首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tholeiites accompanying a majority of alkali basalts are restricted to the highly productive central part of the CECV plume activity in Vogelsberg and Hessian Depression. They mainly occur as quartz tholeiites which according to experiments of partial melting and material balances are products of olivine tholeiitic primary melts. The differentiation from olivine to quartz tholeiitic melts took place in lower crustal magma chambers where olivine tholeiitic melt intruded due to a density comparable with that of the country rocks. The fractionation due to separation of olivine and some clinopyroxene caused contamination of tholeiite magmas by tonalitic partial melts from the wall rocks of the magma chambers. The latter process is indicated by relatively high Rb, K and Pb and low Nb concentrations and by Nd, Sr and Pb isotopes. Contaminating crustal melts, which roughly attained a proportion of 10%, contained very low 143Nd/144Nd ratios from a Nd/Sm fractionation as old as 2.6 Ga. This is the first evidence from mafic rocks of this high age in the lower crust beneath Central Europe. Modelling with incompatible elements allows to recognize olivine tholeiites as products of about 1% partial melting of plume rocks consisting of 35% primitive and 65% depleted mantle materials. The production of tholeiites other than alkali basalts is restricted to the highest plume activity and the largest fraction of MORB type source rocks. Received: 10 December 1999 / Accepted: 23 June 2000  相似文献   

2.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

3.
The Austral Islands, a volcanic chain in the South-Central Pacific Ocean (French Polynesia) are composed mainly of alkali basalts and basanites with subordinate amounts of olivine tholeiites and strongly undersaturated rocks (phonolite foidites and phonolite tephrites). The basaltic rocks have geochemical features typical of oceanic island suites. The distribution of incompatible trace elements indicate that the lavas were derived from a heterogeneous mantle source. The chondrite-normalized patterns of the incompatible elements in basaltic rocks of the Austral Islands are complementary to those of island arc tholeiites. As supported by isotope data, the observed trace element heterogeneities of the source are probably due to mixing of the upper mantle with subducted oceanic crust from which island arc tholeiitic magma was previously extracted.  相似文献   

4.
Cenozoic(Miocene to Pleistocene) basaltic rocks in Jiangsu province of eastern China include olivine tholeiite and alkali basalt.We present major,trace element and Sr-Nd isotopic data as well as Ar-Ar dating of these basalts to discuss the petrogenesis of the basalts and identify the geological processes beneath the study area.On the basis of chemical compisitions and Ar-Ar dating of Cenonoic basaltic rocks from Jiangsu province,we suggest that these basalts may belong to the same magmatic system.The alkali basalts found in Jiangsu province have higherΣFeO,MgO,CaO,Na2O, TiO2 and P2O5 and incompatible elements,but lower Al2O3 and compatible elements contents than olivine tholeiite which may be caused by fractional crystallization of olivine,pyroxene and minor plagioclase.In Jiangsu basaltic rocks the incompatible elements increase with decreasing MgO/ΣFeO ratios.The primitive mantle-normalized incompatible elements and chondrite-normalized REE patterns of basaltic rocks found in Jiangsu province are similar to those of OIB.Partial loss of the mantle lithosphere accompanied by rising of asthenospheric mantle may accelerate the generation of the basaltic magma.The 143Nd/144Nd vs.87Sr/86Sr plot indicates a mixing of a depleted asthenospheric mantle source and an EMI component in the study area.According to Shaw’s equation,the basalts from Jiangsu province may be formed by l%-5%partial melting of a depleted asthenospheric mantle source.On the basis of Ar-Ar ages of this study and the fractional crystallization model proposed by Brooks and Nielsen(1982),we suggest that basalts from Jiangsu province may belong to a magmatic system with JF-2 as the primitive magma which has undergone fractional crystallization and evolved progressively to produce other types of basalts.  相似文献   

