首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U-Pb isotopic data are presented for composite and size fractions of zircons from 15 samples of the Franzfontein granitic suite. These data reveal two distinctly different discordance trends that yield concordia intercept ages of 1730±30 m.y. and 1870±30 m.y. that are believed to encompass the age of emplacement of the suite. The previously published Rb-Sr isochron age of 1580±20 m.y. is now interpreted as recording a time of Rb and/or Sr migration through the system. The stratigraphic implications of the new zircon data are discussed.  相似文献   

2.
U-Pb analyses of zircons from the southern paragneiss zone of the Gotthard massif in the central Alps indicate these rocks were derived from one or more source areas ≧ 1400 m.y. old and were strongly affected by both the Caledonian and Hercynian orogenies. Rb-Sr whole-rock analyses also appear to reflect the Hercynian event while Rb-Sr analyses of a metamorphic inclusion and a boudin indicate that these small-scale samples were affected by the Alpine orogeny. U-Pb whole rock data appear to reflect only the Hercynian event; these data, when corrected for primordial lead, furthermore yield an upper concordia intercept of 4500 m.y., possibly resulting from a U-Pb fractionation very early in the history of the earth. A more refined three-stage U-Pb evolution model yields an age of about 4480 m.y. rather than 4500 m.y. for this hypothesized early terrestrial differentiation. Geologically these data emphasize that: 1) the southern paragneiss zone of the Gotthard massif contains metasediments which have experienced the Caledonian orogeny and are at least 400 m.y. old; 2) the Hercynian episode in this region was pervasive indeed; and 3) the Alpine orogeny affected the Rb-Sr and U-Pb whole rock systems to a far lesser degree than the preceding orogenic episodes and apparently did not affect the U-Pb zircon systems investigated at all.  相似文献   

3.
The study evaluates the relationships between measured U-Pb ages and zircon characteristics of five morphologically, texturally, and isotopically complex zircon populations and compares the zircon development stages to the orogenic evolution of the Favourable Lake area. Two distinct zircon types from a hornblendite xenolith in a granitoid batholith of the Sachigo subprovince of the Superior Province yield U-Pb ages of 2729.0±6.8 Ma and 2714.8 –6.4 +7.4 Ma, which date specific metamorphic phases coinciding with major plutonic pulses in the batholith. Zircons from a metamorphosed felsic dike, crosscutting the hornblendite, consist of an old zircon component with a minimum age of 2788 Ma possibly reflecting igneous crystallization 2950 Ma ago, and a younger component with an inferred age of 2725±15 Ma, probably reflecting metamorphism during batholith emplacement.In the Berens River subprovince to the south, granodiorite forms both a late tectonic phase in a large batholith and a post-tectonic pluton intruded into the batholith, yet zircons from these granodiorites have identical ages of 2697.3±1.7 Ma and 2696.2±1.2 Ma, respectively. The late tectonic granodiorite also contains inherited zircons with a minimum age of 2767 Ma which are indirect evidence for the presence of old sialic crust in this subprovince. Zircons from a sheared monzonite near the boundary fault between the two subprovinces yield an upper intercept age of 2769 –26 +63 Ma, which we interpret as the intrusion age of the monzonite. This rock is older than most dated units in the surrounding batholiths and suggests that the boundary is a long-lived Archean structure.A lower intercept age of about 1750 Ma for zircons of the hornblendite is the result of chemical alteration of the zircons. This, and a similar lower intercept age shown by the sheared monzonite zircons, are thought to reflect increased fluid activity and possibly shearing during the Early Proterozoic Hudsonian orogeny which occurred in the Churchill Province to the northwest. A later Pb-loss mainly from near-surface domains of the zircons is indicated by lower intercept ages of about 500–100 Ma.Publication approved by the Director, Ontario Geological Survey  相似文献   

