首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
华南加里东运动初探   总被引:12,自引:0,他引:12  
华南加里东运动包含了郁南运动、北流运动(崇余运动)和广西运动,具多幕陆内造山特点。其影响范围包括扬子板块东缘"江南隆起"以东、以南广大地区。华南加里东构造带总体呈东西向展布,南部桂西右江盆地-粤南地区泥盆系不整合于下伏的寒武系之上,中部桂东-粤中-闽西-赣南-湘南地区泥盆系不整合于奥陶系之上,靠近"江南隆起"的湘中-浙西地区泥盆系不整合于志留系之上,但钦防盆地志留系与泥盆系整合接触。寒武系-志留系为同造山盆地的复理石沉积。从寒武纪-志留纪同造山盆地由南向北迁移,盆地展布、物源供给等显示"南山北盆"的盆山格局和造山带"由南向北"挤压的趋势。  相似文献   

2.
通过收集近年来华北地块前寒武纪研究取得的新进展,结合山西地质工作者在这些方面取得的新认识,比如原建立的不整合接触关系不断被新的地质事实否定或修订,目的在于修订后的山西前寒武纪年代格架该如何建立。其方法是依靠比较精确的同位素年龄资料,来建立山西前寒武纪年代格架。结论是吕梁运动的原始含义也发生了改变,新定义的吕梁造山带涵盖沉积盆地拉开沉积俯冲碰撞岩浆造山等全过程。  相似文献   

3.
北极地区地质构造及主要构造事件   总被引:1,自引:0,他引:1  
北极地区范围很广,北极圈面积达2 100×104 km2,区域地质复杂。通过对北极地区区域地质编图,笔者认为前寒武纪主要由波罗的、劳伦和西伯利亚三大克拉通,以及其间的微板块或地块组成。主要造山带包括新元古代-早寒武世的贝加尔造山带、晚志留世-早石炭世的加里东造山带、晚古生代-早中生代的海西造山带、晚中生代的上扬斯克造山带、新西伯利亚造山带与楚科奇-布鲁克斯造山带。根据北极地区区域地质构造特征,显生宙以来经历的构造事件大致包括:新元古代-早寒武世的贝加尔运动,致使波罗的古陆与斯瓦尔巴-喀拉地块碰撞造山;晚泥盆世-早石炭世的加里东运动,在劳伦古陆周边形成规模巨大的加里东造山带;晚古生代的海西运动,波罗的古陆与西伯利亚古陆的碰撞造山形成海西造山带;北极阿拉斯加-楚科奇微板块裂离加拿大边缘,侏罗纪加拿大海盆开始张开;早白垩世,阿拉斯加-楚科奇微板块继续与西伯利亚碰撞,阿纽伊洋(Anyui Ocean)消亡,形成上扬斯克-布鲁克斯造山带。受北极调查程度影响,许多问题有待进一步研究。  相似文献   

4.
<正>本期"变质作用与造山带演化"专辑共刊登主题来稿20篇,分学科前沿综述、前寒武纪高级变质作用与造山带演化、中国西部高压-超高压变质作用和造山带的岩浆过程与成矿4个部分,涵盖了变质作用与造山带演化的主要研究方面,部分地代表了我国变质岩石学者们的最  相似文献   