5.
Subduction zone geochemistry   总被引:1,自引:0,他引:1  
Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases.The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels.Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources,the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle.In this process,the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases.For this reason,geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram.One is island arc basalts(IAB),showing enrichment in LILE,Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE,The other is ocean island basalts(OIB),exhibiting enrichment in LILE and LREE,enrichment or non-depletion in HFSE but depletion in Pb relative to HREE.In either types,these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts(MORB).The thermal regime of subduction zones can be categorized into two stages in both time and space,The first stage is characterized by compressional tectonism at low thermal gradients.As a consequence,metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile,resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE,Pb and LREE but depleted in HFSE and HREE relative to normal MORB.This provides the crustal signature for the mantle sources of IAB.The second stage is indicated by extensional tectonism at high thermal gradients,leading to the partial melting of metamorphically dehydrated crustal rocks at subarc to postarc depths.This involves not only the breakdown of hydrous minerals such as amphibole,phengite and allanite in the stability field of garnet but also the dissolution of rutile into hydrous melts.As such,the hydrous melts can acquire the trace element composition that is significantly enriched in LILE,HFSE and LREE but depleted in Pb and HREE relative to normal MORB,providing the crustal signature for the mantle sources of OIB.In either case,these liquid phases would metasomatize the overlying mantle wedge peridotite at different depths,generating ultramafic metasomatites such as serpentinized and chloritized peridotites,and olivine-poor pyroxenites and hornblendites.As a consequence,the crustal signatures are transferred by the liquid phases from the subducting slab into the mantle.  相似文献   

6.
Tholeiitic basalts dredged from the Mid-Atlantic Ridge (MAR) axis at 43 ° N are enriched in incompatible trace elements compared to the ‘ normal’ incompatible element depleted tholeiites found from 49 ° N to 59 ° N and south of 33 ° N on the MAR. The most primitive 43 ° N glasses have MgO/FeO*= 1.2 and coexist with olivine (Fo90–91) and chrome-rich spinel. The tholeiitic basalts from the MAR 43 ° N are distinct from the strongly incompatible trace element depleted tholeiities found elsewhere in the Atlantic, and have trace element features typical of island tholeiities and MAR axis tholeiites from 45 ° N. Petrographic, major, and compatible trace element trends of the axial valley tholeiites at 43 ° N are consistent with shallow-level fractionation; in particular, evolution from primitive liquids with forsteritic olivine plus chrome spinel as liquidus phases to fractionated liquids with plagioclase plus clinopyroxene as major crystallizing phases. However, each dredge haul has distinctive incompatible trace element abundances. These trace element characteristics require a hetrogeneous mantle or complex processes such as open system fractional crystallization and magma mixing. Alkali basalts (~5% normative nepheline) were dredged from a prominent fracture zone at 43 ° N. Typical of alkali basalts they are strongly enriched (compared to tholeiites) in incompatible elements. Their highly fractionated rare-earth element (REE) abundances require residual garnet during partial melting. The 43 ° N tholeiites and alkali basalts could be derived from a garnet peridotite source with REE contents equal to 2 × chondrites by ~5% and 1% melting, respectively. Alternatively, they could be derived from a moderately light REE enriched source by ~25% and 9.5% melting, respectively.  相似文献   

7.
东天山博格达造山带石炭纪火山岩及其形成地质环境   总被引:94,自引:35,他引:59  
顾连兴  胡受奚 《岩石学报》2000,16(3):305-316
东天山博格达造山带早、中石炭世海相火山地具有双峰式特征,主要岩性为富钠的玄武岩和流纹岩,其次是英安岩,安山质岩石极少出现。玄武岩的特征是:少数岩石含有实际矿物石英,个别岩石含橄榄石斑晶;辉石主要是透辉石和次透辉石,其成分富含铝(Al2O3=4.17~5.99)和钛(TiO2=2.80~4.78);基质中的长石主要是钠-更长石,斑晶中有相当数量的中长石和拉长石;全岩化学成分CIPW计算结果绝大部分含  相似文献   

