首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palaeoflood slackwater deposits (SWDs), are the natural record of overbank flooding and are often found within aeolian loess‐soil profiles along the river valleys of the middle Yellow River basin. These pedo‐stratigraphic sequences are studied using a multi‐disciplinarily approach to reconstruct Holocene hydro‐climatic variations. Our field investigations along the lower Jinghe River valley have identified palaeoflood SWDs at several sites along the riverbanks based on sedimentological criteria. Analytical results, including magnetic susceptibility, particle‐size distribution and concentrations of chemical elements, indicate that these well‐sorted palaeoflood SWD beds were deposited from the suspended sediment load in floodwaters. We identify two episodes of extraordinary palaeoflood events along the Jinghe River valley. These hydro‐climatic events were dated to 4200–4000 and 3200–2800 a BP, by using the optically stimulated luminescence method in combination with archaeological dating of retrieved anthropogenic remains, and with pedo‐stratigraphic correlations with the previously studied Holocene pedo‐stratigraphy in the Jinghe River drainage basin. The flooding events are therefore considered to be a regional expression of known climatic events in the northern hemisphere and demonstrate Holocene climate was far from stable. This study provides important data in understanding the interactions between regional hydro‐climatic systems and global change in semi‐arid and sub‐humid regions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
《Quaternary Science Reviews》2007,26(17-18):2247-2264
In the semiarid loess regions, slackwater deposition of overbank flooding over the piedmont alluvial plains was episodic and alternated with dust accumulation and soil formation throughout the Holocene. The records of past hydrological events are therefore preserved within the architecture of loess and soils and are protected from subsequent erosion and destruction. Several Holocene loess–soil sequences with the deposits of overbank flooding over the semiarid piedmont alluvial plains in the southeast part of the middle reaches of the Yellow River drainage basin were investigated by field observation, OSL and C14 dating, measurement of magnetic susceptibility, particle-size distribution and chemical elements. This enables the reconstruction of a complete catalog of Holocene overbank flooding events at a watershed scale and an investigation of hydrological response to monsoonal climatic change as well. During the Holocene, there are six episodes of overbank flooding recorded over the alluvial plain. The first occurred at 11,500–11,000 a BP, i.e. the onset of the Holocene. The second took place at 9500–8500 a BP, immediately before the mid-Holocene Climatic Optimum. After an extended geomorphic stability and soil formation, the third overbank flooding episode came at about 3620–3520 a BP, i.e. the late stage of the mid-Holocene Climatic Optimum, and the floodwater inundated and devastated a Bronze-age town of the Xia Culture built on the alluvial plain, and therefore the town was abandoned for a period of ca 100 years. During the late Holocene, the alluvial plain experienced three episodes of overbank flooding at 2420–2170, 1860–1700 and 680–100 a BP, respectively. The occurrence of these overbank flooding episodes corresponds to the anomalous change in monsoonal climate in the middle reaches of the Yellow River drainage basin when rapid climate change or climatic decline occurs. During at least the last four episodes, both extreme floods and droughts occurred and climate departed from its normal condition, which was defined as a balanced change between the northwestern continental monsoon and southeastern maritime monsoon over time. Great floods occurred as a result of extreme rainstorms in summers caused by rare intensive meridianal airflows involving northwestward moving tropical cyclone systems from the Pacific. These results could be applied to improve our understanding of high-resolution climatic change, and of hydrological response to climatic change in the semiarid zones.  相似文献   