5.
周海  陈亮  孙勇 《地质学报》2018,92(5):928-945
北山造山带位于中亚造山带南缘,主要由一系列俯冲增生杂岩体构成。在其宽缓的造山区内,零散地分布着前寒武纪岩石。由于古生代以来强烈的造山作用和随后的陆内造山作用的改造,造成北山内的前寒武纪岩石和古生代以来的造山带产物难以区分。因此,关于北山造山带内的前寒武系归属问题,一直以来争议很大。本文在详细野外地质工作的基础上,报道了位于北山造山带中部的马鬃山地块内前寒武纪副变质岩的岩相学、锆石U-Pb年代学和Hf同位素研究。该岩石较高的变质程度、岩石组合、碎屑锆石年龄谱特征均显示其和北山造山带内古生代的残余被动大陆边缘产物不同,属于北山造山带内残余的前寒武纪基底,且沉积时代在中元古代约1.1~1.45Ga之间。结合前人的研究,得出以下认识:北山的前寒武纪物质在中元古(约1.0Ga)之后,显示出和塔里木克拉通、蒙古地块均相似的特征,表明三者均卷入了Rodina超大陆的聚散事件。在中元古代及其之前(约1.1Ga之前)则显示多源区的特征。本文中的北山造山带中元古代副变质岩显示了中元古代及其之前与塔里木克拉通不同,与蒙古地块相似的特征。锆石的Hf同位素分析进一步揭示了北山造山带前寒武纪副变质岩和敦煌地块均记录了古太古代中晚期的新生地壳加入事件,显示了与塔里木克拉通的差异。这也暗示了敦煌地块和北山造山带在中元古代(约1.45Ga)之前可能具有统一的前寒武纪基底。  相似文献   

6.
白乃庙-吉中造山带中的诸多前寒武纪地体是否属于同一个微陆块一直存在着争议,由此制约了对该造山带前寒武纪构造演化及其中微陆块基底构造亲缘性的认识。对造山带东段吉林南部头道沟组的野外观察及锆石U-Pb年代学研究表明,该地层形成时代为631~460Ma,是长春-延吉蛇绿混杂岩带的重要组成部分;白乃庙-吉中造山带东、西两段前寒武纪碎屑锆石年龄谱系和εHf(t)值均具有很好的相似性,同时造山带不同地区岩浆岩的锆石Hf同位素模式年龄和全岩Nd同位素年龄均具有很好的对应性,表明卷入该造山带的前寒武纪地体曾同属于一个微陆块;白乃庙-吉中造山带内的下古生界中存在大量泛非期碎屑锆石(~600Ma),结合造山带与冈瓦纳大陆的前寒武纪碎屑锆石年龄谱系和εHf(t)值的高度吻合性,我们认为该造山带中的微陆块可能来自于冈瓦纳大陆,但其在冈瓦纳大陆中的位置与中亚造山带东段的其他地块(额尔古纳、兴安及布列亚-佳木斯-兴凯地块)相距较远。  相似文献   

7.
华北克拉通对前寒武纪超大陆旋回的基本制约   总被引:33,自引:4,他引:33  
全球大陆克拉通在前寒武纪至少记录了3次超大陆聚合-裂解的构造旋回。不同大陆前寒武纪地质的研究证明,板块的构造模式可以前推至新太古代。超大陆的聚合表现为大规模造山带的穿时性发育,而裂解则表现为大陆裂谷系、非造山花岗岩及巨型基性岩浆岩省的同期快速发育。广泛的区域地质研究揭示华北克拉通前寒武纪地质构造演化具有明显的阶段性差异特征,克拉通主体形成于新太古代陆壳增生与碰撞造山过程。华北克拉通在太古宙末期首次经历强烈的裂解作用,在古元古代晚期涉及强烈的陆缘再造作用。在古元古代末期发生第二次大规模的裂解活动,随后以中元古代末期的造山带拼合为Rodinia超大陆的组成部分。详细的区域构造对比证明,华北克拉通长期以来与波罗的地质、东南极克拉通、印度南部克拉通、巴西克拉通等具有构造亲缘关系。  相似文献   

8.
柴北缘前寒武纪岩体(地层)分布广泛。为确定柴北缘地区前寒武纪岩体(地层)受早古生代碰撞造山作用的影响,采用LA-ICP-MS技术,对大柴旦地区前寒武纪黑云斜长片麻岩、斜长角闪岩及石榴子石斜长角闪岩中的锆石进行了U-Pb同位素定年。黑云斜长片麻岩获得479~472Ma的变质年龄,斜长角闪岩获得440Ma和470Ma 2个变质年龄,石榴子石斜长角闪岩获得418.8Ma±3.0Ma的变质年龄。初步确定,柴北缘早古生代造山作用对前寒武纪岩体构成了3次强度不等的变质作用叠加,分别为大洋俯冲末期阶段(495~467Ma)岛弧花岗岩弱热烘烤变质作用、大陆碰撞造山阶段(467~423Ma)区域变质作用、S型花岗岩热动力变质作用和大陆后碰撞造山阶段(423~371Ma) I型花岗岩强烈接触热变质作用。  相似文献   