8.
Analytical data on major elements and 31 trace elements in olivine nephelinites, nepheline basanites, basanitic alkali olivine basalts and their differentiates (tephrites, hawaiites, mugearites, benmoreites, latites, phonolites and trachytes) from Hegau, Kaiserstuhl, Rhön, Hessian Depression, Vogelsberg, Westerwald, Siebengebirge, E Eifel and Hocheifel are evaluated. They were based on 400 samples with new or unpublished data on about one third of the rocks. The Sr–Nd isotopic compositions for 78 rocks are included. The alkali basaltic volcanism is caused by adiabatic decompression of asthenospheric mantle updomed to a minimum depth of 50 km in connection with the Alpine continent collision. The chemical compositions of the primary basaltic melts from the different areas are similar containing about one hundred-fold enrichment of highly incompatible elements relative to the primitive mantle from partial melting of depleted and secondarily enriched peridotite. The elements Cs, K, Pb and Ti are specifically depleted in the basalts partly because of phlogopite being residual at partial melting. The Tertiary alkali basalts range in Nd-isotopic composition from 0.51288 to 0.51273 and in Sr-isotopic ratios from 0.7032 to 0.7042. These ranges indicate mixtures of HIMU, depleted and enriched mantle components in the metasomatically altered peridotite source which resembles that of certain ocean islands. The Nd-Sr-isotopic compositions of the Quaternary E Eifel are close to bulk Earth ratios. East and W Eifel plots differ distinctly from the Tertiary Hocheifel which is geographically intermediate. This isotopic difference, beside specific K/Na ratios, is probably caused by separate metasomatic pulses that immediately preceded the respective periods of volcanism. The metasomatically altered mantle had partly primitive mantle signatures (Nb/Ta, Zr/Sm and Th/U ratios) and partly ocean island (or MORB) source properties (Rb/Cs). A MORB source can be excluded because of the low K/Rb and high Th/U ratios. A correlation of D with 87Sr/86Sr in amphibole and phlogopite and a slightly larger 18O than in MORB is conformable with a seawater and crustal impact on the source of alkali basalts. Slightly higher than average water concentrations in the source of certain primary basaltic melts (indicated by amphibole phenocrysts in their basalts) are required for differentiation of these basalts in magma chambers of the upper crust. Model calculations are presented to explain compositions of differentiates which range from about 60% to about 20% residual melt. The latter are represented by phonolites and trachytes. The Nd- and Sr-isotopic signatures of the majority of differentiates indicate contamination by a granitic partial melt from the wall rocks of magma chambers. Olivine nephelinite magma was the common source of contaminated differentiates.  相似文献   

9.
The Liuyuan mafic and ultramafic rocks are exposed in Southern Beishan, which is along the southern branch of the Central Asian Orogenic Belt (CAOB). Zircon SHRIMP U–Pb dating showed that Liuyuan gabbros intruded during the early Permian (~ 270–295 Ma) coeval with the basalts and the ultramafic rocks were emplaced at about 250 Ma. The basalts are within–plate tholeiites with slight enrichment in light rare earth elements (LREE) relative to heavy rare earths (HREE) and small negative anomalies of Nb and Ta. Gabbros including olivine gabbros, olivine gabbronorites and troctolites are grouped into two: the cumulate gabbros are depleted in LREE and show small negative Nb and Ta anomalies but distinct positive Sr and Eu anomalies; non–cumulate gabbros resemble tholeiitic basalts. Lamprophyres and cumulate ultramafic rocks are characterized by large enrichment of LREE relative to HREE with depletion in Nb and Ta. The enriched Sr–Nd isotopic trend from DM towards the EM II end member component implies that the lithospheric mantle was progressively enriched with depth by the involvement of subducted crustal material due to the delamination of thickened mantle lithosphere after collision. The digestion of subducted crustal material into the mantle resulting in the metasomatized and enriched mantle is inferred to be an important process during crust–mantle interaction.  相似文献   

10.
Oligocene volcanics from Oatlands in Tasmania, Australia, include olivine tholeiites, alkali olivine basalts, nepheline basanites and olivine nephelinites. They have compositional characteristics that are typical of intraplate basalts worldwide. They are generally enriched in incompatible elements relative to the primitive mantle and are strongly enriched in Nb, Ta and light rare earths, but not heavy rare earths. At the same time, they have Sr and Nd isotope compositions that are similar to those in some incompatible-element-depleted mid-ocean ridge basalts (E-type MORB). Experimentally obtained mineral/melt partition coefficients for an Oatlands basanite allow the relative concentrations of incompatible elements in the volcanics to be produced by small degrees of melting (≤1%) of a source similar to the E-type MORB source of Workman and Hart (2005). However, the absolute concentrations that can be achieved in this way are much less than present in the most incompatible-element-enriched basanites and nephelinites at Oatlands. This contradiction can be explained by open-system melting under the influence of a conductive geotherm. This would have involved upwardly migrating near-solidus melts from the asthenosphere cooling along a sub-adiabatic geotherm. Cooling of the melts would have caused them to re-crystallize and accumulate in the overlying mantle, thereby enriching both the new host rocks and any residual melts in incompatible elements. This would also have increased the buoyancy of the host rocks leading to upwelling and further (decompression) melting of incompatible-element-enriched peridotite. We were able to use our partition coefficients to quantitatively model the development of incompatible-element enrichments in the Oatlands magmas by these processes. Our explanation is consistent with the characteristically scattered but widespread distributions and long time scales of intraplate volcanism in a broad variety of tectonic settings. This is because the conditions required to initiate volcanism (i.e. those of near-solidus melting of the asthenosphere) are relatively easy to produce and can therefore be caused by both near-surface tectonics and deeper mantle processes. Furthermore, the super-enrichments of incompatible elements in some intraplate volcanics can be attributed to the influence of normal geothermal gradients on melting processes. Without the very strong fractionation imposed by this combination of factors, the Oatlands volcanics would more closely resemble mid-ocean-ridge basalts.  相似文献   