4.
New U-Pb zircon data from a segregation pegmatite in the granitic gneiss at Glenfinnan yield discordant points which appear to be aligned along a chord on a concordia diagram with upper and lower intersection ages of 1,517±30 Ma and 556±8 Ma, respectively. The results are similar to published U-Pb zircon data from the granitic gneiss but the lower intersection age does not correspond to concordant ages of 455±3 Ma obtained for monazites from the segregation pegmatite and from paragneiss which hosts the granitic gneiss. The apparent U-Pb zircon chord also gives no indication of a 1,030±50 Ma (large sample) Rb-Sr whole rock isochron age for the granitic gneiss (Brook et al. 1976). A traverse of adjacent 5–8 cm thick slabs in the paragneiss yields a Rb-Sr errochron of 455±60 Ma which also does not agree with the U-Pb zircon lower intersection age. The scale of this Sr whole rock diffusion (ca. 10 cm) is not at variance with existing thermal, temporal and experimental constraints.A two episodic loss model has been applied to the zircon data from the segregation pegmatite, to the previously published zircon data on the granitic gneiss and to new U-Pb zircon data on the host paragneiss. The first lead loss event, if assumed to be in Grenville time, was computed to be strongest in the granitic gneiss and segregation pegmatite. For the three suites of zircon considered, primary ages converge in the 1,700–1,800 Ma range with a final disturbance event at ca. 490 Ma, i.e., close to a plausible prograde stage of Caledonian metamorphism.The zircons in both the granitic gneiss and the paragneiss are believed to have been derived from the ubiquitous early Proterozoic shields bordering the North Atlantic. Furthermore the above model is consistent with the hypothesis that the zircons in the granitic gneiss were largely derived from the paragneiss. However, the U-Pb zircon data are not inconsistent with new Sr-isotopic evidence which suggests an additional, possibly deeper source with lower 87Sr/ 86Sr ratios.  相似文献   

5.
Combined U-Pb zircon and 40Ar/39Ar sanidine data from volcanic rocks within or adjacent to the Geysers geothermal reservoir constrain the timing of episodic eruption events and the pre-eruptive magma history. Zircon U-Pb concordia intercept model ages (corrected for initial 230Th disequilibrium) decrease as predicted from stratigraphic and regional geological relationships (1σ analytical error): 2.47 ± 0.04 Ma (rhyolite of Pine Mountain), 1.38 ± 0.01 Ma (rhyolite of Alder Creek), 1.33 ± 0.04 Ma (rhyodacite of Cobb Mountain), 1.27 ± 0.03 Ma (dacite of Cobb Valley), and 0.94 ± 0.01 Ma (dacite of Tyler Valley). A significant (∼0.2-0.3 Ma) difference between these ages and sanidine 40Ar/39Ar ages measured for the same samples demonstrates that zircon crystallized well before eruption. Zircons U-Pb ages from the underlying main-phase Geysers Plutonic Complex (GPC) are indistinguishable from those of the Cobb Mountain volcanics. While this is in line with compositional evidence that the GPC fed the Cobb Mountain eruptions, the volcanic units conspicuously lack older (∼1.8 Ma) zircons from the shallowest part of the GPC. Discontinuous zircon age populations and compositional relationships in the volcanic and plutonic samples are incompatible with zircon residing in a single long-lived upper crustal magma chamber. Instead we favor a model in which zircons were recycled by remelting of just-solidified rocks during episodic injection of more mafic magmas. This is consistent with thermochronologic evidence that the GPC cooled below 350° C at the time the Cobb Mountain volcanics were erupted.  相似文献   

6.
U-Pb zircon and rutile multigrain ages and 207Pb/206Pb zircon evaporation ages are reported from high-pressure felsic and metapelitic granulites from northern Bohemia, Czech Republic. The granulites, in contrast to those from other occurrences in the Bohemian Massif, do not show evidence of successive HT/MPLP overprints. Multigrain size fractions of nearly spherical, multifaceted, metamorphic zircons from three samples are slightly discordant and yield a U-Pb Concordia intercept age of 348 ± 10 Ma, whereas single zircon evaporation of two samples resulted in 207Pb/206Pb ages of 339 ± 1.5 and 339 ± 1.4 Ma, respectively. A rutile fraction from one sample has a U-Pb Concordia intercept age of 346 ± 14 Ma. All ages are identical, within error, and a mean age of 342 ± 5 Ma was adopted to reflect the peak of HP metamorphism. Because rutile has a lower closing temperature for the U-Pb isotopic system than zircon, the results and the P-T data imply rapid uplift and cooling after peak metamorphism. The above age is identical to ages for high-grade metamorphism reported from the southern Bohemian Massif and the Granulite Massif in Saxony. It can be speculated that all these granulites were part of the same lower crustal unit in early Carboniferous, being separated later due to crustal stacking and subsequent late Variscan orogenic collapse.  相似文献   

