首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水汽输送对雅鲁藏布江流域降水中稳定同位素的影响   总被引:1,自引:0,他引:1  
利用NCEP/NCAR全球大气再分析格点资料和2005年西藏雅鲁藏布江流域4个站点(拉孜、奴各沙、羊村和奴下)降水中δ18O数据,分析了雅鲁藏布江流域降水中δ18O变化同水汽输送通量的关系。从空间上来看,雅鲁藏布江流域降水中δ18O同水汽输送通量呈明显的正相关,从下游至上游,随着水汽输送通量的减少,降水中的δ18O逐渐降低;从时间上来看,春季水汽通量较小,降水中的δ18O较高,而在夏季,水汽通量大,降水中的δ18O较低。在此基础上,又利用NCEP/NCAR气象数据建立水汽追踪模型,以羊村站为例对雅鲁藏布江流域降水的水汽输送过程进行了追踪模拟,并讨论了降水中δ18O变化同水汽源地以及输送过程的关系。结果发现,在季风降水之前的春季,降水中较高的δ18O主要受西风带水汽输送以及当地蒸发水汽的影响;在季风期间,降水中较低的δ18O主要受来自印度洋暖湿水汽输送的影响。   相似文献   

2.
广州大气降水中δ^18O与气象要素及季风活动之间的关系   总被引:1,自引:0,他引:1  
根据2004年5月至2005年6月广州日大气降水中δ18O资料和GNIP提供的广州、香港多年月平均降水中δ D、δ18O资料, 研究了天气尺度下广州大气降水中δ18O与降水量、水汽压、气温和露点温度等气象要素之间的关系, 并就季风活动对本地降水中δ18O的影响作了初步分析. 结果表明: 在天气尺度下, 广州大气降水中δ18O与降水量、水汽压、气温和露点温度均存在显著的负相关关系, 同温度露点差存在显著的正相关关系, 表明广州大气降水中δ18O变化具有显著的降水量效应和湿度效应. 夏季风期间季风活动对天气尺度下降水中δ18O的变化具有显著影响, 使得天气尺度下大气降水中δ18O变化有时并不遵循降水量效应. 从多年气候平均状况来看, 广州、香港降水中δ18O的季节变化同亚洲夏季风的爆发和推进演变过程较为相似, 在夏季风活跃的时期, 大气降水中δ18O值也较低, 反映了季风降水再循环活动对降水中稳定同位素含量具有显著影响.  相似文献   

3.
羊卓雍错流域降水中稳定氧同位素变化特征   总被引:4,自引:0,他引:4  
根据青藏高原南部羊卓雍错流域白地、翁果和堆乡3个水文站2004年1~10月降水中δ18O的测定结果,分析了该流域降水中δ18O的变化特征及其与温度和降水量之间的关系.结果表明:3个站点降水中δ18O的值在雨季前变化不大,且都保持相对高值;进入雨季后都开始下降,雨季结束后又均开始增大.该流域夏季降水中δ18O表现出低值的特征与夏季西南季风的强烈活动密切相关.受西南季风影响,3个站点夏季降水均表现出季风降水的特征,降水中δ18O与降水时温度关系不明显,而与降水量之间存在着一定的反向变化趋势,从而表现出一定的“降水量效应”.羊卓雍错流域降水中δ18O的这种变化特征与拉萨的基本一致.  相似文献   

4.
南京大气降水氧同位素变化及水汽来源分析   总被引:7,自引:2,他引:5       下载免费PDF全文
王涛  张洁茹  刘笑  姚龙 《水文》2013,33(4):25-31
研究结论有助于了解南京地区的水汽输送以及水汽循环过程。在全球大气降水同位素观测网(GNIP)南京站点的大气降水氢氧同位素资料基础上,并结合相关气象资料,分析了南京地区大气降水稳定同位素时间分布特征及其影响因素,并建立了局地大气降水线方程。结果表明:南京地区大气降水中δ18O春季最为富集、夏季最为贫化;年尺度下降水δ18O与温度之间不存在正相关,而与降水量之间存在负相关;季节尺度下,冬季的δ18O与温度、降水量的关系与年尺度结果相反,皆呈现出正相关关系。采用HYSPLIT模型对站点水汽来源进行追踪,并结合季风活动分析得出:全年中南京大气降水δ18O变化主要受亚洲夏、冬季风及其带来的水汽影响,在季风交替时节(春、秋季)虽降水源于局地蒸发水汽,但仍为季风带来降水的影响。  相似文献   