9.
塔里木东北地区盆山耦合及其对油气成藏的控制   总被引:6,自引:0,他引:6  
震旦纪一寒武纪库鲁克塔格、英吉苏地区为陆内裂谷盆地。加里东末期与早海西运动造成塔东地区的普遍抬升剥蚀,孔雀河斜坡、罗布庄凸起开始形成,早二叠世,塔里木板块与中天山地块、哈萨克斯坦一准噶尔板块最终碰撞拼贴,古天山造山带相继形成。燕山晚期,受中特提斯洋关闭影响。塔里木盆地基底随造山带的构造抬升而部分抬升,喜马拉雅期开始,在南北向挤压力作用下,收缩、隆升的山体侧向扩张,向沉积盆地逆冲形成型逆冲推覆构造。造山带和盆地的共同演化不仅形成了多套烃源岩,而且控制了古生界和中新生界两套不同的油气成藏系统。元古界地层由北向南推覆,可能预示着在库鲁克塔格南缘西段山前前寒武纪地层下部保存有古生代和中新生代烃源岩建造,如果配有有利的油气储盖组合和圈闭,有望在山前获得突破。  相似文献   

10.
川黔湘交境寒武纪二级层序的划分及海平面变化   总被引:4,自引:1,他引:4  
徐世球 《地球科学》1997,22(5):466-470
根据时限、造山幕和水深变化,将研究区寒武纪划分为3个二级层序,即早世中层序Ⅱ1,中世和晚世为正层序组Ⅱ2和Ⅱ3,它们都肯SB1型底界面,二级层序与二级海平面变化对应,从不同块体二级海平面变化比较可看出扬子 块与华北板块、北美板板块极不相同,反映它们之间的距离较大;而与塔里木地块非常一致,说明两者的距离极近,这些异同与三叶虫生物地理分区吻合。  相似文献   

11.
邓军  葛良胜  杨立强 《岩石学报》2013,29(4):1099-1114
构造动力体制是研究区域大地构造演化和成矿地质环境的基础,而造山带作为全球金属矿产资源集中产出的地带,同时保留了地球地质构造演化最为丰富的记录,因而是用来解剖不同构造动力体制及相关成矿环境和成矿作用的主要对象.板块构造源于大洋,描述和解释的是以水平运动为主导的板块构造导致的大陆边缘增生和大洋板块消失及与其相关的地质现象,其动力学体制称为大洋动力体制;大陆构造描述和解释的主要是大陆内部而不是边缘发生的以垂直运动(壳幔相互作用)为主导的的大陆物质增生和消失及其相关的地质现象,其动力学体制称为大陆动力体制;而洋陆转换则是水平和垂直运动相互耦合、共同作用的动力学体制,描述和解释的是洋陆转换及其相关的地质现象,可以将其称为转换动力体制.不同构造动力体制在全球范围内具有同区转承和异区并存特点.每一种构造动力体制都可以激发造山作用,因此,地球上同时存在着不同类型的造山作用和造山带,可以归结为俯冲造山(带)、碰撞造山(带)、伸展造山(带)和陆内造山(带)等完整反映造山带演化过程的4种类型.复合造山概念科学地描述了全球不同造山带的复杂性.它具有三种涵义,一是不同时期相同或不同类型造山带在空间上的复合(叠置);二是同一造山带在不同地质历史阶段、不同构造动力体制下造山作用的时间复合(叠加);三是同时具有时空复合特征的复合造山带.对三江造山带时空结构的解析表明,它是具有时空复合特征的巨型复合造山带的典型代表.  相似文献   