7.
The pegmatites of Eastern Connecticut have a mineralogy consistent with a magmatic origin yet occur in a non-igneous environment. Various theories of genesis have been investigated by the Rb-Sr geochronologic method.Rb-Sr measurements on early stage pegmatite minerals indicate an age of 258±1 m.y. with initial Sr87/Sr86=0.734±0.0096. Previously reported K-Ar and U, Th-Pb ages for pegmatite minerals are 249±8 m.y. and 260±3 m.y. respectively. Rb-Sr whole rock data for the host rocks vary between 285±10 m.y. and 472±15 m.y. in age and between 0.705±002 and 0.7167±0.0016 in initial Sr87/Sr86. A direct genetic relationship between the pegmatites and their host rocks is thus precluded. In addition, whole rock samples of the Brimfield schist taken at variable distances from the Strickland Quarry pegmatite have remained essentially closed systems with respect to Rb and Sr and thus an in situ origin for this pegmatite is unlikely. Mixing of pegmatite and country rock systems has occurred only locally, and isotopic studies of these mixed rocks yield a date of 231±4 m.y. with initial Sr87/Sr86=0.7188±0.004, an age not inconsistent with previously reported K-Ar and Rb-Sr mineral dates on host rock minerals (approximately 220 to 240 m.y.).Late stage cleavelandites are anomalously enriched in radiogenic Sr-87, the source of which was most probably other zones within the crystallizing pegmatite. This is indicated by analyses of pegmatite whole rocks which show both enrichment and depletion of radiogenic Sr-87 in local systems. The conclusion is drawn that there was widespread movement of radiogenic Sr-87 within each pegmatite system, but that pegmatite-host rock reactions were minimal.  相似文献   

8.
The Vestfold Hills, one of several Archaean cratonic blocks within the East Antarctic Shield, comprises a high-grade metamorphic basement complex intruded by at least nine generations of Early to Middle Proterozoic mafic dykes. Extensive U-Pb ion microprobe (SHRIMP) analyses of zircons, derived predominantly from late-stage felsic differentiates of the mafic dykes, provide precise crystallisation ages for several dyke generations. These new ages enable constraints to be placed on both the history of mafic magmatism in the Vestfold Hills and the timing of the various interspersed Proterozoic deformation events. In addition to demonstrating the utility of zircons derived from felsic late-stage differentiates for the dating of co-genetic mafic dykes, this study also places doubt on previous wholerock Rb-Sr dating of mafic dyke suites in this and other areas of East Antarctica. The 207Pb/206Pb zircon ages of 2241±4 Ma and 2238±7 Ma for the Homogeneous and Mottled Norites, respectively, provide a younger emplacement age for associated group 2 High-Mg tholeiite dykes than the whole-rock Rb-Sr date (2424±72 Ma) originally interpreted as the age of all high-Mg intrusives in the Vestfold Hills. Zircon ages of 1754±16 Ma and 1832±72 Ma confirm the previously defined Rb-Sr age of the group 2 Fe-rich tholeiites. Two later dyke generations, the group 3 and 4 Fe-rich tholeiites, are distinguished on the basis of field orientations and cross-cutting relationships, and yield zircon emplacement ages of 1380±7 Ma and 1241±5 Ma which also define minimum ages for two suites of lamprophyre dykes. Xenocrystic zircons within both felsic segregations and mafic dykes yield zircon ages of 2478±5 Ma to 2740 Ma, indicating the presence of Archaean crustal source rocks of this antiquity beneath the Vestfold Hills.  相似文献   

9.
We have undertaken petrologic and SHRIMP U-Th-Pb isotopic studies on zircons from basaltic eucrites (Yamato [Y]-75011, Y-792510, Asuka [A]-881388, A-881467 and Padvarninkai) with different thermal and shock histories. Eucritic zircons are associated with ilmenite in most cases and have subhedral shapes in unmetamorphosed and metamorphosed eucrites. Some zircons in highly metamorphosed eucrites with granulitic texture occur alone in pyroxene, and typically have rounded to subrounded shapes due to recrystallization. Superchondritic Zr/Hf ratios of eucritic zircons indicate that they crystallized from incompatible element-rich melts after crystallization of ilmenite. Concentrations of uranium and thorium in zircons in the unmetamorphosed eucrite Y-75011 are higher than those in metamorphosed eucrites.The U-Pb systems of eucritic zircons are almost concordant but some zircon grains show reverse discordance. Radiogenic lead-loss up to 48% from zircons is observed in the shock-melted eucrite Padvarninkai. The 207Pb-206Pb ages of zircon in Y-75011 (4550 ± 9 Ma, n = 5) are nearly identical, within analytical uncertainty, to the ages of zircons from the metamorphosed eucrite Y-792510 (4545 ± 15 Ma, n = 13), the highly metamorphosed eucrites A-881388 (4555 ± 54 Ma, n = 5) and A-881467 (4558 ± 13 Ma, n = 8), and the shock-melted eucrite Padvarninkai (4555 ± 13 Ma, n = 18). The averaged 207Pb-206Pb age of zircon from five eucrites analyzed in this study is 4554 ± 7 Ma (95% confidence limits, n = 49), indistinguishable from the averaged U-Pb age (4552 ± 9 Ma) of the same samples. Because of the high closure temperature of lead in zircon (Tclosure = ∼1050°C with a cooling rate of 0.2°C/yr), the 207Pb-206Pb ages of eucritic zircon do not represent metamorphic ages but crystallization ages of extrusive lavas.This fact strongly suggests that volcanism of the eucrite parent body occurred at a very early stage of the Solar System history, 7-20 Ma after CAI formation (4567.2 ± 0.6 Ma), thus basaltic eucrites crystallized from parental magmas within a short interval following the differentiation of their parent body. The U-Pb ages of eucritic zircons are older than the U-Pb, Sm-Nd and Rb-Sr ages of some basaltic eucrites, which is consistent with differences in closure temperatures of each isotopic system, and suggests that thermal and shock metamorphism affected the isotopic systems of pyroxene, plagioclase and phosphates.  相似文献   