5.
青藏高原西部降水中δ18O变化特征   总被引:7,自引:3,他引:4  
根据青藏高原西部阿里地区狮泉河气象站和改则气象站取得的降水水样和降水气象资料, 分析了该区域降水中δ18O的变化特征.结果表明: 在长时间尺度上, 狮泉河和改则两站点历次降水中δ18O和气温之间都有较好的正相关, 尤其是降水中月平均δ18O与月平均降水温度之间相关性更加显著, 降水中δ18O主要受"温度效应"的影响.而在其中的某一年, 这种相关性不是很明显, 而且在降水中δ18O和降水时温度之间的相关性很好的年份, 在7月底或8月份初短期内降水中δ18O几乎都有一个突然降低的事件, 这可能与印度季风水汽输送有关.与狮泉河站相比, 在改则降水中δ18O和气温二者之间这种相关性相对较弱, 这与改则当地内陆水循环特别是强烈蒸发引起的降水有关.  相似文献   

6.
雅鲁藏布江流域河水中氧稳定同位素的时空变化   总被引:4,自引:0,他引:4  
根据雅鲁藏布江流域2005年干流的拉孜、奴各沙、羊村和奴下4个站点河水中δ18O实测数据以及相关的气象和水文资料,分析了河水中δ18O的变化特征.通过与同期该流域降水中δ18O的比较,初步研究了流域内河水中δ18O的时空分布特征.结果表明: 河水中δ18O的变化大致以7月中旬为界划分为两个明显的阶段,前一阶段河水中δ18O呈上升趋势,以相对高值为特征;而后一阶段则呈下降趋势,以相对低值为特征;河水中δ18O的这种季节变化可以很好地被正弦波变化所揭示.从空间上来看,由于受到支流、地下水和蒸发等的影响,河水中δ18O变化比较复杂,在青藏高原夏季季风降水期间,由下游的奴下站至中游的奴各沙站,河水中的δ18O逐渐递减,其由高程效应和水平距离所造成的递减率分别为0.21‰·(100m)-1和0.45‰·(100km)-1.河水中δ18O变化受到降水中δ18O强烈影响,但其波动远小于降水,在青藏高原夏季季风降水期间,河水中δ18O的平均波动幅度为4.8‰,比流域降水中δ18O的平均波动幅度低了19.7‰.整个流域均到受蒸发的影响,在青藏高原夏季季风降水期间,降水中δ18O的加权平均值为-17.4‰,河水中δ18O的平均值为-16.6‰,造成这种差异的主要原因在于降水和河水中的稳定同位素又通过蒸发发生分馏.  相似文献   

7.
根据青藏高原中部那曲河流域1998年夏季测得的上下游中稳定同位素的日变化,并与同期观测的流域降水中稳定同位素比较,分析了河水中δ18O的变化特征,初步研究了该流域的稳定同位素水文循环过程.河水中δ18O的变化幅度远小于降水,它是降水中δ18O、降水量以及地表蒸发过程共同作用的结果.研究发现湖水对于稳定同位素变化起着显著的调节作用.河水中δ18O与流域降水中δ18O的差异可能反映了该流域强烈的地表和湖面蒸发作用.  相似文献   

8.
冯芳  李忠勤  金爽  冯起  刘蔚 《水科学进展》2013,24(5):634-641
依据乌鲁木齐河流域山区3个站点实测次降水δ18O和δD数据以及气象观测资料,结合临近GNIP(Global Network of Isotopes in Precipitation)站点数据,对其降水δ18O和δD特征及水汽来源进行了分析。结果表明,大气降水中δ18O值波动范围大,但呈现明显的季节性变化:冬季降水δ18O较低,夏季降水δ18O较高。受流域山区气候和地理条件影响,从上游到下游各站点大气降水线截距和斜率均呈现逐渐减小趋势。大气降水中δ18O和δD与日均气温存在密切正相关关系,且温度与δ18O之间的相关性优于δD。降水中d-excess值也表现出季节性变化,冬季降水d-excess值高于夏季降水。利用HYSPLIT 4.0气团轨迹模型,得出夏季水汽主要来源西风环流输送,冬季受西风环流和极地气团共同影响。  相似文献   