3.
Palaeo-hydrological study was carried out in the Qishuihe River valley in the middle reaches of the Yellow River. Several bedsets of flood slackwater deposit were identified in the Holocene loess-soil sequences on the riverbanks. They were differentiated from aeolian loess and soils by the parallel and waving beddings and the distinctive stratigraphic breaks separating individual palaeoflood events. Chronology of the flood events was established by OSL dating, checked by archaeological identification of the anthropogenic remains retrieved from the sequences. The results show that successive floods occurred between 4300 and 4000 a BP in association with the abrupt climatic event of 4200 a BP. These overbank floods had the riverbank settlement inundated repeatedly. Another series of extraordinary floods occurred between 3200 and 3000 a BP when monsoonal climate shifted from the mid-Holocene Climatic Optimum toward late Holocene dry conditions. The climatic event of 4200 a BP and the climatic decline at 3100 a BP were believed to be characterized by droughts previously. This work provides solid evidence that both severe droughts and extreme floods were parts of the climatic variability during abrupt climatic event and climatic decline in the semi-arid to sub-humid zones over the world.  相似文献   

4.
Current high‐resolution palaeoenvironmental records reveal short‐term Holocene coolings. One of these major Holocene rapid climate changes occurred between 3.2 and 2.7 cal. ka BP. The sensitivity of river systems vis‐à‐vis slight and short‐term Holocene climatic variations is a subject of controversy in the scientific community. In this paper, we present a 4.0 to 1.4 cal ka BP palaeoflood record from the Lower Moulouya River (northeastern Morocco) to demonstrate the high sensitivity of semiarid rivers in the southwestern Mediterranean towards Holocene environmental changes. The Lower Moulouya flood deposits are characterised by thick, well‐stratified, predominantly clayey to silty overbank fine sediments. These cohesive sediments show evidence of excellent preservation conditions against fluvial erosion and contain a continuous record of mid to late Holocene flood sequences. The Moulouya palaeoflood record can be interpreted in the context of regional and global high‐resolution proxy data, revealing a strong coupling with Holocene rapid climate changes. The centennial‐scale Moulouya palaeohydrological history will be discussed with palaeoenvironmental data from the same record (palaeomagnetics, sedimentary charcoal record, anthracological analyses, snail analyses) to generate new ideas about the mid to late Holocene hydrological cycle in the southwestern Mediterranean. The deduced features of pronounced Lower Moulouya flooding and the decreased fire recurrence during Holocene cooling remain somewhat inconsistent with the interpretation of other palaeohydrological and paleaoecological records from the southwestern Mediterranean. However, enhanced Lower Moulouya flood frequencies between 3.2 and 2.7 cal. ka BP agree with increased floodplain aggradation in other major river systems of Mediterranean North Africa. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports an investigation into palaeoflooding along the upper reaches of the Hanjiang River valley, China. Based on the sedimentary evidence of the palaeohydrological regime, two bedsets of palaeoflood slackwater deposits (SWDs) were identified interbedded within the Holocene loess–soil sequence along the riverbanks of the Ankang east reach. Optical Stimulated Luminescence (OSL) dating and stratigraphical correlation with previously dated sites were used to reconstruct the chronology of the palaeoflood events. The results show that the palaeoflood events represented by SWD1 occurred between 13 000 and 12 400 a, coincident with the climatic transition from the Bølling–Allerød (BL+AL) stage to the Younger Dryas (YD) event. The palaeoflood events recorded by SWD2 were dated to 1000–800 a, corresponding to the later stages of the North Song Dynasty (AD 960–1127) and the subsequent South Song Dynasty (AD 1127–1279), which was a time of climatic decline according to historical documents. Palaeoflood discharges were estimated using the step‐backwater method, and the peak discharges were estimated to be in the range 35 200–47 400 m3 s?1. These results are of significance to our understanding of the regional hydrological response to global climatic change, the utilization of water resources, hydraulic engineering, flood control and disaster reduction.  相似文献   