10.
Three meta-acidic rocks from the western Italian Alps, a magnesiochloritoid-bearing metapelite from the Monte Rosa massif, a coesite-pyrope-quartzite from the Dora Maira massif and the Monte Mucrone granite in the Sesia Zone, have been studied by U-Pb zircon, Rb-Sr on whole-rock, apatite and phengite and Sm-Nd wholerock methods. The mineral parageneses of the investigated rocks indicate high- to very-high-pressure and medium-to-high-temperature metamorphism. This combined isotopic study has enabled us to constrain the ages of magmatic and metamorphic events and also to compare the behaviour of U-Pb zircon systems in three intensely metamorphosed areas of the Pennine domain. The U-Pb zircon data have yielded a magmatic age for the Monte Mucrone granite at 286±2 Ma. This result confirms the occurence of late-Hercynian magmatism in the Sesia Zone, as in other Austro-Alpine units and in other areas of the European crystalline basement. In the Monte Rosa massif, a geologically meaningless lower intercept age of 192±2 Ma has been interpreted as an artefact due to a complex evolution of the U-Pb zircon system. The magmatic shape of the zircons implies a magmatic or volcano-sedimentary protolith for this rock, originally considered as a metasediment. The very-high-pressure metamorphism in the Dora Maira quartzite has produced an opening of the U-Pb zircon system at 121+12–29 Ma. The Rb-Sr data support the occurence of high-grade metamorphism during Cretaceous times. Phengites model ages are slightly younger than the U-Pb zircon lower intercept ages due to cooling phenomena or possible response of the phengites to a later deformation. The Nd model ages from the whole-rock samples, as well as the U-Pb upper intercept ages from zircons of all three investigated rocks, indicate the presence of Proterozoic crustal components inherited from the precursors of these meta-acidic rocks. The studied zircon populations and their U-Pb systems apparently showed open-system behaviour only when affected by extreme metamorphic conditions (700–750° C, > 28 kbar), whereas eclogite-facies conditions of 500–550° C and 14–16 kbar were not enough to disturb significantly the U-Pb zircon evolution. It is also probable that the sedimentary or magmatic origin of the protoliths of these meta-acidic rocks, which involved different characteristics such as grain-size and fluid phase concentration and composition, could be another important factor controlling the U-Pb zircon system behaviour during metamorphic events.  相似文献   

11.
On the basis of U-Pb, Rb-Sr and K-Ar isotope analyses of Proterozoic rocks and minerals, a chronology has been established for the tectonic, intrusive and metamorphic evolution of the Svecokarelian orogeny 1750–1950 Ma ago in the Uppsala Region, Eastern Sweden. It is suggested that when synkinematic granitoids intruded the orogenic belt, at a stage of general subsidence and at medium metamorphic conditions (600°C and 3.5–4 kbar), the U-Pb isotope system in zircons closed earlier than the Rb-Sr whole-rock system. The zircon age (1886 Ma) reflects the intrusion and crystallization of the rock melt and the Rb-Sr whole-rock age (1830 Ma) the time when the temperature had decreased below the threshold for 87Sr migration. The Rb-Sr whole rock age (1898 Ma) determined for metaandesites and metadacites reflects a recrystallization related to the intrusion of the granitoids. On the contrary, the more silicic metarhyodacitic volcanic rocks have a Rb-Sr whole rock age (1830 Ma) reflecting the cessation of the synkinematic metamorphism. The difference in the way the Rb-Sr isotope system responds in subsilicic or silicic metavolcanics is probably dependent on the amount of radiogenic 87Sr and on the fixation of 87Sr in Ca-rich minerals. Subsequent, late-kinematic, low amphibolite facies metamorphism has not altered the Rb-Sr ages of the granitoids and the recrystallized metavolcanics.  相似文献   