9.
拉萨夏季降水中氧稳定同位素变化特征   总被引:17,自引:7,他引:17  
田立德  姚檀栋 《冰川冻土》1997,19(4):295-301
根据青藏高原拉萨气象站1993~1996年雨季降水中δ18O的测量和IAEA/WMO的观测结果,分析了拉萨雨季降水中δ18O的变化规律,以及与气温和降水之间的关系。受青藏高原季风的影响,拉萨降水季节变化异常明显,降水集中在夏半年,尤其是7~9月份。拉萨降水中δ18O也表现出季风降水的典型特征。降水中δ18O“雨量效应”明显,而且这种降水量的影响远远掩盖了气温对降水中δ18O的作用。高降水对应降水中δ18O低值,反之亦然。拉萨降水中δ18O的这种变化特征与青藏高原北部是不同的。  相似文献   

10.
重要海-气-天文事件与新德里季风降水中δ18O的关系   总被引:5,自引:2,他引:3  
通过分析西南季风区印度新德里站夏季降水资料发现, 降水中δ18O变化趋势大致与太阳黑子变化趋势一致, 是温度效应的具体体现. 温度和降水的耦合导致温度和降水量的比值(T/P)与δ18O具有显著的正相关关系; ENSO与δ18O的遥相关关系是热带印度洋和太平洋海气耦合作用的结果, 是降水量效应的反映. 在500 hPa高度, 云滴的蒸发以及与下层向上层传输的季风水汽之间发生稳定同位素交换, 可能是导致500 hPa高度风的速率与δ18O正相关的主要原因, 温度效应及降水量效应对这一关系的形成起促进作用.  相似文献   

11.
现代大气降水中的稳定同位素组成是全球或地区性水循环研究的重要载体,同时也是冰芯、湖泊沉积物、石笋等研究领域中,运用稳定同位素来重建古气候的重要依据。本文研究了桂林地区2012年大气降水氢氧同位素组成的逐日变化,根据得到的132组氢氧稳定同位素组成建立了桂林局地大气降水线方程为δD = 8.8δ18O +17.96,大气降水的δ18O波动范围在-13.56‰~+1.07‰,平均为-5.78‰;δD在-101.52‰~+16.02‰,δD平均为-41.03‰。利用降水稳定同位素资料,结合后向轨迹法( Backwards Trajectory) 对桂林水汽来源进行追踪,发现夏季(5-10月)大气降水的水汽来源主要受来自孟加拉湾、南海海洋气团的水汽源的控制,降水的δ18O值偏负,平均为-8.02‰(共64组);冬季(11月至次年4月)大气降水的水汽来源主要受来自西太平洋暖湿气团、冬季风冷气团或西风环流所携带的大陆性气团的影响,不同程度地叠加了局地环流气团、蒸发水汽的补给的影响,降水的δ18O值偏正,平均为-2.86‰(共68组)。研究结果表明,桂林大气降水的稳定同位素组成与降水的水汽来源、季风类型、降水云团来源和性质有关,来自远距离输送夏季风海洋性水汽团形成的降水δ18O值较低(或偏负), 而大陆性气团或局地蒸发水汽循环形成的降水δ18O值较高(或偏正)。不同的水汽来源是决定降水中δ18O值变化的主要因素,因此,通过降水中的δ18O值,特别是其季节变化的特征分析,可以反过来揭示当地降水的水汽来源。   相似文献   

