are used to estimate the baseline of CO2 in the vadose zone. The objective of this paper is to present conceptual examples on the use of the CO2–SIc relationship to have new information from usual parameters. Case study was considered as an example of use from Cussac site, a limestone aquifer in southwest of France. The result showed that CO2 baseline in unsaturated zone is found close to 25,000 ± 1,000 ppm.  相似文献   

14.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

15.
Nitrate contamination in irrigation groundwater,Isfahan, Iran   总被引:1,自引:1,他引:0  
Groundwater is one of the major sources of water in Isfahan. Efficient management of these resources requires a good understanding of its status. This paper focuses on the hydrochemistry and also it wants to assess the nitrate concentration in irrigation groundwater of Isfahan suburb. All the groundwater samples are grouped into three categories, including Na-Cl + Ca-Cl (63 %), Na-SO4 + Ca-SO4 (23 %) and Ca-HCO3 (14 %). According to the EC and SAR, the most dominant classes are C3S1, C4S2 and C4S3. 55 % of samples indicate very high salinity and medium to very high alkalinity that is not suitable for irrigation. 84 % of the groundwater samples show nitrate contents higher than HAV (13 mg l?), while more than 25 % exceeded the maximum contamination level (44.27 mg l?) according to EPA regulations. The horizontal and vertical distribution patterns of nitrate in groundwater samples show a surficial origin for nitrate contamination. The high nitrate content can be attributed to the agricultural activities along with domestic sewage and industrial wastewaters in populated area. Based on results, using high nitrate groundwater for irrigation can minimize the requirement for inorganic fertilizers and reduce the cost of cultivation and nitrate contamination.  相似文献   

16.
地下水蒸发是旱区地下水均衡计算中重要的排泄项之一。由于包气带水分运移高度非线性且大气—地表界面动力学过程复杂,估算潜水蒸发量一直是地下水资源评价的难题之一。利用内蒙古乌审旗河南乡均衡试验场E601型蒸渗仪,建立了毛乌素沙地水面蒸发及4种典型岩性(风化砂岩K1、萨拉乌苏组砂Qpal+l、砂质壤土Qhl、风积沙Qheol)的饱和土蒸发原位试验,结合长期观测获取的大量数据,开展了地下水蒸发与水面蒸发、埋深的关系和地下水蒸发量计算方法研究。结果表明:(1)4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)饱和蒸发量与水面蒸发量比值分别为0.60,0.77,0.47,0.88,表明不同岩性的饱和裸土的蒸发强度不等于自由水面的蒸发强度;实际计算裸土蒸发强度时,不能以自由水面蒸发强度作为参考点,如果运用,必须校正。(2)利用蒸渗仪观测数据和土壤水运动方程稳态解析解,获得4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水稳定蒸发计算的关键经验系数c,分别为628932.63,165058.71,48948.21,1525104.031 m?2。(3)利用稳定蒸发公式确定鄂尔多斯盆地风沙滩区四种典型包气带岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水极限蒸发深度约为60 cm,结果得到了室内非稳态蒸发试验的佐证,为研究区水资源评价提供了重要的参数依据。  相似文献   

