首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 941 毫秒
1.
Hakan oban  Martin F.J. Flower 《Lithos》2006,89(3-4):275-299
Ultrapotassic rocks in the Bucak area of Isparta Angle, SW Turkey, show unusually low SiO2 (46.8–49.2 wt.%) and high MgO (10.4–11.6 wt.%) contents, and lamproitic affinity (K/Na, > 2.5; Mg#, 73–75; Al2O3, 9.2–11 wt.%, CaO 7.4–10.6 wt.%, Cr, 525–675 ppm; Ni, 442–615 ppm). They are made up by phlogopite (30–40 vol.%), leucite (25–30 vol.%), olivine (5–20 vol.%), which rarely contain Cr-spinel, clinopyroxene (5–10 vol.%), sanidine (5 vol.%) and richterite, with accessory apatite, magnetite and ilmenite. One sample also include negligible sodalite in groundmass, which is unusual mineral in lamproites. Mineral phase variation and textures record discrete phases of pre-eruptive crystallization: (1) early appearance of (Cr-spinel-bearing) olivine, Ti poor phlogopite ± apatite at pressures of ca. 1.0–2.0 GPa, at or close to the lithospheric Mechanical Boundary Layer (MBL), and (2) later appearance of Ti rich phlogopite, clinopyroxene, richterite, leucite, sanidine, and other minor phases, at pressures of ca. 0.1–1.0 GPa, indicating discrete, pressure-specific fractionation events. The Bucak silica poor ‘leucite’ lamproites were probably generated by partial melting of phlogopite-bearing, refractory peridotite at pressures of ca. 1.5–2 GPa, higher than those proposed for SiO2-saturated ‘phlogopite’ lamproites (ca. 1–1.5 GPa) from Afyon, to the North. The depth (total pressure) of melt segregation probably dominates over volatile partial pressures (e.g. of CO2, F, H2O) in determining the SiO2-undersaturated character of Bucak magmas.  相似文献   

2.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


3.
Trace element partition coefficients (D's) for up to 13 REE, Nb, Ta, Zr, Hf, Sr and Y have been determined by SIMS analysis of seven garnets, four clinopyroxenes, one orthopyroxene and one phlogopite crystallized from an undoped basanite and a lightly doped (200 ppm Nb, Ta and Hf) quartz tholeiite. Experiments were conducted at 2–7.5 GPa, achieving near-liquidus crystallization at relatively low temperatures of 1080–1200°C under strongly hydrous conditions (5–27 wt.% added water). Garnet and pyroxene DREE show a parabolic pattern when plotted against ionic radius, and conform closely to the lattice strain model of Blundy and Wood (Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454). Comparison, at constant pressure, between hydrous and anhydrous values of the strain-free partition coefficient (D0) for the large cation sites of garnet and clinopyroxene reveals the relative importance of temperature and melt water content on partitioning. In the case of garnet, the effect of lower temperature, which serves to increase D0, and higher water content, which serves to decrease D0, counteract each other to the extent that water has little effect on garnet–melt D0 values. In contrast, the effect of water on clinopyroxene–melt D0 overwhelms the effect of temperature, such that D0 is significantly lower under hydrous conditions. For both minerals, however, the lower temperature of the hydrous experiments tends to tighten the partitioning parabolas, increasing fractionation of light from heavy REE compared to anhydrous experiments.

Three sets of near-liquidus clinopyroxene–garnet two-mineral D values increase the range of published experimental determinations, but show significant differences from natural two-mineral D's determined for subsolidus mineral pairs. Similar behaviour is observed for the first experimental data for orthopyroxene–clinopyroxene two-mineral D's when compared with natural data. These differences are in large part of a consequence of the subsolidus equilibration temperatures and compositions of natural mineral pairs. Great care should therefore be taken when using natural mineral–mineral partition coefficients to interpret magmatic processes.