6.
龙山文化末期泾河特大洪水事件光释光测年研究   总被引:11,自引:5,他引:6       下载免费PDF全文
通过对泾河流域深入的野外考察,在其中游基岩峡谷内发现了含有龙山文化末期文化层和古洪水滞流沉积单元的全新世黄土土壤剖面。利用光释光的单片测年技术,确定古洪水滞流沉积层覆盖着的黑垆土层的OSL年龄为 4078±382aB.P. 和4111±450aB.P.。结合其中所含龙山文化遗址的考古年代,揭示出泾河流域在4100~4000aB.P.之间出现一个古洪水多发时期。这组古洪水滞流沉积单元包含5个单层,记录了4100~4000aB.P.之间泾河流域曾经发生的5次特大古洪水事件。这个洪水期对应着我国北方在4000aB.P.前后,由全新世大暖期向着全新世晚期干旱期转折过程中的气候剧烈变化。这些史前洪水事件可能对我国龙山文化的衰落和古代华夏文明的诞生具有重大的影响。  相似文献   

7.
黄河上游靖远-景泰段全新世古洪水水文学   总被引:1,自引:0,他引:1  
对黄河上游靖远景泰段峡谷进行系统野外考察,在靖远县金坪村(JPC)发现典型的全新世古洪水滞流沉积物。通过光释光(OSL)测年和与黄河吉县段FJJ剖面进行地层对比,确定这期特大古洪水事件发生在 3 200~3 000 a B.P.,即全新世中期晚期气候恶化转折阶段,对应着我国历史上商末至西周早期。采用古洪水水文学方法恢复古洪水洪峰水位,并且采用比降-面积法计算这一期多次古洪水事件的洪峰流量为 16 110~17 740 m3/s。同时,根据野外调查获得 2012年7月31日黄河上游大洪水的洪痕高程,采用相同参数和方法恢复其洪峰流量,误差仅有 2.7%,表明在该河段对于古洪水水文恢复计算参数选取和计算结果是可靠的。  相似文献   

8.
渭河中游全新世黄土剖面光释光测年及记录的古洪水事件   总被引:1,自引:0,他引:1  
通过对渭河流域进行广泛的考察,在中游咸阳附近一处阶地发现保存完好的全新世黄土-古土壤剖面里夹有古洪水滞流沉积层,对其进行了年代学和沉积学研究。对于采集的全新世地层样品,进行粒度、磁化率测量分析,证明所夹沉积物是典型的古洪水滞流沉积物,该层记录了古洪水事件发生的气候水文信息。应用红外后蓝光的SAR光释光测年技术,获得该剖面9个OSL年龄值,确定渭河在距今3.2~2.8ka之间为一个洪水多发时期,并建立了渭河古洪水事件的年代序列。这一结果揭示了古洪水的频发与全新世中期向晚期过渡的转折时期,气候由温湿向干旱化发展,大气系统失稳,气候变化剧烈,降水量异常变化,变率增大,是导致渭河流域特大古洪水多发的主要原因。  相似文献   

9.
通过对渭河下游河谷进行深入的考察,在临潼段发现全新世黄土-古土壤层里夹有古洪水滞流沉积层。在剖面系统采样并进行磁化率和粒度成分分析,从沉积学角度证明该地层记录了全新世以来古洪水事件的信息。同时,在剖面采集OSL测年样品,应用单片再生剂量法(SAR)进行红外后蓝光(Post-IROSL)释光测量,获得了7个OSL绝对年龄值,建立了全新世剖面年代深度关系曲线,确定渭河在3200~3000aB.P.之间发生特大洪水事件。综合地层学对比以及剖面磁化率和粒度等气候替代性指标分析,揭示了全新世中期向晚期转折过渡时期,气候向干旱化转折,气候不稳定,频繁波动,降水变率大,是造成渭河流域特大洪水事件发生的主要原因。  相似文献   