12.
德令哈降水中δ~(18)O年际变化与水汽输送   总被引:1,自引:0,他引:1  
根据德令哈地区1992—2001年的降水中δ18O数据及降水时刻所记录的相关气象参数,并对比中国气象局气象资料和NCEP/NCAR格点气象数据,利用相关、回归等分析方法分别对该地区降水中δ18O与温度、降水量以及水汽通量之间的关系进行分析,并讨论了降水量与大气环流的变化关系,揭示了影响该地区降水中δ18O变化的气象因素,特别是与水汽来源之间的关系。研究结果表明,德令哈降水中δ18O年际变化表现出一定程度的“温度效应”,但与温度的相关性要低于季节尺度。不同类型汽团的水汽输送是影响降水中δ18O年际变化的另一个重要原因。  相似文献   

13.
利用稳定同位素大气水平衡模式,模拟了2012年全球大气水汽和降水中δ18O的空间分布和时间变化以及降水中δ18O与降水量、温度之间的关系.其目的在于检验稳定同位素大气水平衡模式模拟水稳定同位素循环的能力,揭示稳定同位素效应产生的主要原因,改善对水循环中稳定同位素效应的理解和认识.模拟结果很好地再现了全球降水中δ18O的纬度效应、大陆效应和季节差异.在水循环过程中,引起降水中稳定同位素空间变化和时间变化的原因与蒸发对水汽同位素的富集作用、降水对水汽同位素的贫化作用、凝结温度对水汽同位素贫化程度的影响有关.模拟的降水量效应主要出现在中低纬度海洋和季风区,这种分布形势与δ18O季节差和降水量季节差的分布相对应;模拟的温度效应主要出现在中高纬度陆地,这种分布形势与降水中δ18O季节差的分布形势相对应.在一些低纬度地区,伴随强降水量效应的出现,温度效应也同时出现.  相似文献   

14.
收集和分析了新德里降水中同位素资料(δ18O和δD),利用季风水线方程对个别年份缺测的δD资料进行估计,建立了新德里36 a夏季过量氘序列.基于降水中过量氘和水汽源区相对湿度关系考虑,利用NCEP/NCAR再分析资料,研究了新德里夏季过量氘序列和水汽源区相对湿度的关系.研究发现,西阿拉伯海相对湿度变化和新德里季风降水中过量氘变化较为一致.结合西阿拉伯海风速和印度西北地区季风降水量资料分析结果,认为西阿拉伯海是新德里季风水汽的主要来源.  相似文献   

15.
贺建桥  张伟  周剑  吴玉伟 《冰川冻土》2016,38(2):359-367
准确定量计算降水中稳定同位素的垂直递减率对水文、古气候及古海拔高度重建等研究有重要意义.使用方差分析方法,分析了黑河流域上游祁连山区3个站点2007年10月至2008年9月降水中δ18O与海拔的关系.结果表明:由于青藏高原北缘气候特征受西风环流控制,水汽的主要运移路径与祁连山脉走向基本平行,导致降水过程中缺乏水汽沿海拔爬升的过程,以及存在广泛的水汽混合等因素的影响,使得在显著性水平α=0.05下,祁连山区海拔1600~3300 m之间降水中δ18O在年尺度和季节尺度上均没有表现出明显的高程效应,其年均值为-7.1‰.结果说明除水汽来源外,山脉走向与主要水汽运移轨迹之间的空间关系也是影响降水中稳定同位素特征的重要因素.最后,讨论了青藏高原降水δ18O垂直递减率的区域变化特征.  相似文献   

16.
青藏高原水汽输送与冰芯中稳定同位素记录*   总被引:7,自引:7,他引:7       下载免费PDF全文
降水中稳定同位素作为水中的组成成分,与水汽来源的变化存在直接的关系。根据在青藏高原降水中稳定同位素的研究,青藏高原南北降水中δ18 O和过量氘(d)都存在着显著的空间变化,这种空间变化与西南季风夏季向北推进的位置有关。在时间变化上,青藏高原不同地区降水中δ18 O和d的季节变化特征也与水汽来源的季节变化有关,而且这种季节变化主要受控于西南季风水汽与西风带输送水汽之间的相互作用,在中国最北端的阿尔泰山区还受到极地气团的影响。由于不同的大气环流造成的水汽来源的差异,青藏高原冰芯中稳定同位素变化也存在空间差异。北部地区冰芯中稳定同位素的年际变化与当地气象站记录显示良好的对应关系,而南部冰芯中稳定同位素的变化与当地气象站降水量在年际变化上显示反相关关系。  相似文献   