The new data for strongly hydrous compositions suggest that fractionation of Zr–Hf–Sm by garnet decreases with increasing depth. Thus, melts leaving a garnet-dominated residuum at depths of about 200 km or greater may preserve source Zr/Hf and Hf/Sm. This contrasts with melting at shallower depths where both garnet and clinopyroxene will cause Zr–Hf–Sm fractionation. Also, at shallower depths, clinopyroxene-dominated fractionation may produce a positive Sr spike in melts from spinel lherzolite, but for garnet lherzolite melting, no Sr spike will result. Conversely, clinopyroxene megacrysts with negative Sr spikes may crystallize from magmas without anomalous Sr contents when plotted on mantle compatibility diagrams. Because the characteristics of strongly hydrous silicate melt and solute-rich aqueous fluid converge at high pressure, the hydrous data presented here are particularly pertinent to modelling processes in subduction zones, where aqueous fluids may have an important metasomatic role.  相似文献   


4.
High-calcium, nepheline-normative ankaramitic basalts (MgO > 10 wt.%, CaO/Al2O3 > 1) from Rinjani volcano, Lombok (Sunda arc, Indonesia) contain phenocrysts of clinopyroxene and olivine (Fo85–92) with inclusions of spinel (Cr# 58–77) and crystallised melt. Olivine crystals have variable but on average low NiO (0.10–0.23 wt.%) and high CaO (0.22–0.35 wt.%) contents for their forsterite number. The CaO content of Fo89–91 olivine is negatively correlated with the Al2O3 content of enclosed spinel (9–15 wt.%) and positively correlated with the CaO/Al2O3 ratios of melt inclusions (0.9–1.5). Major and trace element patterns of melt inclusions are similar to that of the host rock, indicating that the magma could have formed by accumulation of small batches of melt, with compositions similar to the melt inclusions. The liquidus temperature of the magma was  1275 °C, and its oxygen fugacity ≤ FMQ + 2.5. Correlations between K2O, Zr, Th and LREE in the melt inclusions are interpreted to reflect variable degrees of melting of the source; correlations between Al2O3, Na2O, Y and HREE are influenced by variations in the mineralogy of the source. The melts probably formed from a water-poor, clinopyroxene-rich mantle source.  相似文献   

5.
Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia)   总被引:3,自引:0,他引:3  
The megacryst suite of the Grib kimberlite pipe (Arkhangelsk province, Russia) comprises garnet, clinopyroxene, magnesian ilmenite, phlogopite and garnet-clinopyroxene intergrowths. Crystalline inclusions, mainly of clinopyroxene and picroilmenite, occur in garnet megacrysts. Ilmenite is characterized by a wide range in the contents of MgO (10.6–15.5 wt.%) and Cr2O3 (0.7–8.3 wt.%). Megacryst garnets show wide variations in Cr2O3 (1.3–9.6 wt.%) and CaO (3.6–11.0 wt.%) but relatively constant MgO (15.4–22.3 wt.%) and FeO (5.2–9.9 wt.%). The pyroxenes also show wide variations in such oxides as Cr2O3, Al2O3 and Na2O (0.56–2.95; 0.86–3.25; 1.3–3.0 wt.%, respectively). The high magnesium and chromium content of all these minerals puts them together in one paragenetic group. This conclusion was confirmed by studies of the crystalline inclusions in megacrysts, which demonstrate similar variations in composition. Low concentration of hematite in ilmenite suggests reducing conditions during crystallization. PT estimates based on the clinopyroxene geothermobarometer (Contrib. Mineral. Petrol. 139 (2000) 541) show wide variations (624–1208 °C and 28.8–68.0 kbars), corresponding to a 40–45 mW/m2 conductive geotherm. The majority of Gar-Cpx intergrowths differ from the corresponding monomineralic megacrysts in having higher Mg contents and relatively low TiO2. The minerals from the megacryst association, as a rule, differ from the minerals of mantle xenoliths, but garnets in ilmenite-bearing peridotite xenoliths are compositionally similar to garnet megacrysts. The common features of trace element composition of megacryst minerals and kimberlite (they are poor in Zr group elements) suggest a genetic relationship. The origin of the megacrysts is proposed to be genetically connected with kimberlite magma-chamber evolution on the one hand and with associated mantle metasomatism on the other. We suggest that, depending on the primary melt composition, different paragenetic associations of macro/megacrysts can be crystallized in kimberlites. They include: (1) Fe–Ti (Mir, Udachnaya pipes); (2) high-Mg, Cr (Zagadochna, Kusova pipes); (3) high-Mg, Cr, Ti (Grib pipe).  相似文献   