10.
古洪水事件对中国古代文明的演变进程产生过重大影响,古洪水水文学研究是全球变化研究的前沿课题.通过野外深入考察,在汉江上游河谷阶地上,发现典型的全新世剖面中赋存古洪水滞流沉积层,记录了古洪水事件的气候水文信息.选择三个剖面系统采样,应用SAR法的Post-IR OSL技术对样品进行测年研究,获得了14个OSL年龄数据.结合样品的粒度成分和磁化率等气候替代指标测定分析,获得了全新世洪水事件与气候变化关系的记录.证明在距今9.5~8.5 ka和3.2~2.8 ka前,汉江上游经历了2个特大洪水期.该流域黄土—古土壤剖面记录了全新世早期气温回升增湿的气候,由于大气波动失稳,出现了9~8 ka前的全球降温事件;中期土壤成壤强烈,记录了温暖湿润的气候;晚期形成的现代黄土和表土层,记录了相对干旱的气候.由此揭示了在全新世早期气候波动失稳和中期向晚期过渡的气候转折时期,气候变化剧烈,降水变率增大,是导致特大古洪水事件频发的主要原因,这也是该区域气候水文事件对全球气候变化响应规律的具体表现.  相似文献   

11.
通过对汉江上游详尽的野外考察,在湖北郧县晏家棚河段全新世黄土—古土壤地层中发现3层典型古洪水滞流沉积物。在沉积学的基础上,使用OSL技术断代,确定3期特大洪水事件分别在1 000~900 a BP,1 800~1 600 a BP和3 200~2 800 a BP期间发生。采用"古洪水SWD尖灭点高程法"确定这3期古洪水事件的洪峰水位介于176.20~176.73 m。运用Arc GIS耦合HEC-RAS水力模型,推求这3期古洪水事件的洪峰流量介于53 770~55 950 m3/s,并从多种角度验证了该模型计算结果的科学性和合理性。将此结果与实测洪水和历史洪水资料接续,构成万年尺度洪水水文数据序列,得到汉江上游晏家棚河段万年一遇和千年一遇洪水的流量分别为59 100和45 200m3/s。采用HEC-RAS模型对研究河段进行古洪水模拟,方法科学,结果可靠。将该河段洪水水文数据序列有效地延长到万年尺度,极大地提高了设计洪水的可靠性。  相似文献   

12.
Phytolith data from Poyang Lake, southern China, indicate that significant natural and human‐induced vegetational changes have occurred in the middle Yangtze River valley, the likely hearth of rice (Oryza sativa L.) domestication, during the Late Pleistocene and Holocene periods. During the Late Pleistocene (from >13,500 to ca. 10,500 yr B.P.) the climate was cooler and drier than today's. Oryza appears to have been a natural component of the vegetation at that time, but may not have been well adapted to the glacial climatic conditions. The early Holocene climate may have been wetter and more markedly seasonal that at present, and wild Oryza species may have been distributed further north than seen today. By 4000 yr B.P., rice agriculture appears to have been well developed in the middle Yangtze River Valley. Environmental factors such as atmospheric CO2 concentrations and the seasonality of precipitation and temperature in addition to overall cooler and drier Pleistocene climates may have significantly influenced human exploitation of Oryza during the Late Pleistocene and early Holocene in southern China. © 2000 John Wiley & Sons, Inc.  相似文献   