12.
Lead (and U-Pb) isotope data for sulphides and whole rocks, U-3Pb data for zircons, and Rb-Sr data for whole rocks have been determined in an attempt to elucidate the processes by which the volcanic Pb-Zn-Cu deposit at Woodlawn, southeastern N.S.W., was formed, and to relate this information to current theories of crustal effects in the genesis of volcanic Pb-Zn deposits.The lead isotope compositions of pyrite, galena, sphalerite, and chalcopyrite from the ore horizon are the same, and identical to the initial lead isotope compositions of pyrite in the host volcanics.Linear relations are obtained for plots of 207Pb/ 204Pb vs 206Pb/204Pb, 208Pb/204Pb vs 204Pb/204Pb, and 238U/204Pb vs 206Pb/204Pb for least altered whole rock volcanics, indicating no loss or gain of U to these rocks since their formation. The similar initial 206Pb/204Pb ratios in the sulphides and host volcanics suggest a common source for the lead. However, acid leach experiments, carried out to remove the ore lead influence, suggest the lead to be a complex mixture of ore and rock lead. The differences observed for high and low lead samples in the acid leaching experiments suggest that these tests may provide an additional tool in prospecting for base-metal sulphides of this type.U-Pb data for zircons from the whole rocks give a spectrum of apparent ages ranging from 428 to 477 m.y. reflecting varying amounts of older zircons or resetting of the U-Pb systems in the volcanics. The older zircons are present either as discrete rounded crystals or cores surrounded by new euhedral growth. The populations and U-Pb data suggest the rocks were pre-existing volcanics with a possible detrital component, whose ages have not been fully reset during remelting.In contrast to the zircon data, U-Pb and Rb-Sr whole rock data define lines proportional to ages of 413±6 m.y. and 409±4 m.y. (1.39×10–11/yr) respectively and the strontium has a relatively high initial ratio of 0.710.The complex zircon population, high initial Sr ratio, Th/U ratios and rare earth data suggest the Woodlawn volcanics were formed by multistage remelting of material of similar chemical composition. Consequently, conformable deposits of this type should not be discussed in terms of the Growth Curve and single stage models of lead development.Mineralization is thought to have occurred at 420 m.y., either from solutions associated with the volcanism and/or concentrated from the volcanics and sediments by circulating sea water, in a shallow convective cell and soon after, or during, the formation of the pile. Alternatively, the multistage processes operating during formation of the Woodlawn volcanics acted as an effective homogeniser of lead isotopes.  相似文献   

13.
Eclogites from the deepest structural levels beneath the Semail ophiolite, Oman, record the subduction and later exhumation of the Arabian continental margin. Published ages for this high pressure event reveal large discrepancies between the crystallisation ages of certain eclogite-facies minerals and apparent cooling ages of micas. We present precise U-Pb zircon (78.95 ± 0.13 Ma) and rutile (79.6 ± 1.1 Ma) ages for the eclogites, as well as new U-Pb zircon ages for trondhjemites from the Semail ophiolite (95.3 ± 0.2 Ma) and amphibolites from the metamorphic sole (94.48 ± 0.23 Ma). The new eclogite ages reinforce published U-Pb zircon and Rb-Sr mineral-whole rock isochron ages, yet are inconsistent with published interpretations of older 40Ar/39Ar phengite and Sm-Nd garnet dates. We show that the available U-Pb and Rb-Sr ages, which are in tight agreement, fit better with the available geological evidence, and suggest that peak metamorphism of the continental margin occurred during the later stages of ophiolite emplacement.  相似文献   