6.
The major and trace element compositions of nine eclogites from the Dabie–Sulu ultrahigh pressure (UHP) metamorphic terrane in eastern China were determined for both whole rock and the main constituent minerals, garnet and clinopyroxene. The results indicate that the eclogite protoliths originated from a basaltic magma, which formed in a continental setting as shown by isotopic and immobile element data. Based on the garnet REE characteristics, the eclogites can be roughly divided into two groups. Group 1 has LREE enrichment with no Eu anomaly for whole rock, and smooth LREE depletion but HREE enrichment pattern for garnet, whereas group 2 shows a depletion of LREE with a pronounced positive Eu anomaly and flat HREE pattern for both whole rock and garnet. From these features, we suggest that the protoliths for group 2 are Fe–Ti–gabbros with relatively high cumulus plagioclase and Fe–Ti oxide, whereas the group 1 eclogites are probably from basalts. Therefore, the unusual garnet REE pattern observed in group 2 can be considered as an important signature for identifying gabbro protoliths for eclogites. The identification of gabbro protoliths from the eclogites in the Dabie–Sulu terrane provides evidence for Neoproterozoic rift magmatism in the northern margin of the Yangtze craton. During ultrahigh pressure metamorphism in the Dabie–Sulu terrane, LILEs (including Ba, Rb, Th, U, K) had high mobility, but REEs and HFSEs were immobile, and trace element distribution equilibrium was approached between garnet and clinopyroxene. An estimate of mass balance indicates that garnet and clinopyroxene host the majority of HREEs and Y, and clinopyroxene is a significant host for Sr, but minor and accessory minerals predominantly account for LREEs, Th, U, and Zr.  相似文献   

7.
The Grader layered intrusion is part of the Havre-Saint-Pierre anorthosite in the Grenville Province (Quebec, Canada). This intrusion has a basin-like morphology and contains significant resources of Fe–Ti–P in ilmenite and apatite. Outcropping lithologies are massive oxide alternating with anorthosite layers, banded ilmenite–apatite–plagioclase rocks and layered oxide apatite (gabbro-)norites. Drill cores provide evidence for stratigraphic variations of mineral and whole rock compositions controlled by fractional crystallization with the successive appearance of liquidus phases: plagioclase and ilmenite followed by apatite, then orthopyroxene together with magnetite, and finally clinopyroxene. This atypical sequence of crystallization resulted in the formation of plagioclase–ilmenite–apatite cumulates or “nelsonites” in plagioclase-free layers. Fine-grained ferrodiorites that cross-cut the cumulates are shown to be in equilibrium with the noritic rocks. The high TiO2 and P2O5 contents of these assumed liquids explains the early saturation of ilmenite and apatite before Fe–Mg silicates, thus the nelsonites represent cumulates rather than crystallized Fe–Ti–P-rich immiscible melts. The location of the most evolved mineral and whole rock compositions several tens of meters below the top of the intrusion, forming a sandwich horizon, is consistent with crystallization both from the base and top of the intrusion. The concentrations of V and Cr in ilmenite display a single fractionation path for the different cumulus assemblages and define the cotectic proportion of ilmenite to 21 wt.%. This corresponds to bulk cotectic cumulates with ca. 8 wt.% TiO2, which is significantly lower than what is commonly observed in the explored portion of the Grader intrusion. The proposed mechanism of ilmenite-enrichment is the lateral removal of plagioclase due to its relative buoyancy in the dense ferrodiorite melt. This plagioclase has probably accumulated in other portions of the intrusion or has not been distinguished from the host anorthosite.  相似文献   

8.
The Oshurkovo Complex is a plutonic sheeted complex which represents numerous successive magmatic injections into an expanding system of subparallel and subvertical fractures. It comprises a wide range of rock types including alkali monzodiorite, monzonite, plagioclase-bearing and alkali-feldspar syenites, in the proportion of about 70% mafic rocks to 30% syenite. We suggest that the variation within the complex originated mainly by fractional crystallization of a tephrite magma.

The mafic rocks are considered as plutonic equivalents of lamprophyres. They exhibit a high abundance of ternary feldspar and apatite, the latter may attain 7–8 vol.% in monzodiorite. Ternary feldspar is also abundant in the syenites. The entire rock series is characterized by high Ba and Sr concentrations in the bulk rock samples (3000–7000 ppm) and in feldspars (up to 1 wt.%). The mafic magma had amphibole at the liquidus at 1010–1030 °C based on amphibole geothermometer. Temperatures as low as this were due to high H2O and P2O5 contents in the melt (up to 4–6 and 2 wt.%, respectively). Crystallization of the syenitic magmas began at about 850 °C (based on ternary feldspar thermometry). The series was formed at an oxygen fugacity from the NNO to HM buffer, or even higher.