17.
Core sediments from three disturbed boreholes (JOR, GHAT, and RAJ) and two undisturbed boreholes (DW1 and DW2) were collected in the study area of the Chapai-Nawabganj district of northwestern Bangladesh for geochemical analyses. In the study area, groundwater samples from fourteen As-contained private wells and five nested piezometers at both the DW1 and DW2 boreholes were also collected and analyzed. The groundwater arsenic concentrations in the uppermost aquifer (10–40 m of depth) range from 3 to 315 μg/L (mean 47.73 ± 73.41 μg/L), while the arsenic content in sediments range from 2 to 14 mg/kg (mean 4.36 ± 3.34 mg/kg). An environmental scanning electron microscope (ESEM) with an energy dispersive X-ray spectrometer was used to investigate the presence of major and trace elements in the sediments. Groundwaters in the study area are generally the Ca–HCO3 type with high concentrations of As, but low levels of Fe, Mn, NO3 ? and SO 4 ?2 . The concentrations of As, Fe, Mn decrease with depth in the groundwater, showing vertical geochemical variations in the study area. Statistical analysis clearly shows that As is closely associated with Fe and Mn in the sediments of the JOR core (r = 0.87, p < 0.05 for Fe and r = 0.78, p < 0.05 for Mn) and GHAT core (r = 0.95, p < 0.05 for Fe and r = 0.93, p < 0.05 for Mn), while As is not correlated with Fe and Mn in groundwater. The comparatively low Fe and Mn concentrations in some groundwater and the ESEM image revealed that siderite precipitated as a secondary mineral on the surface of the sediment particles. The correlations along with results of sequential extraction experiments indicated that reductive dissolution of FeOOH and MnOOH represents a mechanism for releasing arsenic into the groundwater.  相似文献   

18.
三氮是我国地下水中典型污染物,其在包气带和含水层中的迁移转化过程受到高度关注。近几年,地下水位波动带中的三氮迁移转化已经成为新的研究领域。在综合运用文献计量分析法,定量分析相关研究趋势的基础上,系统总结地下水位波动带形成及特点,梳理波动带中三氮迁移转化过程及生物地球化学过程最新研究表述及成果,并对今后可能的研究热点和方向进行了展望。现有研究表明:水位波动带中环境指标如土壤含水率、氧化还原电位、溶解氧和有机质含量均表现出一定的分带性规律,微生物菌群结构和功能基因更多样化,并呈现一定的分布特征。随着地下水位波动,包气带中的三氮易浸溶进入地下水并发生迁移。地下水位上升,硝化作用减弱,反硝化作用增强;地下水位下降,硝化作用增强,反硝化作用减弱。为完善水位波动带三氮迁移转化过程研究,应进一步关注:(1)将水化学演化分析与分子生物学高通量测序方法相结合,深入探究水位波动带三氮转化与微生物作用机理;(2)除关注硝化、反硝化作用外,增加异化还原、同化还原和厌氧氨氧化等作用过程的研究;(3)细化分析更多情境、更多影响因素的水位波动过程,识别水位波动带三氮转化的关键影响要素。  相似文献   

19.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

20.
Coastal waters are severely threatened by nitrogen (N) loading from direct groundwater discharge. The subterranean estuary, the mixing zone of fresh groundwater and sea water in a coastal aquifer, has a high potential to remove substantial N. A network of piezometers was used to characterize the denitrification capacity and groundwater flow paths in the subterranean estuary below a Rhode Island fringing salt marsh.15N-enriched nitrate was injected into the subterranean estuary (in situ push-pull method) to evaluate the denitrification capacity of the saturated zone at multiple depths (125–300 cm) below different zones (upland-marsh transition zone, high marsh, and low marsh). From the upland to low marsh, the water table became shallower, groundwater dissolved oxygen decreased, and groundwater pH, soil organic carbon, and total root biomass increased. As groundwater approached the high and low marsh, the hydraulic gradient increased and deep groundwater upwelled. In the warm season (groundwater temperature >12 °C), elevated groundwater denitrification capacity within each zone was observed. The warm season low marsh groundwater denitrification capacity was significantly higher than all other zones and depths. In the cool season (groundwater temperature <10.5 °C), elevated groundwater denitrification capacity was only found in the low marsh. Additions of dissolved organic carbon did not alter groundwater denitrification capacity suggesting that an alternative electron donor, possibly transported by tidal inundation from the root zone, may be limiting. Combining flow paths with denitrification capacity and saturated porewater residence time, we estimated that as much as 29–60 mg N could be removed from 11 of water flowing through the subterranean estuary below the low marsh, arguing for the significance of subterranean estuaries in annual watershed scale N budgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号