14.
The Ivrea zone forms a part of the Southern Alps and is composed of basic rocks interfingered with granulite facies acidic rocks. According to geophysical evidence, this zone represents the transition between crust and uplifted and overthrusted mantle. Towards the Ceneri zone the metamorphic grade changes to amphibolite facies. Paragneisses, migmatites and anatectic gneisses dominate, within which postmetamorphic granites occur. Concordant monazite U-Pb ages of 275+2 m.y. were obtained from paragneisses of the Ivrea zone. The apparent zircon ages are discordant indicating a minimum age of 1900 m.y. for the oldest population and an apparent lead loss of 99 to 85 % about 285–300 m.y. ago. The zircons show features such as rounded habitus, low trace element contents and well ordered crystal lattices characteristic for detrital, recrystallised populations. Monazite from the neighbouring Ceneri zone migmatite yielded concordant U-Pb ages at 295±5 m.y. The discordant zircon age pattern indicates a time of formation of 450 m.y., similar to other newly formed zircons in anatectic rocks of the Ceneri zone, and an episodic or continuous lead loss at, or until 300 m.y. ago. The majority of the zircons are euhedral and have elevated trace element contents, features typical for zircons formed in the present-day host rocks. Concordant, 295±5 m.y. old monazite dates the formation of the postmetamorphic Mont' Orfano granite. Again zircon fractions yielded discordant ages, pointing in contrast to the above discordancies to a recent or continuous lead loss. The concordant ages of the monazites demonstrate the usefulness of this mineral for dating purposes in metamorphic and granitic rocks and contrast with the discordant age patterns of all zircon suites. From the general agreement between the monazite ages and the time of lead loss inferred from the zircon age patterns as well as from the geological relationships of the rocks and their metamorphic grade it is concluded that 295±5 m.y. is the minimum age for the regional granulite to upper amphibolite facies metamorphism of the Ivrea zone and that the uplift and overthrust of the upper mantle started prior to 295 m.y. ago, and that the basic rocks of the Ivrea zone are synmetamorphic intrusions. The decrease from 310–320 m.y. to 170–200 m.y. of the K-Ar and Rb-Sr mineral ages from the Ceneri towards the Ivrea zone is accompanied by decreases from 450 m.y. to 295 m.y. and on to 275 m.y. in the U-Pb ages of monazites. The zircon age pattern also shows a decrease from 450 m.y. to approximately 300 m.y. The main lowering of the ages occurs approximately at the petrographic boundary between the two zones and is related to the Hercynian uplift and overthrust of the mantle which may have started as early as 450 m.y. ago. The Insubric line which terminates the Ivrea zone towards the North must therefore be of pre-Alpine age, or a precursor of the Insubric line must have existed at the time of the mantle uplift.  相似文献   

15.
The lower tectonic unit of Ios provides evidence of an at least four stage metamorphic and intrusive history which well might be generalized for large parts of the internal Pelagonian.Metamorphic country rocks of unknown age were intruded about 500 Ma ago, as concluded from a Rb-Sr whole rock (WR) isochron on relic tonalites to granodiorites which largely escaped the polyphase postmagmatic overprints.A Hercynian amphibolite facies metamorphism, during which the igneous rocks were partly recrystallized to orthogneisses, is dated by a lower intercept age of 300–305 Ma of U-Pb determinations on zircons and by three almost concordant Rb-Sr muscovite-WR ages of 295 to 288 Ma.K-Ar analyses on these muscovites and on biotites, and Rb-Sr tie lines WR-biotite and WR with other relic magmatic minerals yielded various apparent ages between 260 and 60 Ma. They are interpreted as mixed ages between a Hercynian cooling age and the two stage Alpidic overprints.White micas formed during the Eocene high P/T and/or Oligocene/Miocene Barrovian-type overprints yielded K-Ar dates ranging from 82 to 26 Ma, as well as a single Rb-Sr date of 13 Ma. These Alpidic dates resemble the more detailed age patterns of other Cycladic islands. But they are not sufficient for an independent dating of the Tertiary evolution on Ios island.  相似文献   

16.
U-Pb data for zircons from post-tectonic monzonite, syenite and norite, and country rock gneiss and migmatite from the Kap Farvel-Prins Christian Sund area of South Greenland indicate two distinct intrusive episodes at ~1740 m.y. and ~1755 m.y. The norites have the same age as the older granitic rocks. Similar intrusions further north along the southeast coast have the same age (~1755 m.y.) and geochemical character as those of the Kap Farvel-Prins Christian Sund area. Our U-Pb ages are about 100 m.y. older than previously determined K-Ar ages.The youngest peak of regional Ketilidian metamorphism in this area is placed at about 1800 m.y. based on a linear array of seven magnetic and size fractions from a syntectonic granitic part of a migmatite. This age is distinctly different from the post-tectonic intrusions and, along with other data, precludes the possibility of in situ formation of the intrusions by remelting of the country rocks.In one hypersthene migmatite sample collected near a post-tectonic intrusion, clear overgrowths and separate clear grains with low uranium concentrations were identified. The clear grains of zircon have the same age as the intrusion, indicative of new zircon growth during the granulite facies recrystallization of the gneiss. In contrast, rounded red zircons from an early subconcordant granitic sheet have clear uranium-rich overgrowths which probably formed during regional metamorphism. If the deep-red zircons observed in one of the post-tectonic intrusions were derived from the surrounding metamorphic rocks, they have had their U-Pb systems reset to the time of intrusion.In accord with observations (Krogh, 1971) on non-magnetic zircon fractions from volcanics, the Greenland zircons contain very low amounts of common lead ranging from <0.01 ppm in the least magnetic fractions in the post-tectonic intrusions, to 6.5 ppm in the most magnetic fractions of the gneisses. These two rock groups can be differentiated on the basis of their common lead content.  相似文献   