The evolution of the alkali monzodiorite–syenite series by fractional crystallization of a tephritic magma is established on the basis of geological, mineralogical, geochemical and Sm–Nd and Rb–Sr isotope data. The geochemical modeling suggests that fractionation of amphibole with subordinate apatite from the tephrite magma leaves about 73 wt.% of the residual monzonite melt. Further extraction of amphibole and plagioclase with minor apatite and Fe–Ti oxides could bring to formation of a syenite residuum. Rb–Sr isotopic analyses of biotite, apatite and whole-rock samples constrain the minimum age of basic intrusions at ca. 130 Ma and that of cross-cutting granite pegmatites at ca. 120 Ma. Hence the entire evolution took place in an interval of ≤10 My. Initial 87Sr/86Sr ratios for the mafic rocks range from 0.70511 to 0.70514, and for syenites from 0.70525 to 0.70542. Initial Nd (130 Ma) values for mafic rocks vary from −1.9 to −2.4, and for syenites from −2.9 to −3.5. In a Nd(T) vs. (87Sr/86Sr)i diagram, all rock types of the complex fall in the enriched portion of the Mantle Array, suggesting their derivation from a metasomatized mantle source. However, the small but distinguishable difference in Sr and Nd isotopic compositions between mafic rocks and syenites probably resulted from mild (10–20%) crustal contamination during differentiation. Large negative Nb anomalies are interpreted as a characteristic feature of the source region produced by Precambrian fluid metasomatism above a subduction zone rather than by crustal contamination.  相似文献   


9.
About half the diamonds studied from the Cenozoic placer deposits along the Namibian coast belong to the peridotitic suite. The peridotitic mantle source is heterogeneous ranging from lherzolitic to strongly Ca depleted (down to 0.24 wt.% CaO in garnet) and shows large variations in Cr/Al ratio, illustrated by very low to very high Cr2O3 contents in garnet (2.6–17.3 wt.%). The Cr-rich end of this range includes exceptionally high Cr2O3 contents in Mg-chromite (70.7 wt.%) and clinopyroxene (3.6 wt.%). Garnet-olivine thermometry appears to indicate two groups, one that equilibrated at temperatures between 1200 and 1220°C and a second between 960 and 1100°C. Combined estimates of pressure and temperature based on garnet-orthopyroxene pairs indicate a large variance in geothermal gradients, corresponding to 38–42 mW/m2 surface heat flow.

The trace-element composition of peridotitic garnet inclusions (determined by SIMS) also indicates large diversity. Two principal groups, corresponding to different styles of metasomatic source enrichment, are recognized. The first group ranges from extremely LREEN-depleted patterns, through trough-shaped REEN to sinusoidal patterns with the position of the first peak gradually moving from the LREEN to the MREEN. This series of REE patterns is interpreted to reflect a range of metasomatic agents with decreasing LREE/HREE. Only in the case of the two garnets with REEN peaking at Sm–Eu is this process connected with enrichment in Zr, without significant introduction of Y and Ti. The metasomatism responsible is interpreted as reflecting percolation of CHO-fluids through harzburgite under sub-solidus conditions. A second group of garnets shows an increase from LREEN–MREEN and almost flat (lherzolitic garnet) to moderately declining MREEN–HREEN at super-chondritic levels. This second style of metasomatism is caused by an agent carrying HFSE and showing only moderate enrichment in LREE over HREE, which points towards silicate melts.  相似文献   


10.
Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum.

The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10–25 wt.%), CaO (5–20 wt.%), TiO2 (3–10 wt.%) and K2O (1–4 wt.%), but low SiO2 (22–37 wt.%) and Al2O3 (2–6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation.