13.
Stable carbon and oxygen isotope analyses of ungulate grazers from four archaeological sites located in different environs within the Caledon River Valley have provided a relatively well‐dated proxy palaeoenvironmental and palaeoclimatic sequence for the period between 16 000 and 6000 calendar (cal.) yr BP. Within the overall trend towards hot mid‐Holocene temperatures and a summer rainfall pattern, stable carbon isotope results show that there were three periods when growth season temperatures were cool enough for C3 grasses to be present: 16 000–14 000; 10 200–9600, and 8400–8000 cal. yr BP. Similar trends were recorded in stable oxygen isotope values, reflecting shifts in either temperature or available moisture. Although having a similar pattern to that of the lower altitude site, sites situated in foothills and montane portions of the valley consistently maintained lower temperatures until the mid‐Holocene altithermal. At this time growth season temperatures warmed sufficiently for a 100% C4 grassland to expand in altitude from the warmer low lying localities. In relation to present understanding of synoptic and global climatic patterning, these findings suggest that the early to middle Holocene transition was not a gradual warming trend, but rather it was marked by a series of climatic fluctuations. Of particular note is the possible global, rather than regional, occurrence of the 8200 cal. yr BP ‘event’. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Research on abrupt paleoclimatic and paleoenvironmental change provides a scientific basis for evaluating future climate. Because of spatial variability in monsoonal rainfall, our knowledge about climate change during the mid-to lateHolocene in southern China is still limited. We present a multi-proxy record of paleoclimatic change in a crater lake, Lake Shuangchi. Based on the age-depth model from 210 Pb, 137 Cs and AMS14 C data, high-resolution mid-to late-Holocene climatic and environmental records were reconstructed using multiple indices(TOC, TN, C/N, δ13 C and grain size). Shuangchi underwent a marked change from a peat bog to a lake around 1.4 kaBP. The C3 plants likely dominated during 7.0–5.9 ka and 2.5–1.4 kaBP, while C4 plants dominated between 5.9–3.2 and 3.0–2.5 kaBP. Algae were dominant sources of organic matter in the lake sediments after 1.4 kaBP. Several intervals with high concentrations of coarser grain sizes might be due to flood events. These results reveal that several abrupt paleoclimatic events occurred around 6.6 ka, 6.1 ka, 5.9 ka, 3.0 ka, 2.5 ka and 1.4 kaBP. The paleoclimatic change recorded in the lake may be related to the migration of the Intertropical Convergence Zone(ITCZ) and El Ni?o-Southern Oscillation(ENSO) activity.  相似文献   

15.
A new analysis of all 346 published 14C dated Holocene alluvial units in Britain offers a unique insight into the regional impacts of global change and shows how surprisingly sensitive British rivers have been to relatively modest but repeated changes in climate. Fourteen major but probably brief periods of flooding are identified bracketed within the periods 400–1070, 1940–3940, 7520–8100 and at ca. 10 420 cal. yr BP. There is a strong correspondence between climatic deteriorations inferred from mire wet shifts and major periods of flooding, especially at ca. 8000 cal. yr BP and since ca. 4000 cal. yr BP. The unusually long and complete British record also demonstrates that alterations in land cover have resulted in a step change in river basin sensitivity to variations in climate. This has very important implications for assessing and mitigating the impact of increasing severe flooding. In small and medium‐sized river basins land use is likely to play a key role in either moderating or amplifying the climatic signal. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
晚更新世晚期以来的长江上游古洪水记录   总被引:4,自引:2,他引:4       下载免费PDF全文
长江上游三峡河段主要的古洪水记录有:1)三峡深槽的蚀积变化;2)长江阶地粗粒沉积;3)长江的泛滥沉积;4)长江的古洪水平流沉积。不同时间跨度不同类型古洪水记录的精度有较大的差别。古洪水记录显示,晚更新世晚期的40~30kaB.P.,长江上游大洪水比30kaB.P.以来的长江上游大洪水大得多;全新世以来,以3983aB.P.前后的大洪水为相对最大;公元1870年大洪水为3000aB.P.以来最大洪水;近百年来的实测洪水以公元1981年洪水为最大。  相似文献   

17.
晚更新世晚期以来的长江上游古洪水记录   总被引:23,自引:6,他引:17  
长江上游三峡河段主要的古洪水记录有:1)三峡深槽的蚀积变化;2)长江阶地粗粒沉积;3)长江的泛滥沉积;4)长江的古洪水平流沉积。不同时间跨度不同类型古洪水记录的精度有较大的差别。古洪水记录显示,晚更新世晚期的40~30kaB.P.,长江上游大洪水比30kaB.P.以来的长江上游大洪水大得多;全新世以来,以3983aB.P.前后的大洪水为相对最大;公元1870年大洪水为3000aB.P.以来最大洪水;近百年来的实测洪水以公元1981年洪水为最大。  相似文献   