12.
The Qinling Orogenic belt has been well documented that it was formed by multiple steps of convergence and subsequent collision between the North China and South China Blocks during Paleozoic and Late Triassic times. Following the collision in Late Triassic times, the whole range evolved into an intracontinental tectonic process. The geological, geophysical and geochronological data suggest that the intracontinental tectonic evolutionary history of the Qinling Orogenic Belt allow deduce three stages including strike-slip faulting during Early Jurrassic, N-S compressional deformation during Late Jurassic to Early Cretaceous and orogenic collapse during Late Cretaceous to Paleogene. The strike-slip faulting and the infills in Early Jurassic along some major boundary faults show flower structures and pull-apart basins, related to the continued compression after Late Triassic collision between the South Qinling Belt and the South China Block along the Mianlue suture. Late Jurassic to Early Cretaceous large scale of N-S compression and overthrusting progressed outwards from inner of Qinling Orogen to the North China Block and South China Block, due to the renewed southward intracontinental subduction of the North China Block beneath the Qinling Orogenic Belt and continuously northward subduction of the South China Block, respectively. After the Late Jurassic-Early Cretaceous compression and denudation, the Qinling Orogenic Belt evolved into Late Cretaceous to Paleogene orogen collapse and depression, and formed many large fault basins along the major faults.  相似文献   

13.
本文系统论述了西南三江地区那邦、高黎贡山、崇山-澜沧江、点苍山-哀牢山-红河剪切走滑带、区域性伸展与变质核杂岩、新生代盆地及走滑过程中的碱性岩浆活动等特征,认为西南三江地区经历了挤压收缩变形(60~40Ma)、走滑伸展热隆(40~38Ma)、走滑剪切深熔(38~23Ma)、走滑剪切伸展(23~11Ma)、走滑剥蚀隆升(11~5Ma)5个时空演化阶段,并对应5种运动机制及动力学机制:碰撞挤压、走滑拉张热隆(岩浆)、走滑剪切深熔、剪切伸展、走滑垮塌,主要表现为走滑造山。西南三江造山带是印度板块向欧亚板块斜向俯冲形成的多条巨型顺时针走滑剪切带,其间的块体向南逸出并顺时针旋转。走滑断层系起了位移量调节和构造变换的作用,西南三江造山带为典型的走滑造山带。  相似文献   

14.
Continental China is a mosaic of numerous tectonic blocks, which amalgamated from Neoarchean to Cenozoic broadly coeval with the cycles of global supercontinents such as Kenorland, Columbia, Rodinia, Gondwana, and Pangaea. By reviewing the long-lasting geological evolution in the different tectonic blocks, it reveals that more than two episodes of tectonic events, including accretionary and collisional orogeny, and dismantling, as well as mantle plume, occurred successively or simultaneously within a single tectonic belt. This is called superimposed orogeny in this study. Examples of the dominant types of superimposed orogeny in China include: (1) Cenozoic continental collision superimposed on Paleo- to Mesozoic accretionary orogeny in the Tibet and Sanjiang orogenic belts; (2) Reactivation of Paleozoic accretionary orogen in later Mesozoic oceanic subduction in the eastern part of Qinling–Qilian–Kunlun and Central Asian orogenic belts; (3) Mesozoic oceanic subduction under the paleo-suture in the South China Block; (4) Mesozoic demantling along the Paleo- and Neoproterozoic, and Paleozoic sutures in the eastern part of North China Craton; and (5) mantle plume rising through metasomatized lithospheric mantle or stagnant oceanic slab in the Emeishan large igneous province. A comprehensive review of the spatial-temporal distribution of ore deposits and their salient features shows that the superimposed orogeny has exerted significant control on metallogeny in China. The giant porphyry and skarnore deposits, as well as orogenic gold deposits were preferentially formed along previous tectonic suture, craton margin, and arc during later orogenesis due to the remobilization of previously enriched metals. Superimposed orogeny has reworked the lithospheric structure with concomitant granitoid-associated metallogeny. The mixing of magmas from juvenile lower crust, ancient lower crust, and middle crust, which tends to induce the different mineralization of Cu–Au, Mo, and Pb–Zn–W–Sn deposits respectively, was considered to generate a wide variety of combinations of metal species. The superimposed orogeny caused the overlapping of diverse genetic types of deposit formed in different tectonic periods in the same tectono-metallogenic belt. The stratiform ore deposit, including BIF, VMS, SEDEX, or sedimentary sulfide layers, formed from Neoarchean to Paleozoic, were modified by later mineralization, resulting in the enrichment of the various metal species and enhancement of ore resources. This study brings up the concept of composite metallogenic system to summarize the regional metallogeny driven by superimposed orogeny. The composite metallogenic system was dominantly characterized by the multi-episodic and diverse mineralization concomitant with one or more features, including mineralization evolved from the previous metal enrichment, later overlapping or modification on previous ore belt, and diversifying of metal species derived from reworked lithosphere.  相似文献   