The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and timing of Late Proterozoic processes in the North Atlantic region that this volatile-rich, deep-seated igneous activity was a distal effect of the breakup of Rodinia. This occurred during and/or after the rift-to-drift transition that led to the opening of the Iapetus Ocean.  相似文献   


11.
The Meseta Chile Chico (MCC, 46.4°S) is the westernmost exposure of Eocene (lower basaltic sequence, LBS; 55–40 Ma, K–Ar ages) and Mio–Pliocene (upper basaltic sequence, UBS; 16–4 Ma, K–Ar ages) flood basalt volcanism in Patagonia. The MCC is located south of the Lago General Carrera-Buenos Aires (LGCBA), southeast from the present day Chile Triple Junction (CTJ), east of the actual volcanic gap between Southern South Volcanic Zone and Austral Volcanic Zone (SSVZ and AVZ, respectively) and just above the inferred location of the South Chile Ridge segment subducted at 6 Ma (SCR-1). Erupted products consist of mainly ne-normative olivine basalt with minor hy-normative tholeiites basalt, trachybasalt and basanite. MCC lavas are alkaline (42.7–53.1 wt.% SiO2, 3–8 wt.% Na2O+K2O) and relatively primitive (Ni: 133–360 ppm, Cr: 161–193 ppm, Co: 35–72 ppm, 4–16.5 MgO wt.%). They have a marked OIB-like signature, as shown by their isotopic compositions (87Sr/86Sro=0.70311–0.70414 and εNd=+4.7–+5.1) and their incompatible trace elements ratios (Ba/La=10–20, La/Nb=0.46–1.09, Ce/Pb=15.52–27.5, Sr/La<25), reflecting deep mantle origin. UBS-primitive lavas have characteristics similar to those of the Eocene LBS basalts, while UBS-intermediate lavas show geochemical imprints (La/Nb>1, Sr/La>25, low Ce/Pb, Nb/U) compatible with contamination by arc/slab-derived and/or crustal components. We propose that the genesis and extrusion of magmas is related to the opening of two slab windows due to the subduction of two active ridge segments beneath Patagonia during Eocene and Mio–Pliocene.  相似文献   

12.
We report here for the first time, the occurrence of sapphirine+quartz assemblage in textural equilibrium from quartzo-feldspathic and pelitic granulites from southern India. The sapphirine-bearing rocks occur as layered gneisses associated with pink granite within massive charnockite in Rajapalaiyam area in the southern part of Madurai Block. Sapphirine occurs in three associations: (i) fine-grained subhedral mineral associated with quartz enclosed in garnet, (ii) intergrowth with Al-rich orthopyroxene (up to 9.7 wt.% Al2O3), and (iii) in symplectitic intergrowth with orthopyroxene (Al2O3= 5.9–6.7 wt.%) and cordierite surrounding garnet. The sapphirine in association with quartz is slightly magnesian (XMg = 0.79–0.80) and low in Si content (1.55–1.56 pfu) as compared with those associated with orthopyroxene and cordierite (XMg= 0.77–0.79, Si = 1.59–1.63 pfu). The sapphirine+quartz assemblage suggests that the granulites underwent T>1050 °C peak metamorphism. Cores of porphyroblastic orthopyroxene in the sapphirine-bearing rocks shows high-Al2O3 content of up to 9.7 wt.%, suggesting T = 1040–1060°C and P = 8 kbar. FMAS reaction of sapphirine+quartz→garnet+sillimanite+cordierite indicates a cooling from sapphirine+quartz stability field after the peak ultrahigh-temperature metamorphism. Slightly lower temperature estimates from ternary feldspar and sapphirine-spinel geothermometers (T = 950–1000°C) also support a post-peak isobaric cooling. Corona textures of orthopyroxene+cordierite (±sapphirine), orthopyroxene+sapphirine, and cordierite+spinel around garnet suggest subsequent decompression. The sapphirine-quartz association and related textures reported in this study have important bearing on the ultrahigh-temperature metamorphism and exhumation history of the Madurai Block as well as on the tectonic evolution of the continental deep crust in southern India.  相似文献   