11.
Early Pliocene (Zanclean) basalts in the Dien Bien Phu pull-apart basin in NW Vietnam, associated with the presently sinistral Dien Bien Phu Fault Zone, have been dated by the K–Ar method at 4.4–4.9 and 5.4–5.2 Ma. Rapid migration of basaltic magma to the surface in the Dien Bien Phu Fault Zone may be due to Pliocene transtension of the crust in this region, resulting from asthenospheric upwelling induced by lateral displacement of the mantle. The basalts are moderately phyric ( < 10%) and consist of olivine (hyalosiderite), plagioclase (bytownite–labradorite) and orthopyroxene (bytownite–labradorite) phenocrysts, and a fine-grained crystalline matrix (olivine–hortonolite, plagioclase–labradorite, clinopyroxene–pigeonite and augite, K-feldspar). The presence of Fe-rich olivine and orthopyroxene phenocrysts indicates that the basalts are SiO2-saturated/oversaturated olivine tholeiites which formed under water-undersaturated conditions. The Dien Bien Phu basalts contain both mantle-derived (pyroxenites, dunites, gabbros) and crustal (sillimanite/mullite + Mg–Fe spinel), wallrock xenoliths, indicative of crustal contamination during the ascent of the basaltic magma. The basalts show selective enrichment in some mobile elements (K, Rb, Sr and Th), a feature considered to be a result of metasomatism. These rocks, classified on the basis of their normative composition as quartz tholeiites, could represent primary olivine tholeiites/basalts, in which the geochemical signatures were modified by the processes of contamination.  相似文献   

12.
保山卧牛寺组玄武岩为低钛拉斑玄武岩,具有大陆板内玄武岩的特征,总体与蛾眉山玄武岩中的低钛玄武岩相似。其分异程度较高,富集大离子亲石元素和高场强元素,有明显的Nb、Ta负异常,Zr和Hf正异常,Eu无异常或弱负异常。该玄武岩由3个大喷发旋回形成3个岩石单元,其中下部早期第1单元由致密块状玄武岩、斜斑玄武岩、杏仁玄武岩和凝灰岩组成,第2和第3单元中见少量橄榄玄武岩和粒玄岩以及辉绿岩脉。有较高的^86Sr/^87Sr值(0.705966—0.706657)、较低的^143Nd/^144Nd值(0.512212—0.512283),εNd(t)多为负值,源区为介于EMI和EMⅡ端员之间的富集岩石圈地幔。上述地球化学和同位素特征均可与蛾眉山玄武岩下部低钛拉斑玄武岩对比,表明该期岩浆作用可能同为地幔柱活动的产物,并暗示蛾眉山大火成岩省向西有很大的延伸。  相似文献   

13.
The major and trace element chemistry of phonolites containing spinel Iherzolite xenoliths from Bokkos (Nigeria), Phonolite Hill (northeastern Australia) and Heldburg (East Germany) is consistent with an origin by fractional crystallization of basanitic magmas at upper mantle pressures (10–15 kbar). At Bokkos, spatially associated lavas ranging from hawaiitic nepheline mugearite to nepheline benmoreite can be modeled very well by fractional crystallization of kaersutitic amphibole + olivine + Fe-Ti-spinel + apatite, a crystal extract consistent with experimentally-determined near-liquidus phase relationships for mugearitic liquids. Further fractional crystallization of aluminous clinopyroxene + mica + apatite will yield the phonolites. A similar model relating the unusual Iherzolite-bearing mafic nepheline benmoreite from Pigroot (New Zealand) to basanitic lavas of the East Otago province is not supported by major and trace element data. The Pigroot lava is possibly the product of melting of a mantle source region previously enriched in Sr and light rare earth elements, with subsequent minor fractional crystallization of olivine + kaersutite. Dynamic flow crystallization processes operating within conduit systems from mantle pressures are capable of yielding large volumes of evolved phonolitic liquids from primary basanitic liquids, if magma flow rates are appropriate. This mechanism may provide an explanation for the volumetric bias towards salic differentiates in some alkalic provinces.  相似文献   