17.
成都地区大气降水稳定同位素组成反应的气候特征   总被引:4,自引:0,他引:4  
吴旭东 《四川地质学报》2009,29(1):52-54,58
分析了1986-1998年成都地区大气降水的稳定同位素组成。夏季降水的δD和δ^18O值比冬季降水轻,反映了季风气候的降水特点。成都地区的大气降水线方程是:δD=1.42+7.530δ^18O,与全球和中国降水线方程相比,表明了成都地区的蒸发程度稍大于降雨,说明成都地区大气降水的不平衡蒸发程度弱,反映了海洋性气候特征。成都地区大气降水δ^18O与降雨量、温度和水汽压之间都是负相关关系。但是降雨量对大气降水δ^18O的影响最大。  相似文献   

18.
曹乐  申建梅  聂振龙  孟令群  刘敏  王哲 《地球科学》2021,46(8):2973-2983
了解沙漠降水稳定同位素特征,有助于研究干旱区水循环过程.根据2015-2016年取自巴丹吉林沙漠4个站点的降水样品,分析了δ2H、δ18O的时空分布特征及影响因素;借助后向气团轨迹模型分析了降水水汽来源;采用氘盈余模型计算了水汽再循环比.结果显示,降水δ2H、δ18O均表现出季节效应,夏高冬低;沙漠腹地较外围山区δ2H、δ18O偏正,d-excess偏负,反映出腹地降水的蒸发程度更高.年内降水主要来自西风水汽,夏季部分受东南季风影响.沙漠湖泊区再循环比为10.3%~10.9%,略大于山区的8.5%;再循环水汽在总蒸发量中占比11.1%,反映出沙漠强烈的蒸发对本地降水的贡献较为有限.   相似文献   

19.
基于关中地区7个站点的降水同位素及气象数据,分析了δ~(18)O的时空特征及环境效应,模拟出代表站点的气团运移轨迹,利用向外长波辐射(OLR)数据研究水汽源区变化及对夏半年降水稳定同位素的影响。结果表明:δ~(18)O有着较为明显的季节性变化规律,由春季到冬季逐渐下降,空间分布则呈由东南向西北递减的趋势;大气降水线方程表现出明显的过渡性区位特征,夏半年以降水量效应为主;水汽主要通过西北与东南两个水汽通道输送,青藏高原的热力、动力性质对水源差异产生了较大影响;水汽源区变化与对流层中上部水汽含量场都与稳定同位素特征、水汽运移轨迹有着较强的对应关系,8、9月形成于西太平洋的热带辐合带(ITCZ)使东南季风成为夏季关中地区主要的水汽输送通道。  相似文献   

20.
黑河上游河水中δ18O季节变化特征及其影响因素研究   总被引:2,自引:1,他引:1  
根据2006年5月至2007年5月间在黑河上游莺落峡、祁连和扎麻什3个水文站等地点所采集的河水与降水样品,重点分析了其中的δ18O变化,揭示出黑河干流上游山区河水中δ18O具有夏季高冬季低的季节变化特征,这种变化特征主要受控于降水中δ18O的变化.祁连水文站河水中δ18O月平均值与月平均流量乘积和该站降水中δ18O加权月平均值与月降水量乘积之间存在着高度相关性,从同位素示踪的角度说明降水是黑河干流上游山区径流的主要补给来源.进一步的研究表明,黑河上游祁连山区降水中δ18O变化存在明显的"海拔效应",并且3个水文站点河水中δ18O值均低于其降水中δ18O值,这表明上游径流主要形成于高海拔山区.根据黑河出山口莺落峡水文站河水中δ18O值以及上游山区降水中δ18O的"海拔效应",估计黑河干流出山径流主要形成于海拔3 350~4 600 m之间的高山地区,该高度区域对应的植被带主要为亚高山灌丛草甸和高山寒漠草甸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号