13.
Orthopyroxene-rich olivine websterite xenoliths (OWB2) in Palaeogene basanites in East Serbia are mostly composed of tabular low-Al2O3 orthopyroxene (> 70 vol.%, Mg# 85–87) containing tiny Cr spinel inclusions. Orthopyroxene shows a slightly U-shaped primitive mantle-normalized trace element pattern with strong peaks at U and Pb, similar to that of orthopyroxene from normal regional peridotitic mantle. In between the orthopyroxenes are interstitial spaces composed of partially altered olivine (Mg# 85–87), clinopyroxene, Ti-rich spinel, Mg-bearing calcite, K-feldspar, apatite, ilmenite and relicts of a hydrous mineral. Clinopyroxene appears as selvages around orthopyroxene and as coarser euhedral crystals. Trace element patterns of the clinopyroxene selvages resemble those of adjacent orthopyroxene, whereas the coarser ones have flatter and more LREE- and LILE-enriched patterns, similar to that of metasomatic clinopyroxene. The OWB2 xenoliths are interpreted as having formed in two stages. During Stage I orthopyroxene crystallized, along with some spinel, olivine and probably hydrous phase(s). This original OWB2 lithology was a hydrous olivine-bearing orthopyroxenite that crystallised from subduction-related SiO2-saturated, boninite-like magmas. During Stage II the interstitial minerals formed due to infiltration of a low-SiO2, high-CaO and CO2-rich external melt, accompanied by decomposition of original H2O-bearing minerals. The calculated composition of the infiltrating liquid corresponds to a mafic alkaline melt similar to the basanitic host but more enriched in CO2, LREE and LILE. Metasomatism is interpreted in terms of small degree melts related to the Palaeogene mafic alkaline magmatism.  相似文献   

14.
M. C. Tate  D. B. Clarke 《Lithos》1997,39(3-4):179-194
Late Devonian (385−370 Ma) granitoid intrusions in the Meguma Zone of southwestern Nova Scotia represent two geographically separate magmatic suites that show subtly different lithological, geochemical and isotopic characteristics. “Central intrusions” crop out with satellite mafic-intermediate intrusions, range in composition from granodiorite to leucogranite, contain two micas, have exclusively peraluminous compositions (molar A/CNK 1.1-1.3), variably high values for FeOT (0.4–6.0 wt.%), Ba (5–980 ppm), Y (6–50 ppm), Pb (2–50 ppm), Ga (11–53 ppm), 87Sr/86Sri (0.7081-0.7130), δ18O (9.8–13.0) and δ34S (4.5–11.9), in conjunction with low values for εNd (−1 to −6.5). In contrast, “peripheral plutons” crop out with synplutonic mafic-intermediate intrusions, range in composition from tonalite to leucogranite, may contain minor hornblende, have dominantly peraluminous compositions (molar A/CNK 0.9-1.3), variably high concentrations of TiO2 (0.1-1.1 wt.%), Al2O3 (12.0–19.7 wt.%), CaO (0.2–4.9 wt.%), Sr (7–720 ppm), Cr (3–111 ppm) and V (1–136 ppm), higher εNd values (−2.0 to 3.2), and lower values for 87Sr/86Sri (0.7040-0.7079), δ188O (7.6–10.5) and δ34S (0–4.6). Such regional diversity is explained by inferring that upper crustal contamination dominated the central granitoid compositions and mixing with mantle-derived mafic-intermediate magmas dominated peripheral granitoid compositions. However, additional contributions from heterogeneous lower crust cannot be excluded.  相似文献   

15.
D. A. Carswell  R. N. Wilson  M. Zhai 《Lithos》2000,52(1-4):121-155
As is typical of ultra-high pressure (UHP) terrains, the regional extent of the UHP terrain in the Dabieshan of central China is highly speculative, since the volume of eclogites and paragneisses preserving unequivocal evidence of coesite and/or diamond stability is very small. By contrast, the common garnet (XMn=0.18–0.45)–phengite (Si=3.2–3.35)–zoned epidote (Ps38–97)–biotite–titanite–two feldspars–quartz assemblages in the more extensive orthogneisses have been previously thought to have formed under low PT conditions of ca. 400±50°C at 4 kbar. However, certain orthogneiss samples preserve garnets with XCa up to 0.50, rutile inclusions within titanite or epidote and relict phengite inclusions within epidote with Si contents p.f.u. of up to 3.49 — overlapping with the highest values (3.49–3.62) recorded for phengites in samples of undoubted UHP schists. These and other mineral composition features (such as A-site deficiencies in the highest Si phengites, Na in garnets linked to Y+Yb substitution and Al F Ti−1 O−1 substitution in titanites) are taken to be pointers towards the orthogneisses having experienced a similar metamorphic evolution to the associated UHP schists and eclogites. Re-evaluated garnet–phengite and garnet–biotite Fe/Mg exchange thermometry and calculated 5 rutile+3 grossular+2SiO2+H2O=5 titanite+2 zoisite equilibria indicate that the orthogneisses may indeed have followed a common subduction-related clockwise PT path with the UHP paragneisses and eclogites through conditions of Pmax at ca. 690°C–715°C and 36 kbar to Tmax at ca. 710°C–755°C and 18 kbar, prior to extensive re-crystallisation and re-equilibration of these ductile orthogneisses at ca. 400°C–450°C and 6 kbar. The consequential conclusion, that it is no longer necessary to resort to models of tectonic juxtapositioning to explain the spatial association of these Dabieshan orthogneisses with undoubted UHP lithologies, has far-reaching implications for the interpretation of controversial gneiss–eclogite relationships in other UHP metamorphic terrains.  相似文献   