15.
王宗秀  李涛 《地质通报》2004,23(3):286-293
博格达山链是新生代成长起来的山脉,经历了古生代初始造山、中生代伸展调整、新生代复活造山的完整发展演化历程,是开展陆内造山和再生造山研究的理想之地。针对博格达山链新生代再生造山过程中无明显变质作用、岩浆活动、韧性变形等这种“强造山”“弱表现”的造山地质记录特征,根据山体新生代的变形特点、变形构造组合,并结合深部探测资料,提出“双向挤出”断块隆升的造山模式,认为深部南北向相向运移及岩石圈的深部约束是博格达山链新生代再生造山的主要动力机制。  相似文献   

16.
江苏茅山构造--滑覆反序叠置造山   总被引:2,自引:0,他引:2  
徐学思  胡连英 《地质通报》2001,20(3):280-285
茅山构造包括茅山薄皮山脉、茅东断裂、茅东伸展盆地.茅山山脉是由3个异地岩片(S-D,C-P1、P2-T1)沿其底部S1、C1、P23个滑脱面F1、F2、F3,依次滑覆反序叠置造山(S-D∥C-P1∥P2-T1//J3-K1).  相似文献   

17.
The Kaapvaal intrageosyncline, one of the oldest cratonic basins of the Precambrian shield areas, offers an almost complete record of deposition and diastrophism that occurred between c. 1,4 and 3,0 Ga B.P. Its tectonic development started after the consolidation of the Early Archaean crustal structure when sequences such as the Pongola, Dominion Reef and Witwatersrand accumulated in a tectonically stable environment between c. 2,4 and 3,0 Ga B.P. This early epeirogenic or platformal stage was followed by a period of deposition of the Ventersdorp, Transvaal and Waterberg-Matsap sequences between c. 1,4 and 2,4 Ga B.P. Gravity-induced deformation which culminated in post-Matsap folding in the northern Cape and in post-Waterberg faulting in parts of the northern Transvaal and Botswana, affected portions of the basin situated close to the boundary of the craton with surrounding mobile belts. In Late Precambrian times the tectonic activity was either insignificant or it was again confined to the marginal zones of the craton (e. g. partial tectonic reactivation of the Lower Proterozoic sequences in the foreland of the Namaqua Mobile Belt between c. 0,9 and 1,25 Ga B.P.).Although the Kaapvaal basin represents an epeirogenic feature, the structure of its marginal parts displays some of the characteristics of orogenic belts (e. g. the linearity of fold structures in the Matsap synclinorium in the northern Cape and its uniform vergence towards the axis of the Waterberg-Matsap basin). However, the deformation of sequences in the Kaapvaal basin was not associated with magma generation, and the metamorphism operative in the basin during the Lower Proterozoic was only of burial type.The depositional and deformational history of the platform cover in the tectonically labile marginal zones of the Kaapvaal Craton is related to the tectonic evolution of the adjoining mobile belts. This can be shown by the example of the Namaqua Belt and its foreland in the northern Cape where continuity of certain geological units and tectonic structures exists across the front of the mobile belt. This continuity, together with the similar timing of the tectonic events in the mobile belt and on the craton, points to a common cause for the broad movements of uplift and subsidence on the craton, and for the profound deformation in restricted zones along its margin and in adjoining mobile belts.