17.
An approximately 7 km thick, continuous sequence of granulite-facies rocks from the lower crust, which contains a lower granulite-pyriclasite unit and an upper metapelite unit, occurs in the NW Serre of the Calabrian massif. The lower crustal section is overlain by a succession of plutonic rocks consisting of blastomylonitic quartz diorite, tonalite, and granite, and is underlain by phyllonitic schists and gneisses.Discordant apparent zircon ages, obtained from granulites and aluminous paragneisses, indicate a minimum age of about 1,900 m.y. for the oldest zircon populations. The lower intersection point of the discordia with the concordia at 296±2 m.y. is also marked by concordant monazites. Therefore, the age of 296±2 m.y. is interpreted as the minimum age of granulite-facies metamorphism.Concordant zircon ages were obtained from a metamorphic quartz monzogabbronorite sill (298±5 m.y.) and an unmetamorphosed tonalite (295±2 m.y.); they are interpreted as the intrusion ages.Discordant zircon ages from a blastomylonitic quartz diorite gneiss, situated between the lower crustal unit and the non-metamorphosed tonalite, reveal recent or geologically young lead loss by diffusion. The 207Pb/206Pb ages of the two analysed size-fractions point to an intrusion age similar to that of the overlying tonalite.Rb-Sr mineral ages are younger in the granulite-pyriclasite unit than in the overlying metapelite unit. Feldspars from the granulite-pyriclasite unit yield ages of about 145 m.y. and those from the metapelite unit 176±5 m.y. In the same way, the biotite cooling ages range between 108 and 114 m.y. in the granulitepyriclasite and between 132 and 135 m.y. in the metapelite unit and the tonalite. Some still younger biotite ages are explained by the influence of tectonic shearing on the Rb-Sr systems. A muscovite from a postmetamorphic aplite in the metapelite unit yields a cooling age of 203±4 m.y.The Rb-Sr isotopic analyses from migmatite bands do not lie on an isochron, perhaps due to limited isotopic exchange between the small scale layers during the long cooling period after the peak of metamorphism.In the phyllonitic gneisses and schists a Hercynian metamorphism is indicated by a muscovite age of 268±4 m.y., whereas the biotite age of 43±1 m.y. from the same sample can be correlated with an Alpine greenschist-facies metamorphism.On the basis of the radiometric dates and of the P-T path of the lower crustal section deduced petrologically, the following model is presented: the end of the Hercynian granulite-facies metamorphism was accompanied by an uplift of the lower crustal rocks into intermediate crustal levels and by synchronous plutonic intrusions into the lower crust and higher crustal levels, but essentially into the latter. Substantial further uplift did not occur until after cooling from the temperature of the granulite-facies metamorphism to the biotite closing temperature. This cooling lasted for about 185 m.y. in the lower part and for about 160 m.y. in the upper part of the lower crust section.A comparison between the geologic evolutions of the NW Serre of Calabria and the Ivrea Zone of the Alps demonstrates striking similarities. The activity of deep seated faults in both areas at least since late Hercynian time raises the possibility that a fault precursor of the boundary of the Adriatic microplate already existed at this time.  相似文献   