16.
A suite of 14 diamond-bearing and 3 diamond-free eclogite xenoliths from the Newlands kimberlite, South Africa, have been studied using the Re–Os isotopic system to provide constraints on the age and possible protoliths of eclogites and diamonds. Re concentrations in diamond-bearing eclogites are variable (0.03–1.34 ppb), while Os concentrations show a much more limited range (0.26–0.59 ppb). The three diamond-free eclogites have Re and Os concentrations that are at the extremes of the range of their diamond-bearing counterparts. 187Os/188Os ranges from 0.1579 to 1.4877, while 187Re/188Os varies from 0.54 to 26.2 in the diamond-bearing eclogites. The highly radiogenic Os in the diamond-bearing eclogites (γOs=23–1056) is consistent with their high 187Re/188Os and requires long-term isolation from the convecting mantle. Re–Os model ages for 9 out of 14 diamond-bearing samples lie between 3.08 and 4.54 Ga, in agreement with FTIR spectra of Newlands diamonds that show nitrogen aggregation states consistent with diamond formation in the Archean. Re–Os isochron systematics for the Newlands samples do not define a precise isochron relationship, but lines drawn between subsets of the data provide ages ranging from 2.9 to 4.1 Ga, all of which are suggestive of formation in the Archean. The Re–Os systematics combined with mineral chemistry and stable isotopic composition of the diamond-bearing eclogites are consistent with a protolith that has interacted with surficial environments. Therefore, the favored model for the origin of the Newlands diamond-bearing eclogites is via subduction. The most likely precursors for the Kaapvaal eclogites include komatiitic ocean ridge products or primitive portions of oceanic plateaus or ocean islands.  相似文献   

17.
O. Eklund  D. Konopelko  H. Rutanen  S. Fr  jd    A. D. Shebanov 《Lithos》1998,45(1-4):87-108
At least 14 small (1–11 km across) 1.8 Ga Svecofennian post-collisional bimodal intrusions occur in southern Finland and Russian Karelia in a 600-km-long belt from the Åland Islands to the NW Lake Ladoga region. The rocks range from ultramafic, calc-alkaline, apatite-rich potassium lamprophyres to peraluminous HiBaSr granites, and form a shoshonitic series with K2O+Na2O>5%, K2O/Na2O>0.5, Al2O3>9% over a wide spectrum of SiO2 (32–78%). Although strongly enriched in all rocks, the LILE Ba and Sr and the LREE generally define a decreasing trend with increasing SiO2. Depletion is noted for HFSE Ti, Nb and Ta. Available isotopic data show overlapping values for lamprophyres and granites within separate intrusions and a cogenetic origin is thus not precluded. Initial magmas (Mg#>65) in this shoshonitic association are considered to be generated in an enriched lithospheric mantle during post-collisional uplift some 30 Ma after the regional Svecofennian metamorphic peak. However, prior to the melting episode, the lithospheric mantle was affected by carbonatite metasomatism; more extensively in the east than in the west. The melts generated in the more carbonate-rich mantle are extremely enriched in P2O54%, F12,000 ppm, LILE: Ba9000 ppm, Sr7000 ppm, LREE: La600 ppm and Ce1000 ppm. The parental magma underwent 55–60% fractionation of biotite+clinopyroxene+apatite+magnetite+sphene whereupon intermediate varieties were produced. After further fractionation, 60–80%, of K-feldspar+amphibole+plagioclase±(minor magnetite, sphene and apatite), leucosyenites and quartz-monzonites were formed. In the west, where the source was less affected by carbonatite metasomatism, calc-alkaline lamprophyres (vogesites, minettes and spessartites) and equivalent plutonic rocks (monzonites) were formed. Removal of about 50% of biotite, amphibole, plagioclase, magnetite, apatite and sphene produced peraluminous HiBaSr granites. The impact of crustal assimilation is considered to be low. At about 1.8 Ga, the post-collisional shoshonitic magmatism brought juvenile material, particularly enriched in alkalis, LILE, LREE and F, into the crust. Although areally restricted, the regional distribution of the post-collisional intrusions may indicate that larger volumes of 1.8 Ga juvenile material resides in unexposed parts of the crust.  相似文献   