Zusammenfassung Die Kaapvaal-Intrageosynkline ist eines der ältesten bekannten kratonischen Becken, und ihre Entwicklungsgeschichte kann über einen Zeitraum von 1,6 Milliarden Jahren verfolgt werden.Das Becken entstand in einem früh-epigenetischen oder Plattform-Stadium, als die Pongola-, Dominion-Reef- und Witwatersrand-Schichten vor ca. 3,0 bis 2,4 Milliarden Jahren auf die konsolidierte frühpräkambrische Kruste abgelagert wurden. In einem weiteren Sedimentationszyklus folgten die Ventersdorp-, Transvaal- und Waterberg-Matsap-Schichten vor 2,4 bis 1,4 Milliarden Jahren. Gravitationsfaltung, die ihren Höhepunkt mit der Matsap-Deformation in der nördlichen Kapprovinz erreichte, und Störungsbewegungen im nördlichen Transvaal und in Botswana haben das Becken randlich im Grenzbereich zwischen Kraton und den umgebenden mobilen Zonen beeinflußt. Tektonische Bewegungen im Spätpräkambrium waren entweder unbedeutend oder sie spielten sich wiederum im Randbereich des Beckens ab (z. B. tektonische Rejuvenation von frühproterozoischen Gesteinen im Vorland des Namaqua-Mobile-Belt von ca 0,9 bis 1,25 Milliarden Jahren).Obwohl das Kaapvaal-Becken epirogenen Charakter aufweist, so zeigen doch die Strukturen in seinem Randbereich oft orogene Züge. Die Deformation im Beckeninneren war jedoch nicht von Magmaintrusionen begleitet, und während des Frühproterozoikums wurde die Beckenfüllung lediglich von einer geringen Versenkungsmetamorphose erfaßt.Die Sedimentations- und Deformationsgeschichte der Plattform-Serien im tektonisch labilen Randbereich des Kaapvaal-Kratons ist eng mit der strukturellen Entwicklung in den benachbarten mobilen Zonen verbunden. Dies wird am Beispiel des Namaqua-Mobile-Belt und seines Vorlandes in der nördlichen Kapprovinz gezeigt, wo bestimmte geologische Einheiten und Strukturen vom mobilen Bereich in den kratonischen Bereich verfolgt werden können. Diese Kontinuität und der zeitliche Zusammenhang zwischen Deformation immobile belt und auf dem Kraton deuten auf eine gemeinsame Ursache für die weitgespannten epirogenetischen Bewegungen im Beckenbereich und die orogene Tektonik am Rande des Kratons hin.Der Unterschied zwischen stabilen und mobilen Bereichen ist wahrscheinlich auf unterschiedliche Krustendicke und -stärke zurückzuführen, so daß die gleichen tektonischen (orogenen) Bewegungen einerseits zu alpinotypen Strukturen führen, während sie in starken (d. h. schon verfestigten) Krustenteilen germanotype Verformung und Epirogenese zur Folge haben. Orogene oder epirogene Bewegungen hängen daher entweder von verschiedenartiger tektonischer Beanspruchung benachbarter Krustenteile während eines bestimmten Zeitraumes ab, oder sie spiegeln fundamentale Veränderungen in einem bestimmten Krustenbereich im Laufe seiner Entwicklungsgeschichte wider.Ein Beispiel für den ersten Fall ist die in vorliegender Arbeit beschriebene unterschiedliche Entwicklung des Kaapvaal-Beckens und des benachbarten Namaqua-Mobile-Belt im Frühproterozoikum, während letzterer Fall durch die spätarchaische Kratonisierung des Kaapvaal-Grundgebirges und die nachfolgende Evolution der Kaapvaal-Plattform charakterisiert ist.