18.
The period in the Upper Mississippi Valley (UMV) from about 25 000 years B.P. until the time of strong human influence on the landscape beginning about 150–200 years ago can be characterized by three distinctly different alluvial episodes. The first episode is dominated by the direct and indirect effects of Late Wisconsin glacial ice in the basin headwaters. This period, which lasted until about 14 000 years B.P., was generally a time of progressive valley aggradation by a braided river system transporting large quantities of bedload sediment. An island braided system evolved during the second episode, which extended from about 14 000 to 9000 years B.P. The second episode is associated with major environmental changes of deglaciation when occurrences of major floods and sustained flows of low sediment concentration from drainage of proglacial lakes produced major downcutting. By the time of the beginning of the third episode about 9000 years B.P., most vegetation communities had established their approximate average Holocene locations. The change of climate and establishment of good vegetation cover caused upland landscapes of the UMV to become relatively stable during the Holocene in comparison to their relative instability during the Late Wisconsin. However, Holocene remobilization of Late Wisconsin age sediment stored in tributary valleys resulted in a return to long-term upper Mississippi River aggradation. The dominance of Holocene deposition over transportation reflects the abundance of sandy bedload sediment introduced from tributaries and the situation that energy conditions for floods and the hydraulic gradient of the upper Mississippi River are much less for the Holocene than they were for the Late Wisconsin and deglaciation periods.Outburst floods from glacial lakes appear to have been common in the UMV during the Late Wisconsin and especially during deglaciation. Magnitudes for the Late Wisconsin floods are generally poorly understood, but an estimate of 10 000–15 000 m3 s−1 was determined for one of the largest events in the northern UMV based on heights of paleo-foreset beds in a flood unit deposited in the Savanna Terrace. For comparison, the great flood of 1993 on the upper Mississippi River was about 12 000 m3 s−1 at Keokuk, Iowa, near the Des Moines River confluence where it represented the 500-year event in relation to modem flood series. Exceptionally large outburst floods derived from the rapid drainage of pro-glacial Lake Michigan and adjacent smaller proglacial lakes between about 16 000 and 15 500 years B.P. are a likely cause of the final diversion of the Mississippi River through the Bell City-Oran Gap at the upstream end of the Lower Mississippi Valley (LMV). The largest outburst flood from northern extremities of the UMV appears to have occurred between about 11700 and 10 800 years B.P. when the southern outlet of Lake Agassiz was incised. Based on the probable maximum capacity of the Agassiz flood channel 600 km downstream near the junction of the Wisconsin and Mississippi Rivers, the Agassiz flood discharge apparently did not exceed 30 000 m3 s−1. However, if the Agassiz flood channel here is expanded to include an incised component, then the flood discharge maximum could have been as large as 100,000 to 125 000 m3 s−1. The larger flood is presently viewed as unlikely, however, because field evidence suggests that the incised component of the cross-section probably developed after the main Agassiz flood event. Nevertheless, the large Agassiz flood between about 11 700 and 10 800 years B.P. produced major erosional downcutting and removal of Late Wisconsin sediment in the UMV. This flood also appears to be mainly responsible for the final diversion of the Mississippi River through Thebes Gap in extreme southwestern Illinois and the formation of the Charleston alluvial fan at the head of the LMV.After about 9000 years B.P. prairie-forest ecotones with associated steep seasonal climatic boundaries were established across the northern and southern regions of the UMV. The general presence of these steep climatically sensitive boundaries throughout the Holocene, in concert with the natural tendency for grasslands to be especially sensitive to climatic change, may partially explain why widespread synchroneity of Holocene alluvial episodes is recognized across the upper Mississippi River and Missouri River drainage systems. Comparison of estimated beginning ages of Holocene flood episodes and alluvial chronologies for upper Mississippi River and Missouri River systems with beginning ages for LMV meander belts and delta lobes shows a relatively strong correlation. At present, dating controls are not sufficiently adequate and confidence intervals associated with the identified ages representing system changes are too large to establish firm causal connections. Although the limitations of the existing data are numerous, the implicit causal connections suggested from existing information suggest that further exploration would be beneficial to improving the understanding of how upper valley hydrological and geomorphic events are influencing hydrological and geomorphic activity in the LMV. Since nearly 80% of the Mississippi River drainage system lies upstream of the confluence of the Mississippi and Ohio Rivers, there is a strong basis for supporting the idea that UMV fluvial activity should be having a strong influence on LMV fluvial activity. If this assertion is correct, then the traditional assignment of strong to dominant control by eustatic sea level variations for explaining channel avulsions, delta lobes, and meander belts in the LMV needs re-examination. A stronger role for upper valley fluvial activity as a factor influencing lower valley fluvial activity does not disregard the role of eustatic sea level, tectonic processes or other factors. Rather, upper valley fluvial episodes or specific events such as extreme floods may commonly serve as a “triggering mechanism” that causes a threshold of instability to be exceeded in a system that was poised for change due to sea level rise, tectonic uplift, or other environmental factors. In other situations, the upper valley fluvial activity may exert a more dominant control over many LMV fluvial processes and landforms as frequently was the case during times of glacial climatic conditions.  相似文献   