14.
峨眉山玄武岩微量元素地球化学的初步研究   总被引:12,自引:1,他引:12  
峨眉山玄武岩的微量元素丰度显示区域性差异,西岩区(盐源—丽江拗陷)玄武岩总体上比中、东岩区(康滇隆起和滇黔拗陷)玄武岩富相容元素而贫不相容元素,主要是因为它们的母岩浆经历的结晶分离的程度不同。比较演化的石英拉斑玄武岩、安山玄武岩往往富放射成因锶,反映其成因还涉及一定程度的地壳混染。相对主体拉斑玄武岩,东川碱性火山岩贫REE特别是LREE,推测源区发生过先期熔融事件。主要元素和REE的模拟计算表明,二滩粗面岩可以由玄武质母岩浆经分离结晶衍生,最可能的主要分离相是该区似层状辉长岩的矿物组合。  相似文献   

15.
A wide compositional continuum of basalts has been erupted from near-ridge seamounts constructed on the Cocos Plate between the Clipperton and Orozco Francture Zones. They range from highly evolved to moderately primitive (3.0–7.8% MgO), LREE-enriched alkali basalts, to moderately evolved to near-primary (5.2–9.5% MgO) tholeiites indistinguishable from N-type MORB. The data set of 159 quench glass analyses exhibits a remarkably consistent variation in both major and trace element composition that is keyed to variations in (La/Sm). Modeling of potential liquid lines of descent at pressures ranging from 1 bar to 8 kbar shows that this covariation is partially due to systematic differences in liquid lines of descent, where the alkaline lavas have undergone substantially more high pressure clinopyroxene fractionation and substantially less low pressure plagioclase fractionation than the tholeiites. In addition, systematic variation in the composition of the more primitive glasses indicates that they were derived from mixing of discrete enriched and depleted melts in the heterogenous seamount mantle source at pressures of 8–10 kbar and greater, and that clinopyroxene may be a residual phase during partial melting. These results show that porous media flow in the seamount mantle source is minor and that melt transport is accomplished primarily through cracking and diking. This study supports suggestions that the general homogeneity of basalt along the EPR is due to mixing in sub-axial magma chambers and mush zones, with additional mixing during partial mantle melting and melt segregation.  相似文献   

16.
A 500 m sequence of horizontal lava flows forms the Gregory rift escarpment of the western rift shoulder between Lake Natron and Oldoinyo Lengai. A detailed volcanic stratigraphy of this >1.2 Ma evolution of the EAR in Northern Tanzania is presented. The sequence is formed by several distinct rock suites, with increasing alkalinity from base to top. Alkali olivine basalts of the Waterfall Sequence at the base are followed by a basanite series, and by a range of evolved nephelinites forming the upper part of the escarpment. Numerous dykes and Strombolian scoria deposits indicate local fissure eruptions as opposed to or in addition to more distant sources. Primitive compositions within each of the series indicate variable candidates for primary magmas. The composition of the basanite suite ranges from primitive mantle melts (high Mg#, Cr, Ni) to more evolved rocks, in particular hawaiites, generated by fractionation of olivine, pyroxene and magnetite. Inter-bedded within the basanite suite, one single olivine melilitite flow with high Mg# and abundant olivine and pyroxene megacrysts is the only primitive candidate for the nephelinite suite. However, in view of the large compositional gap and marked differences in incompatible element ratios, a relation between this flow and the nephelinites remains hypothetical. The variation within the evolved nephelinite series can be partly explained by fractionation of pyroxene, apatite, perovskite (and some nepheline), while magma mixing is indicated by zonation patterns of pyroxene. The most evolved nephelinite, however, differs significantly from all other nephelinites in major and trace elements. Thus the entire sequence is petrologically not a coherent evolution, rather the result of different mantle melts fractionating under variable conditions.Carved into the rift scarp of the study area west of Engare Sero is a young explosion crater, the Sekenge Crater. Sekenge Tuffs are olivine melilitites, similar to other craters and maars of the “Younger Extrusives” on the rift valley floor surrounding Oldoinyo Lengai. Further, still younger alkaline tuffs are found on the top of the rift shoulder.  相似文献   