Résumé Le Kaapvaal intragéosynclinal, un des plus vieux bassins cratoniques connus des boucliers précambriens, apporte un record presque complet de sédimentation et de diastrophisme qui apparut entre 1400 Ma et 3000 Ma. Son développement tectonique commença après la stabilisation tectonique de la croûte de l'Archéen moyen quand des séries telles que le Pongola, le Dominion Reef et le Witwatersrand se furent déposées dans un milieu tectoniquement stable entre 2400 Ma et 3000 Ma. Cette époque épéiro-génique précoce fut suivie par la période de sédimentation des séries du Ventersdorp, du Transvaal et du Waterberg-Matsap, entre 1400 Ma et 2400 Ma. Le plissement par gravitation qui culmina avec la déformation de Matsap dans le Nord de la province du Cap et par le décrochement post-Waterberg dans certaines parties du Nord du Transvaal et du Botswana, influença les parties du bassin placées en bordure entre le craton et les zones mobiles qui l'entouraient.L'activité tectonique entre 1400 Ma et 600 Ma fut ou insignifiquante ou à nouveau se limita aux parties marginales du craton (c'est à dire une réactivation tectonique partielle des séries du Protérozoïque inférieur dans l'avant-pays de la zone mobile du Namaqualand, entre 900 Ma et 1250 Ma).Bien que le bassin de Kaapvaal montre un caractère épirogénique, les structures des parties marginales montrent cependant quelques traits caractéristiques pour les ceintures orogéniques. La déformation des séries de l'intérieur du bassin du Kaapvaal ne fut cependant pas accompagnée d'intrusions magmatiques, et pendant le Protérozoïque ancien le comblement du bassin fut affecté seulement d'un léger métamorphisme d'enfouissement.L'histoire de la sédimentation et de la déformation des séries de plateforme dans le domaine marginal tectoniquement labile du craton du Kaapvaal est mis en relation avec l'évolution structurale des zones mobiles voisines. C'est ce que montre l'exemple du «Namaqua Mobile Belt» et de son avant-pays dans la province septentrionale du Cap où s'établit la continuité entre la zone mobile et le craton. Cette continuité, et aussi la liaison dans le temps entre la déformation dans la zone mobile et dans le craton, indiquent une cause commune pour les grands mouvements de soulèvement et de subsidence dans le domaine du bassin et pour la déformation profonde en bordure du craton.La différence entre les domaines stables et mobiles est à rapporter vraissemblablement à des épaisseurs et à des résistances différentes de la croûte, de sorte que les mêmes mouvements tectoniques (orogéniques) d'une part conduisent à des structures alpinotypes, tandis que d'autre part dans les parties de la croûtes suffisamment fortes (c'est-à-dire déjà consolidées) ils ont pour effet une déformation germanotype et une épirogenèse. Les mouvements orogéniques ou épirogéniques ou bien dépendent de sollicitations tectoniques de type différent entre parties de la croûte voisines pendant une durée déterminée, ou bien ils reflètent des modifications fondamentales dans un domaine déterminé de la croûte au cours de son développement historique.Un exemple du premier cas est donné par le développement différentiel, décrit dans le présent travail du bassin du Kaapvaal et de la Ceinture mobile du Namaque, voisine, au cours du Protérozoïque ancien, tandis que le dernier cas est donné par la cratonisation, à la fin de l'Archéen, du socle du Kaapvaal et par l'évolution de la plateforme du Kaapvaal qui l'a suivie.