19.
展布于青藏高原东南部的雅鲁藏布江流域河谷中广泛分布有古堰塞湖沉积,古堰塞湖发育与构造活动、气候变化和地表过程等因素关系密切。在广泛地质调查的基础上,识别出雅鲁藏布江流域的十余个古堰塞湖,通过对其开展沉积学、地貌学和年代学工作,结合前人工作结果,初步建立了古堰塞湖群的地层年代框架。地表残留的古堰塞湖沉积多集中于末次冰期冰盛期和全新世早期,持续时间可达千年—万年。对大竹卡古湖、格嘎古湖和易贡湖的研究结果进行了介绍,归纳出古堰塞湖群发育的基本特征,初步讨论了构造、气候和侵蚀相互作用下古堰塞湖研究的意义、存在的问题以及研究的方向。提出末次冰期以来的冰川(泥石流)堵江-堰塞-溃决洪水所构建的极端气候-灾害事件,对雅鲁藏布江河谷地貌和古地理环境等有重要影响。  相似文献   

20.
Alluvial sequences constitute a recognised source of information on past environmental change, but one that has scarcely been tapped in central Mexico. This paper reviews what is currently known about the Holocene alluvial stratigraphy of the region, focusing on the interplay between climate and the pace and style of sedimentation in the incised headwater reaches of stream networks. The records obtained in five different drainage basins – four in the state of Tlaxcala and one in Guanajuato – are presented and compared to published reconstructions of climate change. A near‐synchronous incision of all stream networks occurred close to 10 200 14C a BP in response to an increase in precipitation and stream discharge. A spell of very humid but markedly seasonal conditions ensued, resulting in the formation of wet meadows along streams and the accumulation of thick fine‐textured valley fills dominated by cumulic soil A horizons. After 9100 14C a BP a transition to a warmer and more arid climate provoked the thinning of vegetation cover on slopes, accelerated runoff and increased sediment delivery to streams. The aggradation of coarser‐textured valley fills poor in organic matter set in. It ceased or slowed down significantly after a few millennia as the studied stream reaches achieved a near‐graded condition adjusted to the relatively stable climate. Arid mid Holocene conditions are also reflected in the abundant precipitation of secondary carbonates in Guanajuato. At 3100 14C a BP higher precipitation caused more frequent flooding and a resumption of aggradation. Shortly after that date sedentary farmers colonised Tlaxcala. Agriculture altered runoff and sediment delivery to streams and accelerated cut‐and‐fill cycles on a scale that masked the impact of any climatic fluctuations. Guanajuato was colonised later and its alluvial record suggests the persistence of a humid climate at least until 1000 14C a BP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号