17.
Seven well-documented and fresh glassy selvages from ocean floor basalt pillows were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U and Zn. The samples came from active spreading centers in the Indian and Atlantic Ocean. Glasses from DSDP Leg 24, site 238 (Indian Ocean) have a somewhat peculiar trace element pattern, but this is thought to reflect secondary processes operating at shallow depth, not an anomalous source region in the mantle. Our data rather indicate that heterogeneities in the mantle are confined to the highly incompatible lithophile elements.Chemical fractionations during petrogenesis of tholeiitic basalts are discussed in the light of literature data for primitive peridotitic upper mantle nodules. (Ir, Os), Au, Pd, Ni and Re are strongly fractionated from each other in igneous processes; the unfractionated chondritic mantle pattern thus imposes firm constraints on mantle evolution models. The potentially chalcophile elements Ag, Cd, In and Zn do not behave differently from lithophile elements of the same valency and comparable ionic radius. Residual sulfides are not abundant enough to efficiently control the partitioning of these elements during basalt petrogenesis. However, the poor coherence of Tl to Rb and U in ocean floor basalts could point to retention of Tl by residual sulfides during depletion of the MORB source regions. Sb is strongly depleted in the source regions of ocean ridge basalts; most likely, it was present as a highly incompatible Sb5+ cation. The limited Rb/Cs fractionation in oceanic tholeiites, as opposed to continental tholeiites and acidic rocks, appears to reflect the low abundance of volatile constituents and hydrous silicates in normal ocean ridge basalts.  相似文献   

18.
A survey of Recent basaltic rocks in Iceland is presented. The basalts are classified into three groups: tholeiites, transitional alkali basalts and alkali olivine basalts. The basalts can be divided into petrological regions where the composition of lavas seem to have been fairly constant throughout postglacial and possibly late-Pleistocene time. The tholeiites delineate the crest region of the Mid-Atlantic Ridge as it transects Iceland, and the mildly alkali olivine basalts and the transitional alkali basalts characterize the flank volcanic zones. Tholeiitic and alkalic diffrentiated rocks appear to have a distribution in accordance with the basalt distribution pattern. There is some correlation between the chemistry of the zones and the crustal structure of Iceland. Areal discharge of volcanic rocks varies consistently between the petrological regions being highest in the tholeiite regions. The total output of volcanic rocks along the Mid-Atlantic Ridge in the Iceland area reaches maximum in middle Iceland.  相似文献   

19.
《Geodinamica Acta》2001,14(1-3):159-167
Pliocene–Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the Kızılırmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of Şarkışla (Sivas–central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region.  相似文献   

20.
Basalts dredged from the south wall of a fracture zone transecting the southern Mid-Atlantic Ridge (SMAR) at 54° S are unusual in that they include a suite of highly olivine phyric basalts, sampled along with more normal sparsely plagioclase phyric basalts, and a highly plagioclase phyric basalt. Four basalt types (olivine phyric, sparsely plagioclase phyric, evolved sparsely plagioclase phyric and highly plagioclase phyric) are readily distinguished on the basis of petrography, mineralogy and bulk composition. They range from primitive to evolved, with the olivine phyric basalts having elevated MgO (up to 15.5%) and the plagioclase phyric basalt having elevated Al2O3 (19.3%) and CaO (13.1%) contents. Compositional variations are extremely consistant, with the olivine phyric basalts and the sparsely plagioclase phyric basalts defining coherent linear trends. On the basis of the ratios and covariation of the incompatible trace elements Zr, Nb, Y and Ba, distinct parental magmas for each basalt type are required. An investigation of Fe-Mg and Mg-Ni distribution coefficients between olivine and magma indicates that olivines from the olivine phyric basalts are on average too forsteritic and too Ni poor to have crystallized in a magma corresponding to the host bulk rock composition. This implies that these basalts are enriched in xenocrystic olivine. Olivines from the other basalt types are mostly of equilibrium composition, although there are some exceptions. Petrogenetic models for the formation of the different basalt types are quantitatively evaluated in terms of fractional crystallization/crystal accumulation processes. These indicate that (1) the olivine phyric basalts are the products of olivine and minor Cr-spinel accumulation and do not represent analogues of primary magma, or a liquid fractionation trend; (2) that the sparsely plagioclase phyric basalts were formed by polybaric fractional crystallization of olivine, plagioclase and clinopyroxene; and (3) that the evolved sparsely plagioclase phyric basalts are not readily related to one another. The single highly plagioclase phyric basalt is unrelated to the other basalt types and is cumulus enriched in plagioclase.The different basalt types are unrelated to one another and document the presence of at least four distinct magma types erupted in close proximity at this ridge/transform intersection on the southern end of the Mid-Atlantic Ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号