— ; 1,6 . - , , , 3,0 2,4 , - . — 2,4 1,4 — , -. — —, , . , . - 0,9–1,25 .) , , . , , , . . , . , . , , — . , , . , — .
  相似文献   

18.
In northwest Argentina, weakly metamorphic clastic and calcareous sedimentary rocks of latest Precambrian to Lower Cambrian age (Puncoviscana Formation and related units) contain an abundant ichnofauna of both chronostratigraphic and paleoenvironmental value. In the western and central Sierras Pampeanas, metasedimentary and metavolcanic rocks are considered to form part of the same geotectonic unit. This “Pampean orogenic cycle” includes geosynclinal sedimentation of latest Precambrian to Lower Cambrian age, as well as magmatism, metamorphism and deformation of Middle to Upper Cambrian age, documented by an angular unconformity below the Upper Cambrian to Devonian rocks of the “Famatinian orogenic cycle”. In some of the metamorphic rocks of the Pampean Cycle a pre-Ordovician folding is also distinguished from a later tectonic overprinting. Hence, the concept of a Pampean cycle differs from other concepts of late Precambrian orogenic cycles of South America which are only defined by radiometric ages. The Pampean orogenesis may be compared with the Ross orogenesis of the Transantarctic Mts., the Tyennan orogenesis of Australia and some of the deformation phases of the Damara orogen in Namibia.  相似文献   

19.
Role of strike-slip faults in the Betic-Rifian orogeny   总被引:1,自引:0,他引:1  
A new model for the Betic-Rifian orogeny of the Western Mediterranean (Spain and North Africa) is proposed in which four strike-slip faults play an important role; the faults are not of the same age. Two faults, the left-lateral Jebha fault to the south (in Morocco and principally in the Mediterranean Sea) and the right-lateral North Betic fault (southern Spain) to the north, define the boundaries of the Alboran block (Betic and Rifian internal zones). Final movement along these faults was during the Burdigalian time. Two other faults, the left-lateral Nekor fault (North Africa) to the south of the Jebha fault and the right-lateral Crevillente fault, somewhat to the north of the North Betic fault, define a larger Alboran block (including part of the Betic and Rifian external zones) that was present during the Tortonian.The following sequence of events is proposed:
1. (a) During the Eocene and Oligocene, the African and European plates converged in a N-S sense causing the breakup and overthrusting of the Betic, Rifian and Kabyle internal zones and then the movement towards the WSW of the Alboran block by slip along the Jebha and North Betic faults.
2. (b) By the end of Burdigalian time, movement along the Jebha and North Betic faults ceased.
3. (c) With continued N-S convergence, the Nekor and Crevillente faults, which bound a larger Alboran block, were formed during the mid- and late Miocene. The Arc of Gibraltar (the zone lying between the four major faults) seems to be a result of WSW motion of a crustal block being thrust over external zones.
The model proposed adds to the earlier idea that tectogenesis proceeds from the interior to the exterior of an erogenic belt. In the Betic-Rifian orogeny major strike-slip fracture zones shifted to the exterior of the orogenic belt as the orogeny progressed in order to relieve the stress caused by locking of the more internal faults.  相似文献   

20.
中国东部中生代软流层上涌造山作用   总被引:14,自引:7,他引:14       下载免费PDF全文
中国东部中生代造山带不同于陆缘俯冲作用和陆间大陆碰撞造山带,也不是陆缘和陆间碰撞造山带发展演化的某一个特定阶段的产物。它是一种由深部软流层上涌造山作用形成的一个新类型的造山带,又称东亚型造山作用。它的造山作用过程是:(1)早中生代(230~180Ma)的前和初始造山幕,深部软流层物质上涌和底侵作用导致冷、强的大陆岩石圈地幔线状破裂与局部拆沉;(2)中、晚侏罗世(180~140Ma)主造山幕,软流层大规模上涌并沿着岩石圈底部壳-幔边界横向侵入和伸展,使垂向差异运动转变为水平挤压作用,结果地壳表层发生大规模的褶皱构造变形和推覆构造,使陆壳加厚形成山根,岩石圈根发生部分拆沉;(3)白垩纪(140~65Ma)的晚期造山幕,加厚的陆壳山根与岩石圈根的大规模拆沉,岩石圈进入全新的从挤压向伸展转变和巨大减薄阶段,软流层大规模上涌成山。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号