18.
A variety of pre-Variscan granitoids and two Variscan monzogranites occurring in the central and western parts of the Lusatian Granodiorite Complex (LGC), Saxonia were dated by the single zircon evaporation method, complemented by whole rock Nd isotopic data and Rb-Sr whole rock and mineral ages. The virtually undeformed pre-Variscan granitoids constitute a genetically related, mostly peraluminous magmatic suite, ranging in composition from two-mica granodiorite, muscovitebearing biotite quartz diorite (tonalite) and granodiorite to biotite granodiorite and monozogranite. 207Pb/206Pb isotopic ratios derived from the evaporation of single zircons separated from 13 samples representing the above rock types display complex spectra which document significant involvement of late Archaean to late Proterozoic continental crust in the generation of the granitoid melts. Mean 207/Pb/206Pb ages for zircons considered to reflect the time of igneous emplacement range between 542 ± 9 and 587 ± 17 Ma, typical of the Cadomian event elsewhere in Europe, whereas zircon xenocrysts yielded ages between 706 ± 13 and 2932 ± Ma. Detrital zircons from greywackes intruded by the granitoids and found as xenoliths in them provided ages between 1136 ± 22 and 2 574 ± Ma. Rb-Sr whole rock data display good to reasonable linear arrays that, with one exception, correspond to the emplacement ages established for the zircons. Two post-tectonic Variscan monzogranites yielded identical 207/Pb/206Pb single zircon ages of 304 ± 14 Ma and record the end of Variscan granitoid activity in the LGC.The variations in Nd and Sr isotopic data of the Cadomian granitoids are consistent with an origin through the melting and mixing of Archean to early Proterozoic crust with variable proportions of mantle-derived, juvenile magmas. Such mixing may have occurred at the base of an active continental margin or in an intraplate setting through plume-related magmatic underplating. The LGC is interpreted here as a Cadomian (Pan-African) terrane distinct from adjacent Variscan and pre-Variscan domains, the origin of which remains obscure and which probably became involved in Palaeozoic terrane accretion late in the Variscan event.  相似文献   

19.
Metamorphism-induced parent-daughter isotopic rearrangement yields information concerning the nature and duration of metamorphism in the Bamble Area, Southern Norway. The thermal maximum of the Bamble Sveconorwegian metamorphism was reached at 1160–1200 m.y. ago, according to zircon and sphene U-Pb, and Rb-Sr whole rock results. Dating of post-kinematic pegmatites suggests that the major kinematic episodes took place not much more than 100 m.y. and that not until more than 200 m.y. after the thermal maximum had uplift and cooling resulted in closure of the K-Ar system in micas. Petrological considerations together with radiometric data on the Levang Gneiss Dome suggest that Rb-Sr whole rock samples show open and closed system behaviour under similar temperatures but possibly different . Variable recrystallization of zircon in the Levang Gneiss Dome (when taken with accompanying radiometric U-Pb data) appears to substantiate the idea that when = P solid, resetting of both the U-Pb systems in zircon and Rb-Sr whole rock systems is greatly facilitated.  相似文献   

20.
Two major episodes are evident in the metamorphic and igneous Precambrian basement of the Llano Uplift, central Texas. Dynamothermal metamorphism was accompanied by minor basaltic and tonalitic syntectonic plutonism. This was followed by a second period of thermal overprinting accompanying emplacement of high-K2O, high-level major granite plutons. Extensive isotopic age work by Zartman, published in the mid-1960s, suggests that development of the basement complex, spanning an interval of 150 m.y. or more, began with deposition of Valley Spring Gneiss (the lowest unit) and terminated about 1,050 m.y. ago with final postmetamorphic cooling (indicated by retention ages of Ar and Sr in biotite). We have supplemented these data with more than 50 new K-Ar and Rb-Sr analyses.Two foliated plutons in the southeast are 1,167±12m.y. (2) old, with distinctly different initial 87Sr/86Sr ratios. Field relationships and isotopic data indicate that these plutons are the earliest yet known in the Uplift. Metamorphosed basalt dikes and gabbro bodies were emplaced immediately preceding and following the syntectonic plutons. Eleven of these rocks had extremely uniform initial 87Sr/ 86Sr=0.7029±0.0005. A Rb-Sr whole-rock isochron of the unfoliated Enchanted Rock pluton indicates an age of 1,048±34 m.y. with initial 87Sr/86Sr= 0.7048±0.0007. One of the northern unfoliated granites, the Lone Grove pluton, gives a whole-rock isochron age of 1,056±12 m.y., with initial 87Sr/86Sr = 0.7061±0.0003. All of the intrusive rocks have initial 87Sr/86Sr ratios consistent with a source in the mantle or lower crust, but not in ancient remobilized continental crust. Six K-Ar hornblende ages from metabasalts are 1,078±19 m.y. (1), in general agreement with K-Ar and Rb-Sr mineral ages elsewhere in the eastern Llano Uplift. A metasedimentary Valley Spring Gneiss sample from the western Uplift has a whole rock-muscovite Rb-Sr age of 1,129±9 m.y. Field and isotopic data are now sufficiently numerous to permit a moderately detailed reconstruction of the Precambrian history of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号