18.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   

19.
Lamprophyres consisting mainly of diopside, phlogopite and K-feldspar formed in the early Tertiary around 60 Ma in the Beiya area and are characterized by low SiO2 ± 46–50 wt.%), Rb (31–45 ppm) and Sr (225–262 ppm), high Al2O3, (11.2–13.1 wt.%), CaO (8.0–8.7 wt.%), MgO (11.5–12.1 wt.%), K2O(4.9–5.5 wt.%), TiO2 (2.9–3.3 wt.%) and REE (174–177 ppm), and compatible elements (e.g. Sc, Cr and Ni) and HSF elements (e.g. Th, U, Zr, Nb, Ta, Ti and Y), and low 143Nd/144Nd 0.512372–0.512536, middle 87Sr/86Sr 0.707322–0.707395, middle 206Pb/204Pb 18.50–18.59, 207Pb/204Pb 15.60–15.65 and 208Pb/204Pb 38.75–38.8. These rocks developed peculiar quartz megacrysts with poly-layer reaction zones, melt inclusions, and partial melted K-feldspar and plagioclase inclusions, and plastic shapes. Important features of these rocks include: (1) hybrid composition of elements, (2) abrupt increase of SiO2 content of the melt, recorded by zoned diopside, (3) development of sanidine and aegirine-augite reaction zones, (4) alkaline melt and partial melted K-feldspar and plagioclase inclusions, (5) deformed quartz inclusions associated with quartz megacrysts, (6) the presence of quartz megacrysts in plastic shape with their parent melts, (7) the occurrence of olivine, high-MgO ilmenite and spinel inclusions within earlier formed diopside, phlogopite and magnetite. Median 87Sr/86Sr values between Tertiary alkaline porphyries in the Beiya area and the western Yunnan and Tertiary basalt in the western Yunnan indicate that the Beiya lamprophyre melts were derivative and resulted from the mixing between basic melts that were related to the partial melting of phenocrysts of spinel iherzolite from a mantle source. The alkaline melts originated from partial melting along the Jinshajiang subduction ductile shear zone at the contact between the buried Palaeo-Tethyan oceanic lithosphere and the upper mantle lithosphere. The alkaline melts are composed of 65% sanidine (Or70Ab28An2) and 35% SiO2. The melt mixing occurred in magma chambers in the middle-shallow crust at 8–10 km before the derivative lamprophyre melts intruded into the shallow cover in Beiya area. This mixing of basic and alkaline melts might represent a general process for the formation of lamprophyre in the western Yunnan.  相似文献   

20.
Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤ 2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.

The MgO of the gabbronorites and gabbros ranges  7–21 wt.%. Those with MgO > 10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO < 10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s  83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have  3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine  Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.

Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at < 1 kbar P. Highly evolved mineral Mg#s, < 75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene geobarometry suggests < 300 bar P. Open-textured dunite represents olivine-melt mush, precursor to vertical olivine-rich bodies (as in Kilauea Iki). Its Fo83.5 identifies the most primitive lake magma as  8.3 wt.% MgO. Mass balancing and MELTS show that such a magma could have yielded both ferrogabbro and diorite by ≥ 50% fractional crystallization, but under different fO2: < FMQ (250 bar) led to diorite, and FMQ (250 bar) yielded ferrogabbro. These segregation veins, documented as similar to those of Kilauea, testify to appreciable volumes of ‘rhyolitic’ liquid forming in oceanic environments. Namely, SiO2-rich veins are intrinsic to all shields that reached caldera stage to accommodate various-sized cooling, differentiating lava lakes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号